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1. Introduction

During the next decade the experiments at the Large Hadron Collider (LHC) will deliver mea-
surements of the S-matrix at the 5% level. Theory predictions with comparable quality are chal-
lenging and time consuming to obtain. The long-term aim of the presented research is to provide
automated theory tools for fixed-order computations in QCD in order to match the experimental
precision. Here I discuss the new methods ref. [1] for the computations of two-loop scattering
amplitudes required for next-to-next-to leading order (NNLO) predictions.

In general terms, any contribution that increases the breath, depth, precision and completeness
of predictions is important. Breadth or variety in the final states facilitates indirect detection and
characterization of new physics. Depth towards high-multiplicity final states allows to probe the
kinematic dependence of interactions. Finally, the percent-level measurements of Standard Model
(SM) cross sections requires precision predictions often including second-order quantum correc-
tions. Although challenging to obtain phenomenological amplitudes have an increased value during
the run-time of the LHC making multi-loop computations worthwhile in many ways.

During the last ten years a similar challenge was solved by the theory community. The automa-
tion of NLO computations in the QCD and electroweak coupling expansion [3, 2] lifted the under-
standing of the SM to the 10% level. Presently a limited number of NNLO predictions are available
with two final-state objects [4]. Going beyond this multiplicity or increasing the number of scales
requires advances of the state-of-the-art techniques. I follow one of the successful approaches for
NLO computations, the unitarity approach [6, 7] and lay out an extension to multi-loop amplitudes.
In particular, I focus on the variant of the unitarity methods well suited for numerical computations
[8, 9, 2].

2. The role of unitarity and surface terms

Amplitude computations relate Feynman amplitudes to a universal ansatz in terms of master
integrals and their coefficients,

A 2−loop :=
∫

dD`dD ˜̀ A2−loop
Feyn. (`, ˜̀) = ∑

i ∈ integral basis

diIi , and Ii :=
∫

dD`dD ˜̀ mi(`, ˜̀)
ρ0 · · · ρ̃(Ñ−1)

.(2.1)

Here Ii denote master integrals defined by numerator insertions mi(`, ˜̀) and the topologies fig. 1.
I focus the discussion on 2-loop amplitudes although the discussion is valid beyond this. The
independent loop momenta are denoted by ` and ˜̀, external momenta by pi and inverse propagators
are denoted by ρ-variables, e.g. ρ i = (`−qi)

2−m2
i with qi = ∑ j p j.

The role of unitarity methods is two-fold; on the one hand the equations (2.1) can be split up in
to a fine-grained set using analytic properties of amplitudes (see e.g. [10]). On the other hand, the
left-hand side of the master equation is simplified to tree-level on-shell expressions by cutting [11],

A 2−loop|cut(t,C )
=
∮

C
µt [dα]t ∏

i ∈ corners

Atree
i (`, ˜̀) = ∑

j ∈ cut topologies

d jI j|cut(t,C )
+ parent contributions .(2.2)

The variable t labels the cut topologies (specified by the list of cut propagators), µt refers to the in-
tegration measure after cutting and α’s denote the remaining integration variables. Eqn. (2.2) holds
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up to ‘parent contributions’ which refers to integrals with additional (un-cut) propagators. When
solving eqn. (2.2) iteratively in the number of cut propagators starting from cutting the maximal
number of propagators, the parent contributions are already available when needed. Thus, eqn. (2.2)
are linear equations for the coefficients di. As an improvement, one solves for the coefficients di

directly using integration contours Ci dual to the master integrals [12],

Ii|cut(t,C j)
=
∮

C j

µt [dα]mi(α) = δ
j

i , (2.3)

as manifest by inserting eqn. (2.3) into eqn. (2.2). The integration over multi-dimensional contours
C are challenging which motivates the algebraic variant of the unitarity approach, described next.

Given a basis of integrands (as opposed to the integrands of master integrals) the algebraic
relation,

A2−loop
Feyn. (`, ˜̀) = ∑

i ∈ integrand basis

d̃i m̃i(`, ˜̀)
ρ0 · · · ρ̃(Ñ−1)

, (2.4)

holds with yet to be determined coefficient functions d̃i. Such integrand parametrizations have been
developed in the recent years [13, 14, 15].

