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The one-loop corrections to the weak mixing angle sin2
θ b

eff, derived from the Zb̄b vertex, are
known since 1985. It took another 30 years to calculate the complete electroweak two-loop cor-
rections to sin2

θ b
eff. The main obstacle was the calculation of the O(700) bosonic two-loop vertex

integrals with up to three mass scales, at s = M2
Z . We did not perform the usual integral reduction

and master evaluation, but chose a completely numerical approach, using two different calcula-
tional chains. One method relies on publicly available sector decomposition implementations.
Further, we derived Mellin-Barnes (MB) representations, exploring the publicly available MB
suite. We had to supplement the MB suite by two new packages: AMBRE 3, a Mathematica pro-
gram, for the efficient treatment of non-planar integrals and MBnumerics for advanced numerics
in the Minkowskian space-time. Our preliminary result for LL2016, the “dessert”, for the elec-
troweak bosonic two-loop contributions to sin2

θ b
eff is:

∆sin2
θ

b(α2,bos)
eff = sin2

θW ∆κ
(α2,bos)
b , with ∆κ

(α2,bos)
b =−1.0276×10−4.

This contribution is about a quarter of the corresponding fermionic corrections and of about the
same magnitude as several of the known higher-order QCD corrections. The sin2

θ b
eff is now

predicited in the Standard Model with a relative error of 10−4 [1].

Loops and Legs in Quantum Field Theory - LL 2016,
24 - 29 April 2016
Leipzig, Germany

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/

mailto:e.a.dubovyk@gmail.com
mailto:afreitas@pitt.edu
mailto:janusz.gluza@us.edu.pl
mailto:tordriemann@gmail.com
mailto:jusovitsch@googlemail.com


P
o
S
(
L
L
2
0
1
6
)
0
7
5

30 years, some 700 integrals, and 1 dessert Tord Riemann

In Auerbach’s Keller, where Faust met Mephisto: T. Riemann, J. Usovitsch, I. Dubovyk, J. Gluza

Preface

Der Wahnsinn
ist nur eine schmale Brücke
die Ufer sind Vernunft und Trieb

Rammstein, http://www.magistrix.de/lyrics/Rammstein/Du-Riechst-So-Gut-26274.html 1

LL2016 in Leipzig was the 13th edition, and it was my last Loops and Legs conference as
an organizer, and perhaps also as a participant. I founded it, together with Johannes Blümlein
and Martina Mende, in April 1992 as a bi-annual event; it was a follow-up of the 1989 November
changes in Germany. The aim was an overview of the recent developments in perturbative quantum
field theory with focus on applications to precision collider experiments. We attempted a mix of all
the relevant research directions, but also a mix of both younger and more experienced collegues.
From time to time we had to invent some modernizations like parallel sessions or online proceed-
ings. In the early years the focus was more at direct phenomenological applications, and now it is
more on advanced technical developments. The steady high scientific level has been guaranteed by
the participants, and the discussions were top-level, lively and sometimes even hot.

My own research reflects the above observations. Since 1977, I am engaged in complete
electroweak radiative corrections for collider physics. A statement by a head of an institute: “For
me you are one who calculates integrals.” My most successful project is ZFITTER (with Dima
Bardin et al., see http://sanc.jinr.ru/users/zfitter). ZFITTER became the standard software for the
study of the Z boson resonance at LEP and elsewhere, and it was used to predict the masses of the
top quark and the Higgs boson prior to their discoveries. Many PhD students used it. Recently,
ZFITTER even got illegally copied by non-experts in order to promote their carriers. In 1985, we
calculated the one-loop corrections to Z→ b̄b. The corresponding FORTRAN code ZRATE, later
ZWRATE and ROKANC, became the center of the Standard Model library of ZFITTER. 30 years
later, at this year’s Loops and Legs conference, I presented an electroweak Standard Model two-
loop calculation for Z→ b̄b, performed together with my coauthors. This project started in 2012
at a meeting at the Max-Planck Institute in Munich, where I met Ayres Freitas. At that meeting the
second-oldest speaker was about 20 years younger than me . . . Our numerical fitting formula for
the Zb̄b weak mixing angle will, presumably, get included into software packages like ZFITTER.

1Insanity – is just a narrow bridge – the shores are reason and urge, Rammstein, http://lyricstranslate.com/de/du-
riechst-so-gut-you-smell-so-good.html (22.8.2016)
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During work on this report on the Zb̄b project I understood that there is a deep connection to one
of my other hobbies – the S-matrix approach to the Z resonance. This connection will be described
shortly in the introduction, although it was not part of the oral presentation at the conference. Its
understanding certainly will help to create a strict one per mille analysis tool for the Z resonance
as it is assumed to be needed for the next e+e− collider.

I would like to thank my collegues for a decade-long, competitive, but also collaborative work
in the research field of elementary particle physics, notably Arif Akhundov, Dima Bardin, Penka
Christova, Dietmar Ebert, Jochem Fleischer, Ayres Freitas, Janusz Gluza, Wolfgang Hollik, Lida
Kalinovskaya, Max Klein, Arnd Leike, Gottfried Mann, Sven Moch, Sabine Riemann, as well as
my PhD students Dietrich, Mark, Jochen, Alejandro, Valery (see https://www.genealogy.math.ndsu.
nodak.edu/id.php?id=29907), and Johann and Ievgen with whom to work was and is pleasure. In
February 2015 I underwent a medical surgery, and I thank Professor Dr. med. habil. Ahmed
Magheli from Charite in Berlin that I could afterwards successfully apply as a Fellow of the Pol-
ish Alexander von Humboldt Research Scholarship 2015, with host Janusz Gluza at the Silesian
University at Katowice.

