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a new angular diameter measurement for the exoplanet host star HD 219134 which demonstrates

that diameters for stars which are relatively well resolved(& 1 mas for theK band) are consistent
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1. Introduction and Motivation

The Cosmic Sexiness Ladder [1], which measures the “relative visceralappeal” of different
fields in astrophysics, lists stars in second to last place just above studies of the Sun. Yet, nearly
every field in astrophysics is in one way or another dependent on stellar models (which themselves,
of course, rely heavily on heliophysics). For example, understanding the evolution of galaxies re-
lies on models of simple stellar populations, which in turn depend on the input physics for stellar
isochrones [2]. On a smaller scale, properties of exoplanets depend onthe characteristics of host
stars, and in many cases the uncertainties on planet radii and masses are dominated by the uncer-
tainties on the properties of the host star [3]. Evidently, improving our understanding of stars in
various stages of their evolution is important to advance the field of astrophysics as a whole.

Despite numerous advances over the last decades, many problems in stellarinterior physics
remain unsolved. Figure 1 compares isochrones of different ages from the Dartmouth [4], Parsec
[5] and BASTI [6] databases with solar composition in an H-R diagram. As expected, the models
agree well for stars similar to the Sun. However, significant differencesarise for cooler and hotter
stars: for example, uncertainties in the description of convective core overshooting lead to differ-
ent main-sequence lifetimes for intermediate mass stars, while uncertainties in thetreatment of
convection lead to different predictions of radii for low-mass dwarfs. For red giants, major uncer-
tainties include interior angular momentum transport and mass loss, which can lead to differences
in inferred ages of up to 50% even if other stellar properties are well constrained [7].

Over the last decade, space-based photometry has revolutionized our understanding of stars
through the application of asteroseismology - the study of stellar pulsations - across the H-R di-
agram. At the same time, technical advances in long-baseline interferometry have enabled direct
measurements of fundamental stellar properties for hundreds of stars. In this contribution I will
review the basic principles of asteroseismology and interferometry, and highlight recent advances
as well as synergies between both techniques for the study of single field stars. Finally, I will give
a brief outlook on the expected results from future observations.

2. Asteroseismology

2.1 Basic Principles of Asteroseismology

Stellar pulsations are observed across the H-R diagram and can be broadly divided into driving
mechanisms due to opacity changes in the interior (so-called classical pulsators such asδ Scuti
stars and Cepheids) and stars which oscillate due turbulent surface convection (so-called solar-like
oscillators). In both cases, oscillations (“modes”) can be described with spherical harmonics of
degreel (the total number of node lines on the surface), azimuthal order|m| (the number of node
lines crossing the equator), and radial ordern (the number of nodes from the surface to the center).
Radial pulsations are hence denoted asl = 0, while l > 0 denote non-radial pulsations. Oscillations
with larger spherical degrees penetrate to shallower depths within the star (Figure 2).

Oscillations can furthermore classified into pressure modes (p modes) and gravity modes (g
modes). Pressure modes are acoustic waves, with the pressure gradient acting as the restoring force.
Gravity modes are pulsations due to the balance of buoyancy and gravity, with buoyancy acting as
the restoring force. Gravity modes are damped in convection zones, and therefore usually only
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Figure 1: Isochrones with solar chemical composition and ages of 0.1 (dotted lines), 1 (solid lines) and 3
(dashed lines) Gyr taken from the Dartmouth (red), Parsec (black) and BASTI (green) databases. Differences
in the models for high and low mass stars are mostly due to variations in poorly constrained input physics.

propagate in the interior for cool stars. Pressure modes propagate mostlyin radiative zones, and
hence are more easily excited with amplitudes that are observable at the surface.

Frequencies of highnand lowl can be described by the asymptotic theory of stellar oscillations
[9, 10, 11], which predicts a series of regularly spaced modes. The large frequency separation∆ν
is the separation of modes of the same spherical degreel and consecutive radial ordern, and can
be shown to be equal to the inverse of the sound travel time through the stellardiameter [12, 8]:

∆ν =

(

2
∫ R

0

dr
c

)−1

, (2.1)

wherec is the sound speed. For adiabacity and an ideal gasc ∝
√

T/µ andT ∝ µM/R, whereµ
is the mean molecular weight. Hence, Equation (2.1) can be expressed as [13]:
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Figure 2: Schematic cross-section of a star illustrating the paths ofmodes with different spherical degrees.
Red and blue lines highlight a radial (l = 0) and quadrupole (l = 2) mode, respectively. Adapted from [8].