The unitarity equations emerge, when solving the equations for the coefficients d̃i. As above,
one solves the eqn. (2.4) topology by topology using their propagator structure. One proceeds
iteratively in the number of propagators starting from the maximal number of propagators. One
considers each topology modulo expressions with fewer propagators (ρ i ∼ 0). Geometrically this
amounts to computing factorization limits which put loop-particles on-shell [9]. The Feynman
amplitude factorizes into trees yielding,

lim
(`, ˜̀)→cutt value

A2−loop
Feyn. (`, ˜̀) = ∏

i ∈ corners

Atree
i (`, ˜̀)|cutt = ∑

i ∈ numerator basis

d̃i m̃i(`, ˜̀)|cutt +parent contributions. (2.5)

Technically the on-shell limits are identical to cutting but with the integration omitted. The linear
equations for d̃i are algebraic and suited for numerical implementation. However, in order to obtain
the loop amplitude the integrand basis has to be reduced to master integrals.

Here I discuss a more direct approach [1] inspired by one-loop computations [8, 9]. One
decompose the integrand, i.e. the right-hand side of eqn. (2.4) directly into master integrands
(associated to master integrals) and vanishing integrals (surface terms),

A2−loop
Feyn. (`, ˜̀) = ∑

i ∈ master integrals

di mi(`, ˜̀)
ρ0 · · · ρ̃(Ñ−1)

+ ∑
j ∈ surface terms

d̂ jm̂ j(`, ˜̀)
ρ0 · · · ρ̃(Ñ−1)

, (2.6)

with the properties,

S j =
∫

dD`dD ˜̀ m̂ j(`, ˜̀)
ρ0 · · · ρ̃(Ñ−1)

= 0 . (2.7)

The algebraic equations (2.5) hold just as before and yield di and d̂ j. Thus one obtains directly the
coefficients di of the master integrals. The coefficient of the surface terms d̂ j are but required as
auxiliary information when solving the algebraic equations (2.6).
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Figure 1: A generic two-loop integral topology is displayed with the naming conventions used in the main
text. In order to reuse structures well known at one-loop level one interprets the two-loop topology as three
strands. The strands carry loop momentum `, ˆ̀ and ˜̀, and have external momenta pi, p̂i, p̃i, pt and pb

exiting.

An integrand representation in terms of surface terms and master integrands (2.6) has been
suggested only recently [1]. Naively, integrands of IBP identities have all the properties needed,
however, for unitarity cuts one requires very specific propagator powers. This obstruction is over-
come in the construction of IBP-relations using a particular choice of ‘IBP-generating’ vectors [16].
I follow the methods developed in ref. [1] to explicitly construct and classify such IBP-generating
vectors and obtain the surface terms topology by topology.

3. Heuristic picture for loop integrals

In order to clarify important mathematical structures, I start with a general discussion of loop
integrals. A general coordinate change from the loop-momenta (`µ and ˜̀µ ) to inverse propagators
ρ i as integration variables [10] make the geometric structures of loop integrals manifest. Given
the miss match in the number of propagators and loop-momentum components additional angular
variables, α’s have to be introduced. If propagators are dependent on each other the integrals are
reducible algebraically (using Gram determinants) and do not have to be considered.

The integration variables of the loop integrals are the inverse propagators and the α-coordinates,

Ii =
∫

[dρ]

ρ0 · · · ρ̃(Ñ−1)
× m̃i µt [dα]t , (3.1)

where m̃ := m̃(`, ˜̀) denotes a numerator insertion, µt is the non-trivial integration measure from
the coordinate change. The expression [dρ] and [dα]t denote the differentials of the integration
variables; ρ’s and α’s respectively. The integration makes a foliation of loop-momentum space
manifest; for fixed propagator values one obtains an internal geometry parametrized by the α-
variables. The unitarity-cut phase space is one such internal slice.

It is instructive to consider first the integration over an internal space with the inverse propaga-
tors held fixed. One can now use the properties of the internal space to organize the computation.
First of all, one can omit terms proportional to inverse propagators, since these will be captured by
integrals with fewer propagators. For simplicity I focus on one-loop integrals next for which the
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α-integration is performed over a sphere ∑(αa)2 =C(ρ) [1, 9, 17] 1. One can think of the function
m̃(0,α) being expanded into spherical harmonics. Only the constant function gives a non-vanishing
integral, while the higher harmonics integrate to zero. The latter can be interpreted as surface terms
with the IBP-generating vectors being rotation generators in α space. Thus one is left with the
non-vanishing integral with a constant numerator. IBP-generating vectors are tangent vectors of
the internal space. In this way coordinates adapted to the propagator structures are a valuable tool
for identifying reduction steps corresponding to canceling propagators and identifying vanishing
integrals.