Tord Riemann, 23 September 2016

1. Introduction

The study of the Z boson resonance in e+e− annihilation,

e+e−→ (γ,Z)→ f+ f− (+ nγ), (1.1)

has been performed with high precision at LEP and is planned with better precision at future e+e−

colliders. Correspondingly, the theoretical predictions in the Standard Model are needed with 2-
loop accuracy in the weak sector, and even better for QED and QCD. Usually, the theoretical anal-
ysis is based not on cross sections as measured in reaction (1.1), including non-observed additional
photons (and gluons), but on so-called pseudo-observables, corresponding to

e+e−→ (γ,Z)→ f+ f−, (1.2)

or even to the simpler reaction

Z→ f+ f− (+ nγ). (1.3)

This is quite similar to the analysis of LHC events, which one tries to focus on the underlying hard
2→ 2 process. As a result, the analysis of observables rests on two relatively independent steps:

• Unfolding the observed cross sections and representing them as 2→ 2 (pseudo-) observables;
the theoretical frame has to be sufficiently general in order not to bias step 2.

• Confronting the pseudo observables with specific theory predictions.

A key element of the theoretical analysis is the Zb̄b vertex, whose prediction at two electroweak
loops is the subject of our study. Two pseudo-observables are related to this vertex:
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• The partial decay width Γ(Z→ b̄b).

• The decay asymmetry, related to the parameter Ab; we give its definition below in (1.9).

The partial decay width Γ(Z → b̄b) is related to the peak cross-section σT of e+e− → (γ,Z)→
b+b−(+nγ), also to the pseudo-cross section of e+e−→ (γ,Z)→ b+b−, and Ab is related to the
angular asymmetry of the cross-sections.

In Born approximation everything looks relatively easy. Neglecting here photon exchange,
and using a Breit-Wigner resonance Z propagator with a priori mass MZ and width ΓZ of the Z
boson, one derives a qualitatively good description of the Z line shape close to the peak:

dσB

d cosθ
∼ G2

F

∣∣∣∣ s
s−M2

Z + iMZΓZ

∣∣∣∣2 (1.4)

×
[
(aB 2

e + vB 2
e )(aB 2

b + vB 2
b )(1+ cos2

θ)+(2aB
e vB

e )(2aB
b vB

b )(2cosθ)
]
.

Symmetric or anti-symmetric integration over cosθ allows to determine the two independent con-
tributions. One of them is the total cross section,

σ
B
T ≡

∫ 1

−1
d cosθ

dσB

d cosθ
∼
∣∣∣∣ s
s−M2

Z + iMZΓZ

∣∣∣∣2 G2
F
(
aB 2

e + vB 2
e
)(

aB 2
b + vB 2

b
)
∼ Γ

B
e Γ

B
b , (1.5)

and the other one the forward-backward asymmetry,

σ
B
FB ≡

[∫ 1

0
−
∫ 0

−1

]
d cosθ

dσB

d cosθ
∼
∣∣∣∣ s
s−M2

Z + iMZΓZ

∣∣∣∣2 G2
F(2aB

e vB
e ) (2aB

b vB
b ), (1.6)

AB
FB ≡

σB
FB

σB
T

=
3
4

2aB
e vB

e

aB 2
e + vB 2

e

2aB
b vB

b

aB 2
b + vB 2

b
≡ 3

4
AB

e AB
b . (1.7)

We observe the factorization of σB
T into the product of two partial widths,

Γ
B
f =

GFM3
Z√

2 6π
c f
(
aB 2

f + vB 2
f
)
, (1.8)

and of AB
FB into the product of two asymmetry functions,

AB
f =

2aB
f vB

f

aB 2
f + vB 2

f
. (1.9)

In Born approximation it is aB
f =±1

2 , Qe =−1, c f the color factor, and

vB
f

aB
f
= 1−4|Q f |sin2

θW . (1.10)

The vector and axial vector couplings will get loop corrections, which may be calculated from the
vertex diagrams VZ f f̄

µ (k2); for the Zb̄b-vertex:

gb
V(k

2)|k2=M2
Z
=

1
2(2−D)k2 Tr[γµ

�p1 VZbb̄
µ �p2]|k2=M2

Z
, (1.11)

3
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gb
A(k

2)k2=M2
Z
=

1
2(2−D)k2 Tr[γ5 γ

µ

�p1 VZbb̄
µ �p2]k2=M2

Z
. (1.12)

Here, we relate vertex corrections to effective couplings. In reality, realistic cross sections are
measured, and one has to relate their couplings to gb

V(k
2) and gb

A(k
2).

Fitting programs like Gfitter are relating “experimental” values of e.g. Γb, Ab with their theo-
retical predictions, e.g. in the standard model [2]. But does this fit the original pseudo-observables?
To some approximation, it does, as can be seen in the Born formulae. But one has to control the
quantum corrections safely. We know since long how to relate pseudo-observables in a strict way to
the loop corrections [3, 4, 5, 6, 7]. The amplitude for e+e− annihilation into two massless fermions,
and we assume here the final state to be massless, may be described to all orders of perturbation
theory by four complex-valued form factors, which depend on the masses and the invariants s and
t, and which are chosen here to be ρe f ,κe,κ f ,κe f ; we quote from [6], eq. (3.3.1):2

A e f f
Z (s, t) ∼ i e2 4 I(3)e I(3)f

χZ(s)
s

ρe f (s, t)
{

γµ(1+ γ5)⊗ γµ(1+ γ5) (1.13)

−4|Qe|s2
W κe(s, t)γµ ⊗ γµ(1+ γ5)−4|Q f |s2

W κ f (s, t)γµ(1+ γ5)⊗ γµ

+16|QeQ f |s4
W κe f (s, t)γµ ⊗ γµ

}
.

We use the definitions

χZ(s) =
GFM2

Z√
2 2πα

ρZ(s), (1.14)

ρZ(s) =
s

s−M2
Z + iMZΓZ(s)

. (1.15)

For the complete amplitude one sums over all relevant diagrams so that the form factors are pertur-
bative series:

ρe f = 1+δρe f = 1+
α

π
δρ

(1)
e f + · · · , (1.16)

κa = 1+δκa = 1+
α

π
δκ

(1)
a + · · · , a = e, f ,e f . (1.17)

Compared to a “naive” notation, we split from the rest of the amplitude the form factor ρe f multi-
plicatively. If a diagram is represented by an original set {ρe f , κ̄e, κ̄ f , κ̄e f }, this yields re-definitions
for all the κa:

κa =
κ̄a

ρe f
, a = e, f ,e f . (1.18)

The form factors, if introduced as it is done here, may be used for definitions of an effective Fermi
constant and three effective weak mixing angles:

Geff
F = ρe f (s, t) GF , (1.19)

2The left-projector is in that notations L = (1+ γ5)/2, while it is usually L = (1− γ5)/2. We further stress that the
notation covers all kinds of contributions, including also box diagrams.

