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1. Introduction

Impressive progress has been made in the past years on turning the next-to-next-to-leading order

(NNLO, N2LO) of perturbative QCD into the new default approximation for many hard processes,

see, e.g., Refs. [1] for some very recent calculations. While this accuracy is fully adequate for

most quantities, there are cases where the next order, N3LO, is of interest due to (a) very high

requirements on the theoretical accuracy, such as in the determination of the strong coupling con-

stant αs from deep-inelastic scattering (DIS), see, e.g., Ref. [2], or (b) a slow convergence of the

perturbation series, such as for Higgs production in proton-proton collisions, see, e.g., Refs. [3].

N3LO analyses of processes with initial-state hadrons require, in principle, parton distributions

fi(x,µ2) determined at the same accuracy, including the renormalization-group dependence

d

d ln µ2
fi(x,µ2) = ∑

k

[

Pik(αs(µ2))N3LO ⊗ fk(µ2)
]

(x) (1.1)

on the factorization and renormalization scale µ ≡ µF = µR with the splitting functions

Pik(x,αs)N3LO = αs P
(0)

ik (x) + α2
s P

(1)
ik (x) + α3

s P
(2)

ik (x) + α4
s P

(3)
ik (x) . (1.2)

Here ⊗ represents the Mellin convolution in the momentum fractions x, and the sum over k includes

all nf effectively massless quark flavours; i.e., Eq. (1.1) is a system of (2nf +1)× (2nf +1) coupled

integro-differential equations. The splitting functions at NNLO [4] suggest that the effect of the

α4
s corrections in Eq. (1.1) is very small at x >

∼10−2, but this expectation cannot be extended with

sufficient certainty to the full range of x probed by benchmark processes at the LHC.

Here we report on the first steps of a project that aims to obtain a phenomenologically relevant

amount of information on all functions P
(3)

ik (x) in Eq. (1.2). The idea is to employ the FORCER

program, see Ref. [5], to extend the MINCER-based [6] fixed Mellin-N calculations of Refs. [7] to

four-loop accuracy, and then to construct approximate x-space expressions, analogous to those for

P
(2)

ik (x) in Refs. [8], from these results and information about the small-x and large-x limits [9–15].

Using basic symmetries, the system (1.1) can be decomposed into 2nf −1 scalar equations

and a 2×2 flavour-singlet system. The former (non-singlet) part consists of the 2(nf −1) flavour

asymmetries of quark-antiquark sums and differences, qi ± q̄i, and the total valence distribution,

q±
ns,ik = qi ± q̄i − (qk ± q̄k) , qv

ns = ∑
nf

r=1 (qr − q̄r) (1.3)

with

P±
ns = Pv

qq ±Pv
qq̄ , Pv

ns = Pv
qq −Pv

qq̄ + nf (P
s

qq −Ps

qq̄) ≡ P−
ns +Ps

ns . (1.4)

Typical lowest-order diagrams for the different contributions in Eq. (1.4) are shown below.

Pv
qq = O(αs) Ps

qq, Ps

qq̄ : α2
s Pv

qq̄ : α2
s Ps

qq̄ 6= Ps

qq : α3
s

1
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The remaining flavour-singlet quantities and their scale dependence (evolution) are given by

q
s

= ∑
nf

r=1 (qr + q̄r) ,
d

d ln µ2

(

q
s

g

)

=

(

Pqq Pqg

Pgq Pgg

)

⊗

(

q
s

g

)

, (1.5)

where g(x,µ2), abbreviated by g, denotes the gluon distribution. Pqq differs from P+
ns in Eq. (1.4)

by an additional pure singlet (ps) contribution starting at order α2
s ,

Pqq = P+
ns +nf (P

s
qq +P s

qq̄) ≡ P+
ns +Pps . (1.6)

Decompositions analogous to Eqs. (1.4) and (1.6) apply to the coefficient functions for inclu-

sive DIS. In fact, following Refs. [7], our calculations of the N3LO splitting function are carried out

via the unfactorized fourth-order coefficient functions in dimensional regularization, transformed

to forward amplitudes A using the optical theorem and projected onto the N-th Mellin moment,

A(N) =
∫ 1

0
dx xN−1A(x) , (1.7)

by a dispersion relation in x. Like the operator-product expansion, this approach determines either

the even or the odd moments of the splitting and coefficient functions. Specifically, the even mo-

ments are obtained of quantities involving q + q̄, such as F2 and FL in electromagnetic and ν+ν̄

charged-current DIS, and the odd moments of quantities with q− q̄, such as F3 in ν+ν̄ charged-

current DIS. See Ref. [16] for a detailed discussion of these issues including the ν−ν̄ cases.