4. Classifying surface terms

Surface terms suited for perturbative computations are obtained from total derivatives∫
dD`dD ˜̀

[
∂µ

(
uµ m̃

ρ0 · · · ρ̃(Ñ−1)

)
+ ∂̃ν

(
ũν m̃

ρ0 · · · ρ̃(Ñ−1)

)]
= 0 , (4.1)

with polynomial vector fields {uµ , ũν} and numerators m̃ := m̃(`, ˜̀). Propagators powers can be
controlled by using ‘IBP-generating vector-fields’ fulfilling the equations [16],

(uµ
∂µ + ũν

∂̃ν)ρ
i = f i(`, ˜̀)ρ

i , (4.2)

for all inverse propagators.
The relation (4.2) has an interesting on-shell interpretation. When specializing to the on-shell

phase spaces with ρ i = 0, the vector fields {uµ , ũν} turn into tangent vectors along the maximal-
cut phase spaces. It is often helpful to construct first the tangent vectors to the unitarity cut phase
spaces and then take them off-shell in a second step.

In adapted coordinates the construction of IBP-generating vectors simplifies [1],(
ua

∂a +uk
∂k
)

ρ
i = ui = f i

ρ
i → {ua,ui}= {ua,ρ i f i} , (4.3)

which follows from ∂kρ i = δ i
k. The i labels are not summed over in the above equation. I use

the short-hand notation ∂a := ∂αa and ∂k := ∂ρk . Additional constraints arise from requiring that
{ua, f iρ i} give polynomial vector fields in loop-momentum variables. I will deal with this con-
straint below in section 5.

The physical meaning of the adapted coordinates suggests to introduce the following notation
for IBP-generating vectors:

1. Horizontal vectors {ua,ui}= {ua,0} inducing translations along slices of momentum space
with fixed-propagator values.

2. Scaling vectors {ua,ui} = { fsα
a,ρ i f i} inducing scaling transformations on the on-shell

phase spaces. The corresponding IBP-relations depend on the dimension parameter D.

3. Vertical vectors {ua,ui} = {0,ρ i f i} which vanish on the maximal cut, and point vertical to
slices of fixed propagator values.

For the discussion of integrals with generic mass assignments the horizontal vectors are sufficient
for constructing surface terms. I focus on this type below.

1Typically these spheres are part of the complex internal spaces which are tangent bundles of the real spheres T Sd .
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5. Coordinates adapted to integral topology

The general coordinate changes to coordinates adapted to integral topologies is obtained in
two steps [1]. First for each strand in a multi-loop diagram a basis [5] of transverse vectors na,
(na, p j) = 0 and dual vectors vi = (G−1)i j p j is introduced using the Gram matrix Gi j = (pi, p j). A
distinct such basis is used per strand; two or three for two-loop diagrams. In a second step the basis
change to inverse propagators is setup,

`(ρ,α) : = ∑
i

ri vi +∑
a

α
ana , ri :=−1

2
(
(ρ i +m2

i −q2
i )− (ρ i−1 +m2

i−1−q2
i−1)
)
, (5.1)

qi =
i

∑
j=1

p j , c(ρ,α) := (`2−m2
0)−ρ

0 = 0. (5.2)

It is helpful not to eliminate an α variable using the constraint c(ρ,α) = 0. Instead one uses the
redundant set of variables {αa,ρ i} and keeps the quadratic constraint c(α,ρ) ∼ 0 explicit. For
multiple strands momentum conservation is imposed when strands join in a vertex. In summary, at
one-loop level one has one constraint, while one introduces three constraints for planar two-loop
integrals after solving for momentum conservation [1]. Below multiple constraints are labeled by
an index; ci(α,ρ).

Numerator insertions are polynomial functions in the loop momenta. It is an important prop-
erty of the introduced coordinates, that numerators are again polynomials in αa and ρ i variables,

(tµ1...νk`
µ1 ... ˜̀νk) ←→ ∏

a,ã,l,l̃

(αa)ka (α̃ ã)kã× (ρ l)kl (ρ̃ l̃)kl̃ . (5.3)

The variables ki denote non-negative integers. Polynomials that differ by a multiple of the
constraints ci(α,ρ) give identical loop-momentum functions as can be verified using eqn. (5.1).

Polynomial surface terms are obtained from polynomial vector fields in momentum space.
Their defining property is that their directional derivatives map polynomials to polynomials. One
obtains two types of restrictions; (1) when acting on the coordinate functions αa and ρ i one finds
that the components { f iρ i,ua} are polynomials in αa and ρ i. (2) The equivalence of polynomials
modulo the constraints is maintained only if the vector fields map the constraint ideal to itself,(

∑
a

ua
∂a +∑

i
f i

ρ
i
∂i
)
c j(α,ρ)∼ ck(α,ρ) . (5.4)

Geometrically one reaches the same conclusion; the constraints ci(α,ρ) ∼ 0 state, that the
physical momentum space is a sub manifold (ci(α,ρ) = 0) in the {α,ρ}-coordinate space. Vec-
tors in loop-momentum space are naturally tangent vectors of this sub manifolds and thus give
zero when acting on the constraints ci(α,ρ) on the solution space of ci(α,ρ) = 0 consistent with
eqn. (5.4).