4
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sin2
θ

eff
W,e = κe(s, t) sin2

θW , (1.20)

sin2
θ

eff
W, f = κ f (s, t) sin2

θW , (1.21)

sin2
θ

eff
W,e f =

√
κe f (s, t) sin2

θW , (1.22)

where

sin2
θW ≡ 1−M2

W

M2
Z
. (1.23)

The unique definition of an effective weak mixing angle is lost.
The Breit-Wigner propagator ρZ(s) contains a width function which is predicted by pertur-

bation theory. Its calculation deserves special attention, and for the moment the notation ΓZ(s)
emphasizes that it originates from summing over self-energies like ΣZ(s).

The amplitude may be further rewritten, in order to introduce the familiar couplings v f ,a f ,
which now will cover the loop corrections:

A e f f
Z (s, t) ∼ i e2 χZ(s)

s
aea f ρe f (s, t)

{
γµ(1+ γ5)⊗ γµ(1+ γ5) (1.24)

+
v f

a f
γµ ⊗ γµ(1+ γ5)+

ve

ae
γµ(1+ γ5)⊗ γµ +

ve f

aea f
γµ ⊗ γµ

}
.

Here, we made the choice that the axial couplings remain Born like,

ae = −1
2
, (1.25)

a f = ±1
2
. (1.26)

This choice means that the axial couplings remain to be real constants here, and that the (axial ×
axial) radiative corrections coming from a product of two vertices like (1.12) will be collected in
the definition of ρe f ,

δρ
ZēeZb̄b
e f =

ge
A(k

2)k2=M2
Z

ae

g f
A(k

2)k2=M2
Z

a f
, (1.27)

while the vector couplings are understood to contain radiative corrections. From a final state Zb̄b
vertex loop correction, one then gets e.g.:

ve = vB
e , (1.28)

vb = vB
e +δvZb̄b

f = vB
e +g f

V(k
2)k2=M2

Z
, (1.29)

veb = vB
e

(
vB

b +δvZb̄b
e f

)
= vB

e

(
vB

b +δvZb̄b
f

)
. (1.30)

From the above definitions we get three relations between the vector couplings and the form fac-
tors κ:

ve

ae
= 1−4|Qe|s2

W κe, (1.31)

5
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v f

a f
= 1−4|Q f |s2

W κ f , (1.32)

ve f

aea f
=

vev f

aea f
+∆e f , (1.33)

with

∆e f = 16|QeQ f |s4
W (κe f −κeκ f ). (1.34)

If κe f − κeκ f = 0, there is factorization. Factorization is broken by photonic corrections and by
box diagrams, while it is respected by weak vertex corrections and self-energies.

Having defined the amplitude, one may calculate, with standard text book methods, a 2→ 2
cross section. For unpolarized scattering one gets [4]:

dσ e f f

d cosθ
=

πα2

2s
|χZ(s)|2

[
(1+ cos2

θ)kT +2cosθkFB
]
. (1.35)

The symmetric part depends on

kT = |ρe f |2
[
|aea f |2 + |vea f |2 + |aev f |2 + |ve f |2

]
(1.36)

= |ρe f |2|ae|2|a f |2
[
(1+ | ve

ae
|2)(1+ |

v f

a f
|2)+∆T

]
,

with

∆T = |∆e f |2 +2ℜe
(

ve

ae

v f

a f
∆
∗
e f

)
. (1.37)

Assuming factorization, this becomes

kT = |ρe f |2
[
(|ae|2 + |ve|2)(|a f |2 + |v f |2)

]
, (1.38)

and finally, neglecting additionally the imaginary parts of ve and v f (and of ∆T ):

kT = |ρe f |2
[
(a2

e + v2
e)(a

2
f + v2

f )
]
. (1.39)

This is the formula usually applied to analyses.
Similarly, for the anti-symmetric cross section part:

kFB = |ρe f |2aea f ℜe(vev∗f + ve f ) (1.40)

= aea f

(
2ℜe

[
ve

ae

]
2ℜe

[
v f

a f

]
+∆FB

)
,

with

∆FB = 2ℜe∆e f , (1.41)

and after again neglecting non-factorizing terms and imaginary parts:

kFB = 2|ρe f |2(2aeve) (2a f v f ). (1.42)

6
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The cross section formula (1.35) is the exact result from the amplitude square and averaging over
the initial final helicity states.

Here, a technical remark is at the place: Already in Born approximation, the photon exchange
leads to non-factorization. It is numerically not small and has to be taken into account. One may,
formally, assume that the photon exchange Born amplitude is contained in the above-introduced
four form factors. This was exemplified in [8]. Conventionally, one works with two interfering
amplitudes as it is described in detail in the publications describing the ZFITTER project [9, 4, 5,
6, 7].

Under the assumption that the form factors are independent of the scattering angle, we get for
the total cross section and the forward-backward asymmetry:

σT =
4πα2

3s
|χZ|2 kT , (1.43)

σFB =
πα2

s
|χZ|2 kFB, (1.44)

and the forward-backward asymmetry becomes

Ae f f
FB =

3
4

kFB

kT
. (1.45)

If the form factors depend on the scattering angles, as it is the case for corrections from box dia-
grams, one has to study the numerical effect of that.

Further observables may be introduced for polarized scattering, where the amplitude (1.14) is
taken between helicity projected states. This may be easily investigated following [4].