Before we turn to our new results, it is worthwhile to briefly recall the large-N structure of the

quark-quark splitting functions in the MS scheme employed throughout this article,

γ
(n)±,v
ns (N) ≡ −P

(n)±,v
ns (N) = An lnN −Bn +Cn N−1 lnN −Dn +O±(N−2) . (1.8)

Here An is the (n+1)-loop cusp anomalous dimension [12], and Cn>2 has been predicted in terms

of Ak<n in Ref. [13]. The differences between the qq splitting functions are of order N−2 at large N.
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Figure 1: The successive large-N approximations in Eq. (1.8) compared to the full NLO and NNLO results.
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2. Low-N results for splitting functions and coefficient functions

As an example of our analytic results, we present the N = 4 anomalous dimension γ
(3)
gg , defined as

in Eq. (1.8) above, for a general gauge group in terms of the expansion parameter as ≡ αs/(4π),

γ
(3)
gg (N =4) = C4

A

(

1502628149

3375000
+

1146397

11250
ζ3 −

504

5
ζ5

)

+
d abcd

A d abcd
A

na

(

21623

150

+
15596

15
ζ3 −

6048

5
ζ5

)

− nf C3
A

(

20580892841

72900000
+

12550223

22500
ζ3 −

8613

25
ζ4 −

4316

27
ζ5

)

+ nf

d abcd
F d abcd

A

na

(

160091

675
+

80072

225
ζ3 −

48016

45
ζ5

)

−nf C2
A CF

(

4212122951

41006250

−
1170784

5625
ζ3 +

418198

1125
ζ4 −

17636

45
ζ5

)

+ nf CAC2
F

(

1913110089023

26244000000
+

39313783

101250
ζ3

+
26741

750
ζ4 −

3082

5
ζ5

)

+ nf C3
F

(

34764568601

2099520000
−

958343

40500
ζ3 −

18997

2250
ζ4 +

908

45
ζ5

)

− n2
f C2

A

(

3250393649

218700000
−

2969291

20250
ζ3 +

1566

25
ζ4 +

1276

135
ζ5

)

− n2
f C2

F

(

275622924731

26244000000

−
253369

10125
ζ3 +

1078

225
ζ4

)

+ n2
f CACF

(

136020246173

3280500000
−

1672751

10125
ζ3 +

15172

225
ζ4

)

+ n2
f

d abcd
F d abcd

F

na

(

75788

675
+

3008

15
ζ3 −

20416

45
ζ5

)

+ n3
f CF

(

1780699

24300000
−

484

675
ζ3

)

− n3
f CA

(

20440457

21870000
−

1888

405
ζ3

)

. (2.1)

Except for the last line [17], Eq. (2.1) is a new result. The complete set of fourth-order anomalous

dimensions at N ≤ 4 for Eq. (1.5) and at N ≤ 6 for Eq. (1.4) will be presented elsewhere [18].

Our results for γ
(3)±
ns (N) agree with the calculations at N ≤ 4 in Refs. [19–21]. The numerical

size of these quantities is shown in Fig. 2 for nf =3 and nf =4 light flavours. Taking into account the

very slow large-N convergence of γ
(n)
ns (N)/ lnN to An in Eq. (1.8), see Fig. 1 above, our results are

consistent with, but not yet sufficient to improve on, the Padé estimate of A3 in Ref. [22]. Similarly,

the N-dependent Padé estimate used in N3LO determinations of αs from non-singlet DIS [2] agrees

with the calculated moments well within the large uncertainty assigned to it so far.

Inserting the QCD colour factors (the quartic group invariants are normalized as in Ref. [23]),

the numerical expansions of the even-N non-singlet anomalous dimensions at nf = 4 are given by

γ +
ns (2,4) = 0.28294αs

(

1+0.7987αs +0.5451α2
s +0.5215α3

s + . . .
)

,

γ +
ns (4,4) = 0.55527αs

(

1+0.6851αs +0.4564α2
s +0.3659α3

s + . . .
)

, (2.2)

γ +
ns (6,4) = 0.71645αs

(

1+0.6497αs +0.4368α2
s +0.3307α3

s + . . .
)

.

The corresponding results for the odd-N cases γ a
ns for a = −,v are γ a

ns(1,nf ) = 0 , as required by

fermion-number conservation, and

γ a
ns(3,4) = 0.44210αs

(

1+0.7218αs +0.4767α2
s +0.3921α3

s + . . .