∆ν ∝
(

M
R3

)1/2

. (2.2)

The large separation is hence directly proportional to the mean density of a star. Small frequency
separations, which are differences of modes with different degreel and same ordern, are sensitive
to the sound-speed gradient in the stellar interior, and hence the chemical composition during stellar
evolution and therefore stellar age. This can be understood by the fact that modes of differentl
travel to different depths within the star (Figure 2), and hence their frequency differences provide
information about the radial structure of the star.

An additional observable is the frequency of maximum power,νmax. The frequency of maxi-
mum power has been suggested to scale with the acoustic cut-off frequency [14, 15], which is the
upper limit for the reflection of an acoustic mode [8]:

νac=
c

2Hp
. (2.3)

For an isothermal atmosphere the pressure scale height isHp =
PR2

GMρ . Hence, combined with the
ideal gas equation, we can expressνmax as:
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νmax ∝ νac ∝
M

R2
√

Teff
. (2.4)

Measurements ofνmax, ∆ν , or individual frequencies provide a powerful way to determine the
stellar structure and fundamental properties (such as radius and mass),which are otherwise difficult
to determine for field stars.

2.2 The Space Photometry Revolution of Asteroseismology

Early asteroseismic observations were mostly focused on radial velocity campaigns [14, 16,
17, 18, 19, 20, 21], leveraging on the improved measurements of Dopplervelocities for the de-
tection of exoplanets. The first space-based photometric observations obtained by the Canadian
MOST telescope led to detections in a few red giants [22, 23] and Procyon [24, 25], and further
space-based observations were performed using the WIRE (Wide-FieldInfrared Explorer) star-
tracker [26, 27, 28, 29], the SMEI (Solar Mass Ejection Imager) satellite [30] and the Hubble
Space Telescope [31, 32, 33, 34]. In total, observations prior to 2009yielded detections in∼ 20
stars (see inset of Figure 3).

A major breakthrough, which is commonly referred to as the beginning of the space photome-
try revolution of asteroseismology, was achieved by the CoRoT (Convection Rotation and Planetary
Transits) satellite. CoRoT detected oscillations in a number of main sequence stars [35] and sev-
eral thousands red giant stars [36, 37], demonstrating for the first time that red giants oscillate in
non-radial modes [38]. This opened the door for detailed studies of the interior structure of red
giants which were previously not thought to be possible.

TheKepler space telescope continued the revolution of cool-star asteroseismology bycover-
ing the low-mass H-R diagram with detections, including 500 dwarfs and subgiants [41] as well as
over 15,000 red giants [42, 39]. The large number of oscillating red giantsis predominantly due to
the fact oscillation amplitudes increase with luminosity (Figure 3), therefore biasing asteroseismic
detections towards more evolved stars. Additionally, the 30-minute sampling cadence for most
Kepler targets sets a limit of logg . 3.5, since less evolved stars oscillate above the Nyquist fre-
quency. Overall, the sample of cool stars amenable for asteroseismology has grown by two orders
of magnitude in the last 8 years.

2.3 Probing the Interior of Red Giants

While for main sequence stars the propagation cavities of p modes and g modesare well
separated, the different core and envelope densities in evolved stars can lead to evolutionary stages
where p modes and g modes have similar frequencies. This gives rise to mixedmodes [43], which
contain contributions from g modes in the core but unlike pure g modes have low enough mode
inertias to be observable at the surface. While high order p modes are equally spaced in frequency,
g modes are predicted to be equally spaced in period. The coupling of p modes with g modes
causes mixed modes to be shifted from their original frequency spacing [44], yielding multiple
frequencies per radial order which are expected to be approximately equally spaced in period.

The detection of mixedl = 1 modes in red giants observed byKepler [45] led to a series
of groundbreaking discoveries in our understanding of the interiors ofred giants. Following the
detection of equal period spacings [46], it was demonstrated that giants ascending the RGB and
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Figure 3: H-R diagram showing stars with detected solar-like oscillations byKepler [25, 39, 40]. Color
coding marks the mean amplitude per radial mode of the observed oscillations. Solid lines show solar
metallicity evolutionary tracks with different masses as indicated in the plot. The inset shows the same
diagram with all detections circa 2008 (prior to the launch of CoRoT).