The loop-corrected asymmetry parameter Ab as defined in (1.9) will be set in relation to loop-
corrected pseudo-observables at s = M2

Z, in terms of the angular integrals σFB,σT as defined in
(1.36) and (1.40):

Ab̄b
FB =

σFB

σT
(1.46)

=
3
4

ℜe[2aeve 2abvb +4sin2
θW |QeQb|2(κeb−κeκb)]

|aeab|2 + |veab|2 + |aevb|2 + |veb|2
+ corrections

=
3
4

Ae Ab + corrections.

The first “corrections” are due to neglected angular dependences of the form factors, and the
second “corrections” are due to neglected non-factorizations and imaginary parts.

As discussed in detail in [10], as well as in earlier work [11, 12], the weak mixing angle
sin2

θ b
eff and Ab are determined from the residue R of the leading part of the resonance matrix

element M̄ (1.48). This residue may be determined in a very good and controlled approximation
from the renormalized vector and axial vector couplings of the vertices V Zeē

µ and V Zbb̄
µ . To do so,

we have to understand how the form factors are composed. Besides the terms from s channel Z
boson exchange, they contain terms from s channel photon exchange, from box diagrams (with
weak bosons, but also with photon exchanges), vertices, self-energies.3 Some of these terms are

3We remark here that not only self-energies and vertices, but also arbitrary box diagrams may be inserted exactly
into the form factors [3, 4, 6].

7
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enhanced by the resonance form of the transition, others are not. One has to understand some
summation of terms which otherwise would explode at s = M2

Z .
We will now discuss shortly the consequences of the fact that we are studying a resonance.

Here arises the question, what is the correct and model-independent formulation of the amplitude
from the point of view of general quantum field theory? In order to respect general principles –
unitarity, analyticity, gauge invariance – one may use the pole scheme [11]. In the pole scheme,
one makes the following ansatz for the amplitude M̄ as a function of the scattering energy, or as a
function of the corresponding relativistic invariant s. In a sufficiently small neighborhood around
the pole position, it is a Laurent expansion with position of the pole s0 defined by the mass mZ and
its width gZ ,

s0 = m2
Z− imZgZ, (1.47)

and the residue R, plus a background term B. The latter is a Taylor expansion:

M̄ ∼ R
s−m2

Z + imZgZ
+

∞

∑
n=0

bn

s0

(
1− s

s0

)n

. (1.48)

Here, M̄ stands for the functional form of the amplitude introduced in (1.11). Within our formal-
ism, one may write in full generality:

ρe f =
Rr

s− s0
+

∞

∑
n=0

br,n

s0

(
1− s

s0

)n

, (1.49)

κe =
∞

∑
n=0

be,n

s0

(
1− s

s0

)n

, (1.50)

κ f =
∞

∑
n=0

b f ,n

s0

(
1− s

s0

)n

, (1.51)

κe f =
∞

∑
n=0

be f ,n

s0

(
1− s

s0

)n

. (1.52)

Because ρ is chosen to be an overall factor, it is appropriate to include the resonating part of the
amplitude here.4 From the generic formula (1.48), one gets all the expressions for σT ,AFB,ALR etc.
as explained above [13, 14]. As a result, all these quantities σA have the same form, but depend on
different terms RA,r and bA, f ,n, which are bi-linear compositions of the coefficients Rr and b f ,n.

The Breit-Wigner function used here deviates from the Breit-Wigner function as it was used
by the LEP collaborations, where ΓZ(s) = s/M2

Z ΓZ was used instead of ΓZ(s) = gZ . The difference
is not negligible and amounts to [15]:

mZ =
MZ√

1+Γ2
Z/M2

Z

≈ MZ−
1
2

Γ
2
Z/MZ ≈ MZ−34 MeV, (1.53)

gZ =
ΓZ√

1+Γ2
Z/M2

Z

≈ ΓZ−
1
2

Γ
3
Z/M2

Z ≈ ΓZ−1 MeV. (1.54)

4One might, instead, hold a resonating overall factor of the amplitude χZ(s) outside the form factors. This is done in
ZFITTER. Then ρ has to be understood as a Taylor series, and if a specific contribution is non-resonating, e.g. because
it is due to photon exchange, the first coefficient of ρ would vanish, br,0 = 0 (see [8] for more details).

8
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We have expansions both around the pole position s0 and in the coupling constants α and αs, and
have to assume that α,αs and gZ/mZ and also 1− s/m2

Z are of the same numerical order. As a
consequence, in an electroweak calculation, R is needed to order O(α2), the coefficients b0 to
order O(α), and the b1 etc. to leading order only. One has to observe that also the quantity gZ itself
is a prediction of the theory, beginning at order O(α2).

A further complication comes from the fact that there are not so small higher order photonic
corrections. There are two approaches to that. Either one assumes the photon exchange amplitude
as a separate quantity, which interferes with the Z boson amplitude, and takes this correctly into
account. This was done in the ZFITTER approach [4, 16, 7]. To the perturbative orders covered
by ZFITTER, this was a controlled approach. In general, it might be more consistent to work
with only one amplitude and to understand photonic corrections a a part of background. Then,
nevertheless it makes sense to calculate those parts of the photonic backgound with a precision
needed by experiment, and to separate this from the unknown parts of the background, as was
discussed in [17].

The above considerations help to understand the hierarchy of corrections. Weak vertex cor-
rections as well as weak self-energies contribute to R, while all the photonic corrections and also
the box diagrams go into the background B. This means that a two-loop calculation for the Z
resonance has to include only vertices and self-energies at two loops – these are the factorizing
corrections. An immediate consequence is that for the calculation of an asymmetry like AFB close
to the Z peak, one needs only the ve/ae and v f /a f , derived from (self-energy- and) vertex correc-
tions, at two loops, and the other terms with less accuracy.5 The photonic corrections, as well as
the box terms are not resonating and thus suppressed compared to the resonance residue. As a con-
sequence, all the complicated two-loop boxes are negligible here, while the photonic corrections
and the one-loop box terms are well-known and may be considered as a correction. In ZFITTER,
this is organized in the various interfaces [5, 16]. The numerical details have been carefully studied
in [18], and never again since then.