6. Explicit surface terms

The surface terms are obtained from total derivatives of IBP-generating vectors. The master
integrals are obtained as numerators in the complement of the surface terms. This construction
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differs from the one at one-loop level [8, 9, 17] which relied on tensor algebra and symmetries of
one-loop integrals, but reproduces the results. All IBP-generating vectors are obtained from a set
of primitive ones, which I list in the following. By inspection one can verify that the below vectors
are horizontal IBP-generating vectors.

The one-loop IBP-generating vectors are given in standard notation by,

u[kl] = (`,n[k|)(n|l],∂ ) . (6.1)

The two-loop vectors are given by the following three types:

(a) u[i jk] = ( ˆ̀,n[i|)(`,n| j|)(n|k],∂ ) , (b) u[kl] = (`,n[k|)(n|l],∂ )+( ˜̀, ñ[k|)(ñ|l], ∂̃ ) , (6.2)

(c) u[i j][kl] = ( ˜̀, ñ[k|)(ñ|l], ˆ̀)(`,n[i|)(n| j],∂ )− (`,n[i|)(n| j], ˆ̀)( ˜̀, ñ[k|)(ñ|l], ∂̃ ) . (6.3)

The vectors generate (a) rotations around an axis, (b) diagonal rotations and (c) crossed rotations,
respectively. Tilde’s indicate variables of a second sub-loop.

Multiplying the above vectors with generic tensors gives further IBP vectors. The surface
terms are obtained by computing the divergence (4.1) with IBP vectors inserted. The numerators
of the horizontal IBPvectors are given by

∏
i, j
(ni, `)

ki (ñ j, ˜̀)k j ×u → m̂(u,~k) =
(
uµ

∂µ + ũν
∂̃ν

) (
∏
i, j
(na, `)

ki (ñã, ˜̀)k j

)
. (6.4)

since the divergence of the horizontal vectors vanishes and they annihilate the propagators. The
numerators m̂u (6.4) give the surface terms (4.1). This is true even if the powers of the propagators
altered.

7. Total derivatives and master-integrand count

One requires a complete set of tensor insertions for a given integral topology. Systematic
constructions of such a basis of tensor insertions can be found at one-loop level in in ref. [9] (see
also [17]) and for multi-loop topologies in refs. [14, 15, 13].

For a given integral topology inserting an inverse propagator allows one to cancel a propagator
and leads to a reduced topology. Thus one considers numerator tensors modulo inverse propagators
(ρ i ∼ 0). Comparing to (5.3) one identifies the independent numerator as the polynomials,

∏
a,ã

(αa)ka (α̃ ã)kã = ∏
a,ã

(na, `)
ka (ñã, ˜̀)kã , (7.1)

modulo the relations ci ∼ 0 and ρ j ∼ 0.
These equivalence relations amount to imposing the on-shell conditions, with all inverse prop-

agators set to zero. Thus, linear independent numerator insertions are identified with independent
functions on the maximal-cut phase spaces. In order to count master integrands one works on the
unitarity cuts.

Cutting propagators amounts to replacing the propagators with delta-distributions,∫
[dρ]

ρ0 · · · ρ̃(Ñ−1)
× m̃ µ[dα]

cut−→
∫

m̃(0,α)µ|ρ i=0[dα] . (7.2)
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Terms with some of the cut propagators missing are omitted in the cutting prescription.
For the IBP-generating vectors (ui = f iρ i) cutting total derivatives gives total derivatives on

the unitarity cut surface,

∫ [
∂i
(

f i µ m̃
)

ρ0 · · ·@@ρ i · · · ρ̃(Ñ−1)
+∂b

(
ub µ m̃

ρ0 · · · ρ̃(Ñ−1)

)]
[dρ,dα]

cut−→
∫

∂b

(
ub

µ m̃
)
[dα] . (7.3)

The special property that the IBP-generating vector fields are tangent vectors of the maximal-cut
phase spaces leads to this equation.

The number of master integrands is given by the number of independent tensor insertions
modulo the number of surface terms. On-shell this amounts to the number of closed holomorphic
forms modulo exact holomorphic forms (total derivatives), which is a topological index of the phase
spaces. Thus a topological property, in fact the number of half-maximal cycles of the unitarity cut
variety, counts master integrands.