+δav

[

0.0144α2
s +0.0045α3

s + . . .
])

, (2.3)

γ a
ns(5,4) = 0.64369αs

(

1+0.6636αs +0.4434α2
s +0.3421α3

s + . . .

+δav

[

0.0032α2
s +0.0024α3

s + . . .
])

.
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Figure 2: The lowest three even-N and odd-N values, respectively, of the anomalous dimensions γ
(3)+
ns and

γ
(3)−
ns in Eqs. (1.4) and (1.8), compared to Padé estimates derived from the NNLO results of Ref. [4].

The first two moments of the upper row of the splitting-function matrix in Eq. (1.5) read

γqq(2,4) = 0.28294αs

(

1+0.6219αs +0.1461α2
s +0.3662α3

s + . . .
)

,

γqq(4,4) = 0.55527αs

(

1+0.6803αs +0.4278α2
s +0.3459α3

s + . . .
)

, (2.4)

γqg(2,4) = −0.21221αs

(

1+0.9004αs −0.1028α2
s −0.2367α3

s + . . .
)

,

γqg(4,4) = −0.11671αs

(

1−0.2801αs −0.9986α2
s +0.1297α3

s + . . .
)

. (2.5)

For the lower row we find γgi(2,nf ) = −γqi(2,nf ) , as required by the momentum sum rule, and

γgq(4,4) = −0.07781αs

(

1+1.1152αs +0.8234α2
s +0.8833α3

s + . . .
)

,

γgg(4,4) = 1.21489αs

(

1+0.3835αs +0.1220α2
s +0.2406α3

s + . . .
)

. (2.6)

The relative N3LO corrections are somewhat larger for nf = 3, but are small in all cases with

coefficients <
∼ 1 for nf = 3, . . . ,6 in Eqs. (2.2) – (2.6), where our new results are given in blue.

A check of the matrix in Eq. (1.5) at N > 2 is provided by a relation between the anomalous

dimensions which emerges for nf = 1 Majorana quarks and the choice CF = 2TF = CA ≡ nc ≡

ncolours of the colour factors that leads to a supersymmetric theory [24]: The combination1

∆
(n)
S (N) = − γ

(n)
qq (N)− γ

(n)
gq (N)+ γ

(n)
qg (N)+ γ

(n)
gg (N) (2.7)

is supposed to vanish for a regularization that does not violate the supersymmetry. In dimen-

sional regularization ∆
(n)
S does not vanish, but is much simpler than the anomalous dimensions, see

Ref. [25] for a brief discussion at NNLO. We find that this expected simplification occurs also at

N3LO (at N = 4, for now: ∆S vanishes at N = 2 already in QCD due to the momentum sum rule) at

(2nf )
2 d

(4)
FF

na

= 2nf

d
(4)
FA

na

= 2nf

d
(4)
FF

nc

=
d

(4)
FA

nc

=
d

(4)
AA

na

, d
(4)
xy ≡ d abcd

x d abcd
y (2.8)

1Up to NNLO, the same results are obtained by keeping the QCD value TF = 1/2 and setting nf = nc .

4
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for the quartic group invariants with all particles in the adjoint representation. The additional factor

of two for each power of nf in the QCD results is due to the transition to Majorana fermions.

We now briefly turn to the coefficient functions Ca for DIS in massless perturbative QCD

[26]; see Refs. [27] for the important heavy-quark contributions. The size of the fourth-order

corrections is illustrated in Fig. 3 for the structure functions F2,ns, F3 and FL,ns in charged-current

ν+ν̄ DIS. For F2 and F3 the ln8N . . . ln2N large-N contributions to C
(4)
a,q (N) are fixed by the soft-

gluon exponentiation [22], and the subleading N−1(ln7N . . . ln4N) terms by the double-logarithmic

resummations in Refs. [14,28]. For C
(4)
L,q (N) the latter provide the N−1(ln6N . . . ln4N) contributions.
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Figure 3: The moments calculated so far of the fourth-order coefficient functions c
(4)
2,ns , c

(4)
3 and c

(4)
L,ns for

ν+ν̄ charged-current DIS at nf = 4. Also show are the contributions provided by large-N resummations.

The numerical αs expansions of these coefficient functions at low values of N read, for nf = 4,

C2,ns(2,4) = 1+0.0354αs −0.0231α2
s −0.0613α3

s −0.4746α4
s + . . . ,

C2,ns(4,4) = 1+0.4828αs +0.4711α2
s +0.4727α3

s −0.2458α4
s + . . . , (2.9)

C2,ns(6,4) = 1+0.8894αs +1.2053α2
s +1.7571α3

s +1.7748α4
s + . . . ,

C3,ns(1,4) = 1−0.3183αs −0.3293α2
s −0.4467α3

s −1.0512α4
s + . . .