We come now back to the definition of the effective weak mixing angle:

sin2
θ

f
eff ≡ sin2

θW ℜe κ f =
1

4|Q f |

(
1−ℜe

v f

a f

)
. (1.55)

This means also

sin2
θ

f
eff =

(
1−M2

W

M2
Z

)
(1+∆κ f ) . (1.56)

According to its definition, the A f is a function of one variable only; for b-quarks:

Ab ≡
2ℜe gb

V
gb

A

1+(ℜe gb
V

gb
A
)2

(1.57)

=
1−4|Qb|sin2

θ b
eff

1−4|Qb|sin2
θ b

eff +8Q2
b

(
sin2

θ b
eff

)2

5Strictly speaking, the A f is dependent on the scattering channel for which it is measured or calculated. Using
e.g. Ae as it is measured from muon pair production for the determination of Ab from AFB as it is measured from b̄b
production, one has check that this is consistent to the accuracy aimed at.
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The so far best measurement is due to LEP 1 measurements [19]:

Ab = 0.899±0.013. (1.58)

For the weak mixing angle, this means:

sin2
θ

b
eff = 0.281±0.016. (1.59)

This value corresponds to an experimental accuracy of about 5.7%. At the next lepton collider, one
aims at electroweak per mille measurements, which motivates complete weak two-loop predictions.
We will see later that this aim is achieved for Ab with our new result.

To summarize this part of the discussion: The Zb̄b asymmetry parameter Ab may be expressed
by the effective weak mixing angle sin2

θ b
eff, or seen in a different way: One may determine the

effective weak mixing angle sin2
θ b

eff from the asymmetry parameter Ab, which by itself may be
determined experimentally from combinations of pseudo-observables, and theoretically from the
ratio vb/ab. Here, the vertex form factor ρb drops out. The calculation of all the relevant radiative
loop corrections at two loop order or more is involved. The relation of these radiative corrections
to the Z f f width and asymmetry parameters is simple, while the relations of the various width and
asymmetry parameters to realistic observables or to pseudo observables need a careful control.

What we did not discuss so far is the relation of “true”, or “realistic”, observables and pseudo-
observables. It is constituted by the determination of the 2→ 2 hard scattering observable from the
experimentally accessible cross sections with multi-particle final states, where the 2→ 2 amplitudes
contribute together with more complicated final states which may not be distinguished. One has to
cover additional soft photons, gluons, but also e+e−-pairs etc.

It is not the aim here to discuss this in detail. Up to additional corrections, at the Z resonance
the bulk of realistic observables may be described theoretically as a folding of the pseudo observ-
ables with some kernel functions. The experimentally accessible total cross section e.g. may be
written as follows:

σ
exp
T (s) =

∫
d

s′

s
ρT

(
s′

s

)
σT (s′)+ · · · . (1.60)

Similarly, and with the same kernel function, one may describe polarization and helicity asymme-
tries. The notable exception is, due a different angular dependence, the forward-backward asym-
metric cross section:

σ
exp
FB (s) =

∫
d

s′

s
ρFB

(
s′

s

)
σFB(s′)+ · · · , (1.61)

where ρFB(s′/s) 6= ρT (s′/s). For the explicit expressions for ρFB(s′/s) and ρT (s′/s), as well for
more involved contributions, see e.g. [20, 21, 22, 23, 24, 25]. Because at the Z resonance the
soft photon radiation dominates over hard photon emission, and the radiator kernels ρFB(s′/s)
and ρT (s′/s) start to deviate from each other for hard emissions, one may use ρT (s′/s) in some
approximation for the prediction of all the realistic observables: At the resonance, hard radiative
emissions are kinematically suppressed. But when non-resonating parts become important, one has
to take notice of their difference.

10
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The unfolding of realistic observables according to (1.60) and (1.61) can be performed with
the analysis tools TOPAZ0 [26, 27, 28, 29] and ZFITTER. The latter one relies on the work quoted
above for ρT and ρFB. Evidently, the result of unfolding depends on the model chosen for the
hard process σ0

T (s
′) or σ0

FB(s
′). This fact is reflected by the various model-dependent so-called

interfaces of ZFITTER.

Finally, the following question has to be answered: How may one take into account the res-
onating Breit-Wigner form of the pseudo-observables when unfolding? The answer is given by
the so-called S-matrix approach to the Z resonance. This task was not covered in the original ver-
sions of ZFITTER. A relatively simple version was offered with the interface ZUSMAT of ZFIT-
TER. This interface was finally replaced by a call to the independent Fortran package SMATASY
[13, 14, 30, 31, 32, 33, 17]. It is not the intention here to describe details of the approach. We only
mention that one may introduce in (1.60) and (1.61) the effective Born approximations as they are
derived from amplitudes of the form (1.48), where the form factors are expressing the correspond-
ing resonance parameters RA, sA,0 and bA,n. Consequently, unfolding allows the determination of
s0 and of certain combinations of RA and, depending on the experimental accuracy, also of the
background parameters bn.

For the b-pair production, one has to derive from data e.g. the residues RT ,RFB. Their ratio
RFB/RT gives then (with the approximations mentioned)

RFB

RT
=

3
4

AeAb, (1.62)

and for known Ae from other measurements one may derive Ab.
If one intends to create a modernized per-mille version of ZFITTER for a study of the Z

resonance at a future lepton collider, one has to foresee interfaces which carefully take into account
the notations and concepts described here.

Now we come back to the very determination of the weak bosonic two-loop corrections to Ab

and to sin2
θ b

eff. Explicit generic formulae for the residue R of the Z resonance amplitude, respecting
general principles – unitarity, analyticity, gauge invariance –, are given with equations (12) and
(13) of [10], with a reference to earlier work [12].

2. The Z-boson width

As explained above, the Zēe and Zb̄b vertices constitute the main contributions to the pseudo
observables of the Z resonance,

Γ(z→ b̄b) ∼ |M1−loop +M2−loop + · · · |2 + · · · , (2.1)

M2−loop ∼ ·· ·+ ū VZbb̄
µ u ε

µ + · · · (2.2)

The two-loop electroweak fermionic corrections to Ab and sin2
θ bb̄

eff were determined in [34]. We
have calculated now the so far unknown bosonic integrals for the 2-loop diagrams for the vertex
VZbb̄

µ . They include the topologies shown in figure 1.