8. Summary and future directions

I discussed new methods for the computation of multi-loop amplitudes using a numerical
unitarity approach. The methods form a synthesis of established techniques to obtain integral
relations (or surface terms) [16] and the unitarity approach.

I presented a number of results from ref.[1]: First of all, I setup the numerical unitarity ap-
proach for multi-loop amplitudes. I suggested a classification of integral relations and constructed
a complete set of surface terms (6.4) for massive planar two-loop topologies. The surface terms are
obtained from a new type of horizontal IBP-generating vectors. In addition, I pointed out the rela-
tion between the number of master integrands and topological properties of the unitarity-cut phase
spaces. A central result is the geometric interpretation of IBP-generating vectors and convenient
coordinates for dealing with multi-loop integrals. These methods appear to be a useful extension
to the mathematical toolbox for loop computations.

The best combination of analytic and numerical approaches for multi-loop computations is not
obvious in the moment, however, motivated by the one-loop successes of the unitarity method it
seems worth while to follow a similar strategy for multi-loop computations. I am optimistic that
the new methods discussed can contribute to precision predictions for the LHC experiments on the
long run.
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M. Grazzini, S. Kallweit, P. MaierhÃűfer, A. von Manteuffel, S. Pozzorini, D. Rathlev and
L. Tancredi, Phys. Rev. Lett. 113 (2014) 21, 212001; F. Cascioli et al., Phys. Lett. B 735 (2014) 311;
M. Grazzini, S. Kallweit, D. Rathlev and A. Torre, Phys. Lett. B 731 (2014) 204; R. Boughezal,
C. Focke, X. Liu and F. Petriello, Phys. Rev. Lett. 115 (2015) 6, 062002; A. Gehrmann-De Ridder,
T. Gehrmann, E. W. N. Glover, A. Huss and T. A. Morgan, arXiv:1507.02850 [hep-ph]; X. Chen,
T. Gehrmann, E. W. N. Glover and M. Jaquier, Phys. Lett. B 740 (2015) 147; R. Boughezal, C. Focke,
W. Giele, X. Liu and F. Petriello, Phys. Lett. B 748 (2015) 5; R. Boughezal, F. Caola, K. Melnikov,
F. Petriello and M. Schulze, Phys. Rev. Lett. 115 (2015) 8, 082003 ;

[5] W. L. van Neerven and J. A. M. Vermaseren, Phys. Lett. B 137 (1984) 241.

[6] Z. Bern, L. J. Dixon, D. C. Dunbar and D. A. Kosower, Nucl. Phys. B 425 (1994) 217; Z. Bern,
L. J. Dixon, D. C. Dunbar and D. A. Kosower, Nucl. Phys. B 435 (1995) 59; R. Britto, F. Cachazo and
B. Feng, Nucl. Phys. B 725 (2005) 275.

[7] A. Brandhuber, S. McNamara, B. J. Spence and G. Travaglini, JHEP 0510 (2005) 011 ;S. D. Badger,
JHEP 0901 (2009) 049 .D. Forde, Phys. Rev. D 75 (2007) 125019 .

[8] G. Ossola, C. G. Papadopoulos and R. Pittau, Nucl. Phys. B 763 (2007) 147 .

[9] R. K. Ellis, W. T. Giele and Z. Kunszt, JHEP 0803 (2008) 003; W. T. Giele, Z. Kunszt and
K. Melnikov, JHEP 0804 (2008) 049; R. K. Ellis, W. T. Giele, Z. Kunszt and K. Melnikov, Nucl.
Phys. B 822 (2009) 270.

[10] R. J. Eden, P. V. Landshoff, D. I. Olive, J. C. Polkinghorne, “The Analytic S-Matrix,” Cambridge
University Press (1966)

[11] R. E. Cutkosky, J. Math. Phys. 1, 429 (1960).

[12] D. A. Kosower and K. J. Larsen, Phys. Rev. D 85 (2012) 045017 .

[13] P. Mastrolia and G. Ossola, JHEP 1111 (2011) 014 ;P. Mastrolia, E. Mirabella, G. Ossola and
T. Peraro, Phys. Lett. B 718 (2012) 173 ;Phys. Rev. D 87 (2013) 8, 085026 ;Phys. Lett. B 727 (2013)
532 .

[14] S. Badger, H. Frellesvig and Y. Zhang, JHEP 1204 (2012) 055 .

[15] Y. Zhang, JHEP 1209 (2012) 042 .

[16] J. Gluza, K. Kajda and D. A. Kosower, Phys. Rev. D 83, 045012 (2011) .

[17] H. Ita, J. Phys. A 44 (2011) 454005 .

8