+ δav

[

0.0533α3
s +0.1999α4

s + . . .
]

,

C3,ns(3,4) = 1+0.1326αs −0.0852α2
s −0.5202α3

s −2.2510α4
s + . . .

+ δav

[

0.0202α3
s +0.0805α4

s + . . .
]

, (2.10)

C3,ns(5,4) = 1+0.6166αs +0.6042α2
s +0.4214α3

s −1.3217α4
s + . . .

+ δav

[

0.00788α3
s +0.0422α4

s + . . .
]

,

CL,ns(2,4) = 0.14147αs

(

1+1.7270αs +3.7336α2
s +9.5619α3

s + . . .
)

,

CL,ns(4,4) = 0.08488αs

(

1+2.5619αs +6.9208α2
s +20.251α3

s + . . .
)

, (2.11)

CL,ns(6,4) = 0.06063αs

(

1+3.1557αs +9.6370α2
s +30.572α3

s + . . .
)

.

The first moment of F3 is the Gross–Llewellyn-Smith (GLS) sum rule; its coefficients in Eq. (2.10)

agree with those of Refs. [29], where the δav part [cf. Eq. (2.3)] is called the singlet contribution.

5
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3. Large-nf all-N parts of N3LO splitting functions & the cusp anomalous dimension

The extension of our above results to higher values of N will require very considerable computing

resources and further optimizations of our programs. The situation is more favourable for some

leading and subleading large-nf contributions, which do not involve the hardest diagram topologies.

For example, the top-level diagrams contributing to the n2
f parts of the anomalous dimensions γ

(3)±
ns

are the same as for the nf parts of the NNLO contributions γ
(2)±
ns in Ref. [30],

but with an additional quark loop inserted into one of the gluon propagators. These diagrams have

the colour factor CFCAn2
f ; the C2

F n2
f cases are even simpler, as is the CFn3

f part derived in Ref. [31].

It is convenient to write the colour-factor decomposition the n2
f parts of γ

(3)±
ns in two ways,

γ
(3)±
ns (N)

∣

∣

∣

n2
f

= CFn2
f {CF 2A(N) +(CA −2CF)B±(N)}

= CFn2
f {CF(2A(N)−2B±(N))+ CA B±(N)} . (3.1)

A(N) is the large-nc part; it is the same for the even-N (+) and odd-N (−) cases and should include

only non-alternating harmonic sums [32]. Once A(N) is known, it is possible to determine B+(N)

and B−(N) from the CF parts in the second line of Eq. (3.1) which require only two-loop diagrams.

We have computed the even and odd moments up to N = 20 for the determination of A(N), and

the even-N or odd-N moments up to N = 42 for B+(N) and B−(N), respectively. These calculations

are sufficient to determine all three function using an LLL-based program [33], see also Refs. [34],

with a sufficient number of validation constraints. The resulting large-nc contribution reads

γ
(3)
ns (N)|CF ncn2

f
= 127

18
+ 1

81

(

20681
2

η +2119S1 −2275η2 −20460D2
1 +3392S1η −5036S2

)

+ 4
81

(

118η3 −886D3
1 −914S1η2 −848S1D2

1 −152S1,2 −416S2η −152S2,1 +1148S3

)

+ 8
27

(

−57D4
1 +18S1η3 −24S1D3

1 +2S2η2 +128S2D2
1 −8S3η +40S1,3 +80S2,2

+120S3,1 −159S4

)

+ 8
9

(

−6η5 −12D5
1 +10S1η4 −24S1D4

1 +8S2η3 +4S3η2

−8S3D2
1 +4S3,1η −8S1,3,1 +4S1,4 −8S2,3 −16S3,2 −2S4η −20S4,1 +24S5

)

+ζ3

{

− 44
3
− 160

9
(η −2S1)+ 16

3
(η2 −2D2

1 −2S2)
}

+ζ4

{

12+8η −16S1

}

, (3.2)

where all sums are taken at N and we have used the abbreviations Di = (N+i)−1 and η = D0−D1.