11
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Figure 1: The bosonic electroweak two-loop topologies of the Zb̄b vertex.

2.1 The electroweak one-loop corrections to the Z-boson vertex

Around 1980 it became evident that the Glashow/Salam/Weinberg model might become the
electroweak Standard Model. Consequently, some more elaborated loop calculations became mean-
ingful.

Seen from today, the one-loop calculations of that time look quite simple. One had to under-
stand complex logarithms, the Euler dilogarithm Li2, and to read basically two seminal papers by
’t Hooft and Veltman [35] and by Passarino and Veltman [36]. Among the first substantial, inde-
pendent electroweak projects was a study in the unitary gauge by the Dubna group, founded by
Dima Bardin. They studied complete electroweak radiative corrections for decays and scattering
processes, including e+e−→ f̄ f and Z→ f̄ f , assuming all fermions being massless. In [37], no
expanded numerics was performed. Triggered partly by the detection of Z → l+l− by the UA1
and UA2 experiments at CERN, there were several calculations of Z-decay into leptons [38, 39],
also under the assumption of massless fermions. The decay Z → b̄b gets contributions from mt-
dependent vertex contributions, and it is not covered by these calculations, if the top quark is heavy.
The top quark mass was unknown at that time, but the experimental mass limits were growing up.
People at Dubna (Akhundov, Bardin, Riemann) observed that one can cover the amplitude with
account of the additional mt-dependent terms by adding up two known pieces:
M (Z→ q̄q) with mq = 0, and
M (Z→ q̄1q2) with q1,q2 having the same isospin, but q1 6= q2.
The first piece was known from [37], and the second one, non-vanishing only if a loop fermion
mass is non-vanishing, from a study of flavor-nondiagonal Z decays [40]. So the two were com-
bined and accomplished by an independent recalculation of the whole Zb̄b amplitude. The preprint
JINR-E2-85-617 appeared in August 1985, and soon later the publication [41]. The language of
ρZ and κZ for the radiative corrections was used there, and the Fortran program ZRATE became
the first piece of the electroweak Standard Model library of the ZFITTER project [7, 16, 42]. At
the official ZFITTER webpage http://sanc.jinr.ru/users/zfitter/ one may find the many additional
publications on which the ZFITTER software is founded.

When the opening of LEP 1 at CERN approached, with a potential to observe the decays
Z → b̄b, several further one-loop calculations were published: in October 1987 [43], in January

12
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1988 [44], in January 1988 [45], in July 1988 [46], in 1990 [47]. Just to mention, the one-loop
terms of our present code for the Zb̄b vertex remained unpublished (A. Freitas). 6

2.2 Known higher order corrections to the Zb̄b vertex

There are several higher-order corrections to the Zb̄b vertex known: the O(ααs) QCD correc-
tions [48, 49, 50, 51, 52, 53, 54], partial corrections of order O(αtα

2
s ) [55, 56], partial corrections

of order O(α2αt) and O(α3
t ) [57, 58], the Standard Model two-loop prediction of MW from the

Fermi constant Gµ [59], partial corrections of order O(αtα
3
s ) [60, 61, 62], the fermionic elec-

troweak two-loop corrections [34]. Further references to be mentioned here are [15, 63, 64, 65, 10,
66, 67].

3. The bosonic Zb̄b topologies

The bosonic electroweak two-loop corrections to the Zb̄b vertex were the last missing piece for
the prediction of sin2

θ b
eff. We could use the calculational scheme as it was worked out in [10, 34]

and work quoted therein. We calculated the O(700) unknown bosonic Feynman diagrams with
two methods, in order to have two independent numerical results. One method relied on sector
decomposition, and we used the publicly available packages FIESTA 3 [68] and SecDec 3 [69].
Both of them can apply contour deformation and are applicable to Minkowskian kinematics, as it
is met here. The second method uses Mellin-Barnes representations for the Feynman integrals. For
this, one may use the MB suite, publicly available at the MBtools webpage [70], and software from
the Katowice webpage [71]. We had to develop two new tools. For the treatment of non-planar
Feynman integrals, we developed AMBRE 3 [72, 73, 74]. The package MBnumerics [75] delivers
a stable 8-digit numerical treatment of Feynman integrals with presently up to four dimensionless
scales in the Minkowskian region. It was also essential, that both methods can automatically treat
ultraviolet and infrared singularities. While the sector decomposition method had problems with
few infrared divergent one- or two-scale integrals, the MB-method tends to fail for integrals with
a larger number of scales. Nevertheless, we derived two precise, independent results for all the
integrals needed. Details of the complete calculation have been reported in [1, 76] and in the
transparencies of this talk at LL2016 [77], so we may restrict ourselves here to some pedagogical
remarks.

3.1 The non-planar one-scale integral I15(0H0W0txZ)

As an example we compare several calculations of a non-planar two-loop vertex integral with
one massive line and only one scale, s = M2

Z , I15(0H0W0txZ). It is shown in figure 2 and depends
on one parameter s/M2

Z = 1+ iε . A first calculation goes back to 1998 [78], so we could use the
result as a cross-check of our own calculation with the Mellin-Barnes method [76, 1]. This was an
important check, because an attempt to calculate the integral with the sector decomposition method
in Minkowskian space-time failed.

6The one-loop corrections to Z → b̄b in the Gfitter package of 2007 (version of 15 June 2008 by J. Haller, A.
Hoecker, M. Goebel [2]) are not based on an independent calculation. That package makes use of the Standard Model
implementation in ZFITTER [42].

13
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Figure 2: A non-planar vertex with one massive line.

The integral I15(0H0W0txZ) is (up to some sign convention) the integral N3 of [78]:

−N3 = I15(0H0W0txZ) (3.1)

=
e2γE ε

πd

∫ ddk1ddk2

D[k1,0]D[k1− k2,0]D[k2,0]D[k2 + p2,0]D[k1 + k2 + p2,0]D[k1− k2 + p1,MZ]
.

The MB-representation is derived with calls to the packages PlanarityTest [72, 79] and AM-
BRE 3 [73, 74]. The U- and F-polynomials are:

Upoly1 = x[1]x[2] + x[1]x[3] + x[2]x[3] + x[1]x[4] + x[3]x[4] + x[1]x[5]

+ x[2]x[5] + x[4]x[5] + x[2]x[6] + x[3]x[6] + x[4]x[6] + x[5]x[6]

Fpoly2 = Upoly1 MZ^2 x[4] - s x[1]x[4]x[5] - s x[1]x[2]x[6] - s x[1]x[3]x[6]

- s x[2]x[3]x[6] - s x[1]x[4]x[6] - s x[1]x[5]x[6]

A naive MB-representation would become high-dimensional, and it would be plagued by the occur-
rence of terms containing the ill-defined expression Γ[0]. A dedicated introduction of Cheng-Wu
variables leads to the following integrands for the x-integrations:

Upoly2 = v[1] + v[2] v[3]

Fpoly2 = + MZ^2 Upoly2 C[2]v[3] - s A[1]A[2]v[1]^2

- s A[2]B[1]C[1]v[1]v[2]v[3] - s A[1]B[2]C[2]v[1]v[2]v[3]

The x-integrations over v[i] can be easily performed, and we remain, from the four additive terms
in Fpoly2, with a three-dimensional MB-integral:

N3 ~ (-s)^(-2-2eps) Gamma[-eps]

(-(s/MZ^2))^-z2 Gamma[-eps-z1] Gamma[-z1] Gamma[-eps-z2] Gamma[-z2]

Gamma[-1-2eps-z1-z3] Gamma[-1-2eps-z2-z3] Gamma[-1-2eps-z1-z2-z3]

Gamma[-z3] Gamma[1+z3]^2 Gamma[1+z1+z3] Gamma[2+2eps+z1+z2+z3])

/ (Gamma[-2eps-z1] Gamma[-3eps-z2] Gamma[-2eps-z2] Gamma[-2eps-z1-z2])

When continuing in eps with the package MB.m [80], we derive for vanishing, but finite ε a
two-dimensional and a three-dimensional MB-representation:

14
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N3 ~

{

MBint[ ((-s)^(-2-2eps) Gamma[-2eps] Gamma[-eps]

(-(s/MZ^2))^-z2 Gamma[-eps-z2] Gamma[-z2]^2 Gamma[1+z2] Gamma[-1-2eps-z2-z3]

Gamma[-z3] Gamma[1+z3] Gamma[1+eps+z3] Gamma[1+2eps+z3])

/ (Gamma[-3eps-z2] Gamma[-2eps-z2] Gamma[1-z2+z3]),

{{eps->0},{z2->-0.42644,z3->-0.826119}} ],

MBint[ ((-s)^(-2-2eps) Gamma[-eps]

(-(s/MZ^2))^-z2 Gamma[-eps-z1] Gamma[-z1] Gamma[-eps-z2] Gamma[-z2]

Gamma[-1-2eps-z1-z3] Gamma[-1-2eps-z2-z3] Gamma[-1-2eps-z1-z2-z3]

Gamma[-z3] Gamma[1+z3]^2 Gamma[1+z1+z3] Gamma[2+2eps+z1+z2+z3])

/ (Gamma[-2eps-z1] Gamma[-3eps-z2] Gamma[-2eps-z2] Gamma[-2 eps-z1-z2]),

{{eps->0},{z1->-0.268281,z2->-1.00065,z3->-0.171895}} ]

}

Applying MB [80] and MBnumerics [75], we get:

N3 =
1
ε2 (1.23370055013617− i 6.20475892887384×10−13) (3.2)

+
1
ε
(2.8902545096591976+ i 3.875784585038738)

+ (−0.7785996083247692− i 4.123512600516016).

The integral N3, according to equation (D.11) of [78], is with z = s/M2
Z = 1+ iε:

N3 =
1
s2

∞

∑
n=1

(−z)n

{
1
ε2

[
−1

2
ζ2 +K2(n−1)

]
(3.3)

+
1
ε

[
−1

2
ζ3−2ζ2S1(n−1)+2S3(n−1)−2K3(n−1)+4S1(n−1)K2(n−1)

+ (ζ2−S2(n−1))ln(−z)

]

+

[
−ζ4−2ζ3S1(n−1)−7ζ2S2(n−1)−4ζ2S1(n−1)2 +7ζ2K2(n−1)− 7

2
S4(n−1)

+
7
2

S2(n−1)2 +6S1(n−1)S3(n−1)+2S13(n−1)+8K4(n−1)

− 8S1(n−1)K3(n−1)+8S1(n−1)2K2(n−1)

+
(

ζ3 +4ζ2S1(n−1)−S12(n−1)−3S1(n−1)S2(n−1)−4K3(n−1)
)

ln(−z)

+
(
−ζ2 +

1
2

S2(n−1)+K2(n−1)
)

ln2(−z)

]}
.

The expression contains harmonic sums [81, 82, 83]:

Sa(n) =
n

∑
j=1

1/ ja, (3.4)

Ka(n) = −
n

∑
j=1

(−1) j/ ja, (3.5)

15



P
o
S
(
L
L
2
0
1
6
)
0
7
5

30 years, some 700 integrals, and 1 dessert Tord Riemann

Sab(n) =
n

∑
j=1

Sb( j−1)/ ja, (3.6)

The sum N3 converges both in the Euklidean and the Minkowskian kinematics, but very slowly,
so that it would need many terms in order to get our accuracy goal of eight digits. The N3 evaluated
with 200 terms gives e.g.:

time = 4.060519 sec for 200 terms of the sum

N3 = (0.4 + 4 x I)

+ 1/eps x (2.8 + 3.87 x I) + 1 /eps^2 x (1.23 + 0 x I)