The large-N limit (1.8) of Eq. (3.2), together with the corresponding expressions for B±(N)

[35] yields the complete n2
f contribution to the four-loop quark cusp anomalous dimension,

γ
(3)
cusp = . . . + CFCAn2

f

(

923

81
−

608

81
ζ2 +

2240

27
ζ3 −

112

3
ζ4

)

+ C2
F n2

f

(

2392

81
−

640

9
ζ3 +32ζ4

)

−CFn3
f

(

32

81
−

64

27
ζ3

)

. (3.3)
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Figure 4: Fermionic contributions to the N3LO anomalous dimensions γ (3)±(N), compared to their calcu-

lated (left two panels) and conjectured (right panel) large-N limits given by the respective parts of γ
(3)
cusp.

The large-nc limit of Eq. (3.3) agrees with the second version of Ref. [36], in which an error has

been fixed after we pointed out a discrepancy with our result, see the left part of Fig. 4. The C2
F n2

f

coefficient agrees with the result of Ref. [37], which was converted to our notation and compared

during this conference. The n3
f part of γ

(3)
ns (N), and hence the n3

f coefficient in Eq. (3.3), agrees

with Ref. [31]. Our results also agree with the prediction of the N−1lnN coefficient in Ref. [13]

and the small-x resummation result for the 1/N5 contribution [11].

In the flavour singlet case, at least for the time being, only the n3
f leading large-nf contributions

can be determined in this manner; the results will be presented in Ref. [35].

The question of whether or not the quartic group invariants contribute to the four-loop cusp

anomalous dimension has attracted some interest, see, e.g., Refs. [38]. The presence of such contri-

butions would violate the Casimir scaling, γcusp,q =CF/CA γcusp,g, observed up to NNLO [4]. In our

calculations, the relatively easiest contribution of this type is the nf d abcd
F d abcd

F /nc part of the quark

case, which appears as the corresponding lnN coefficient of γ
(3)
ns (N). So far we have extended the

calculation of this contribution to N = 8. Except for the ζ5 part,

γ
(3)
ns (N)

∣

∣

∣

∣

ζ5 nf d
(4)
FF /nc

=
1280

3

[

2S1(N)−3+17

(

1

N
−

1

N +1

)

−6

(

1

N2
+

1

(N +1)2

)]

, (3.4)

(the corresponding result in Ref. [21] is unfortunately incorrect – only four moments were available

there, and the 1/N2 and 1/(N + 1)2 contributions were erroneously assumed to be absent) this is

not sufficient for a determination of the all-N result from which γ
(3)
cusp can be read off. Together with

the prime content of the denominators of the calculated moments, Eq. (3.4) is suggestive, but not a

positive proof, of a non-vanishing ζ5 nf d abcd
F d abcd

F /nc to γ
(3)
cusp. Moreover the calculated moments,

shown in Fig. 4, clearly point to a non-vanishing value; in particular, they are consistent with the

numerical value proposed in Ref. [37] on the basis of a conjectured relation to the quark-antiquark

potential calculated in Refs. [39] for this colour factor.
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4. Summary and outlook

We have presented the first computations of anomalous dimensions and coefficient functions at

order α4
s with FORCER, a new FORM [40] program for the analytic evaluation of four-loop massless

propagator integrals. Our results agree with those of all comparable calculations performed so far.

Together with the calculation of the four-loop gluon propagator in the background gauge to all

powers of the gauge parameter, this provides a robust validation of the FORCER package.

So far we have extended previous calculations [19–21] of the non-singlet splitting functions

for the evolution of the parton distributions of the proton by one moment each for P
(3)+
ns and P

(3)−
ns .

We have performed the first calculations, at N = 2 and N = 4, of the corresponding flavour-singlet

quantities, and the first calculations of fourth-order coefficient functions in DIS beyond N = 1 [29].

The full results will be presented in Ref. [18], together with the four-loop contributions to the

renormalization factors Z5 and ZA required if the Larin scheme for γ5 [41] is used in the calculations.

Unlike the four-loop renormalization of QCD, the calculations of moments of structure func-

tions require very considerable computing resources. Much more than thousand times the time of

the third-order computation is required at N = 4, and the scaling of the hardest topologies with N

is, at least so far, much worse than that of the MINCER program in its final highly optimized form.

Nevertheless, already now we have been able to calculate enough moments for the determina-

tion of the all-N expressions of the n2
f contributions to γ

(3)±
ns and the leading large-nf contributions

to their flavour singlet counterparts γ
(3)
ik via Diophantine equations for the coefficients of the har-

monic sums. We do not expect that the determination of all-N expressions in this manner can be

extended far beyond the point we have reached now. However, we hope to be able to obtain more

moments in the future, and to provide approximate results for the N3LO splitting functions P
(3)

ik (x)

that are useful for high-precision calculations of benchmark processes in ep and pp scattering.
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