The agreement, with several thousand terms (few hours running time), is suffiently good in order
to see that the results from the numerical MB-approach are reasonable. One may improve the
comparison. In fact, in appendix E of [78], the necessary harmonic sums are explicitly performed.
We derive:7

φ(z) =
1
2

S1,2(z2)−S1,2(z)−S1,2(−z)+ ln(1− z)Li2(−z) (3.7)

and

− s2z
1+ z

N3 =
1
ε2

[
−ζ2

2
−Li2(z)

]
(3.8)

+
1
ε

[
−1

2
ζ3−2ζ2Li2(−z)+2Li3(−z)+2Li3(z)+4

[
φ(−z)−S1,2(z)−Li3(−z)

]
+ (ζ2−Li2(−z)) ln(−z)

]
− s2z

1+ z
Nconst

3

Further,

s2(−z)
1+ z

Nconst
3 = −ζ4 +2ζ3 ln(1+ z)−7ζ2Li2(−z)−4 ζ2

[
− ln(1− r)2 +Li2(−z)

]
(3.9)

+7 ζ2Li2(z)−
7
2

Li4(−z)+
7
2
[
Li2(−z)2 +Li4(−z)−S2,2(−z)

]
+ 6
[
(Li4(−z)− ln(1+ z)Li3(−z)− 1

2
Li2(−z)2 +S2,2(−z)

]
+2

[
− ln(1+ z)Li3(−z)− 1

2
Li2(−z)2

]
+8Li4(z)

− 8
[
−Li4(z)−S2,2(z)−

∫ −z

0

dt
1− t

Li3(−t)
]

7In [78], the overall sign of (E.7) is wrong, and in the r.h.s. of (E.36) one has to replace S1,3 under the integral by
S1,2 and to change the sign of 2 ln(1− z). We thank A. Kotikov for clarifying this.
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+8
[
−Li4(z)−

1
2

S2,2(z)−2S1,3(z)+φ(−z)[ln(−z)−2ln(1+ z)]

−
∫ −z

0

dt
1− t

[(2ln(1− t)− ln(t))Li2(−t)+2Li3(−t)+2S1,2(−t)]
]

+
[
ζ3−4ζ2 ln(1+ z)+

[
ln(1+ z)Li2(−z)+S1,2(−z)

]
− 3
(
Li3(−z)+(− ln(1+ z)Li2(−z)−S1,2(−z)

)
−4Li3(z)

]
ln(−z)

+
[
−ζ2 +

1
2

Li2(−z)+Li2(z)

]
ln2(−z)

The result is expressed in terms of polylogarithms, plus the few harmonic polylogarithms which are
needed to close the basis of weight four. For a systematic numerical calculation of the expressions
here in terms of harmonic polylogarithms H[x,a,b,c,d],a,b,c,d = ±1,0, see e.g. appendix B of
[84], which is implemented in the Mathematica package HPL4num.m [85] and checked with the
Mathematica package HPL [86]. The most compact representation of the integral at the Z boson
mass shell was obtained with the aid of Jacob Ablinger, Johannes Blümlein, Carsten Schneider and
Arnd Behring (priv. commun.):

N3,−2(z) = (zζ2)/(2(1+ z))+(zLi2(z))/(1+ z), (3.10)

N3,−2(1+ i ε) =
3ζ2

4
, (3.11)

N3,−1(z) =
z

2(z+1)
[
(−4H(−1,z)(2H(0,1,z)+ζ2)+8H(0,−1,1,z) (3.12)

−4H(0,0,−1,−z)+4H(0,0,−1,z)+8H(0,1,−1,z)+8H(0,1,1,z)

−2ln(−z)H(0,−1,z)−2 ζ2 ln(−z)+ζ3)
]
,

N3,−1(1+ i ε) = −3ln(2)ζ2 +
21
4

ζ3 + i
3
4

πζ2. (3.13)

We confirm with N3(1+ i ε) the 9 digits accuracy obtained with AMBRE/MB/MBnumerics given
in (3.2):

N3,0(1+ i ε) = 24Li4(1/2)+ ln4(2)− 351
80

ζ
2
2 − I 3ln(2)2πζ2− i

63
16

πζ3 (3.14)

= 0.77859960898762168563452805690

−i 4.12351259333642272648103365383.

4. Results

The electroweak bosonic two-loop contribution to the weak mixing angle is:

∆κ
(α2,bos)
b =−0.9855×10−4. (4.1)

The value −1.0276× 10−4, presented as preliminary result at LL2016, was based on the input
parameter list of [77] which differs slightly from the input list of table 1 of [1], which is applied
here. This value amounts to about 1

4 of the leptonic corrections to κb and sin2
θ b

eff. The corrections
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Table 1: Reference values used in the numerical analysis, from Ref. [87].

Parameter Value Range

MZ 91.1876 GeV ±0.0042 GeV

ΓZ 2.4952 GeV

MW 80.385 GeV ±0.030 GeV

ΓW 2.085 GeV

MH 125.1 GeV ±5.0 GeV

mt 173.2 GeV ±4.0 GeV

αs 0.1184 ±0.0050

∆α 0.0590 ±0.0005

Table 2: Comparison of different orders of radiative corrections to ∆κb, using the input parameters in 1.
Numerical values taken from [1].

Order Value [10−4]

α 468.945

ααs −42.655

αtα
2
s −7.074

αtα
3
s −1.196

α2
t αs 1.362

α3
t 0.123

α2
ferm 3.866

α2
bos −0.986

to the weak mixing angle are shown in table 2. The biggest corrections come from the one-loop
electroweak contributions, followed by mixed electroweak-QCD corrections of order ααs. All
the other corrections, including the new bosonic electroweak two-loop corections, are of the same
order, at the 10−4 level. For a per mille measurement, it is good to know them, but they will not
influence the data analysis numerically.

For the corresponding fitting formula for sin2
θ b

eff, we refer to [1]. An analysis tool for the
consistent 1 per mille treatment of realistic observables, pseudo-observables, and two-loop pre-
dictions to them, is not available for the Z boson resonance, although ZFITTER is a very good
approximation and suffices for the presently available accuracy of data.
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