He-core burning red giants can be separated based on their mixed-mode period spacing [47, 37].
Shortly after, it was discovered that mixed modes are split into multiplets by rotation, and that
frequency splittings for g-dominated mixed modes are substantially higher thanfor p-dominated
mixed modes due radial differential rotation [48]. Figure 4 shows a typicalpower spectrum of a
red giant exhibiting mixed modes with the signature of radial differential rotation.

Keplerdata has since allowed measurements of core rotation rates for hundreds of red giants,
allowing an unprecedented view into the internal rotation evolution of evolvedstars [49, 50]. The
data show that the cores spin up as stars evolve towards the RGB, followedby a gradual spin-down
as stars evolve towards the He-core burning main sequence. Predicted core rotation rates in models
are up to factors of 10–100 larger than observed [51, 52, 53], pointing to a yet unidentified mecha-
nism responsible for transporting angular momentum from the core to the envelope. Finally, in the
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Figure 4: Top panel: Power spectrum of a red giant observed byKepler. Dipole (l = 1) modes are high-
lighted in red and marked by red and blue circles, while radial (l = 0) and quadrupole (l = 2) modes are
marked by squares and triangles, respectively. There are multiple l = 1 modes per radial order due to the
coupling of p modes with g modes in the core (mixed modes). Middle panel: Measured rotational splitting
of each mixedl = 1 mode in the top panel. The mixed modes in the wings of each radial order (highlighted
as red circles), which are more sensitive to the core, show a larger rotational splitting and hence faster rota-
tion than modes in the center of each order (highlighted as blue circles). Bottom panel: Rotational splittings
according to a model with a core spinning 10 times faster thanthe envelope (top) and with rigid rotation
(bottom). Adapted from [48].

latest twist in red giant asteroseismology, the puzzling absence of dipole modes observed in some
red giants [54] has been explained by strong internal magnetic fields whichcan trap oscillations
in the radiative core, and hence can be used to place upper limits on the interior magnetic field
strengths [55]. These remarkable observational insights by asteroseismology, ranging from interior
composition, rotation to magnetic fields, promise to enable important theoretical advances in our
understanding of the interior structure of red giant stars for years to come.

2.4 Asteroseismology of Exoplanet Host Stars

In addition to testing stellar models, asteroseismology has recently started to playan important
role the study of exoplanets [56]. This synergy has largely been enabled by the fact that high-
precision time domain observations (either in intensity or velocity) can be simultaneously used to
detect exoplanets and study stellar oscillations.

To date there are approximately 100 exoplanet host stars for which oscillations have been
detected, most of which have been observed byKepler [57]. The primary application of aster-
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Figure 5: Graphical sketch of the Kepler-56 system. The spin-axis inclination of the red giant host star was
determined from asteroseismology, while the inner transiting planets were detected through transits. The
torque of the outer companion, which was detected through radial-velocity follow-up observations, causes a
precession of the orbital axis of the inner transiting planets and the stellar spin axis. Both precessions occur
at different rates, causing a periodic spin-orbit misalignment. Sizes are not to scale. From [63].

oseismology is to measure host star radii, which combined with transit depths yield planet radii
to a precision of∼1–2% in the best cases [58, 59]. Asteroseismology has been used to measure
the radius of the smallest exoplanet known to date [60] and determine precise ages of dozens of
exoplanets [61], including the oldest known terrestrial-sized planets with an age of∼11 Gyr [62].

Another remarkable application has been the use of asteroseismology to measure the spin-axis
inclination of host stars through the relative heights of thel(l +1) modes in rotationally split mul-
tiplets [64]. Stellar inclinations are important for studying the architecture anddynamical history
of transiting exoplanets by constraining the angle between the stellar spin axisand the axis of the
planetary orbit (the obliquity). Since the presence of transits shows that the orbital axis is perpen-
dicular to the line of sight, a low stellar inclination automatically implies a misalignment of the
orbital plane and the equatorial plane of the star (a high obliquity).

Keplerand CoRoT have enabled asteroseismic inclination measurements for several exoplanet
systems [65, 66, 67, 68, 69]. One of the most intriguing examples is Kepler-56, a red giant hosting
two transiting planets. The Kepler-56 power spectrum shows dipole modes which are split into
triplets, yielding an inclination of 47±6 degrees and demonstrating the first stellar spin-orbit mis-
alignment in a multiplanet system [63]. Radial velocity observations revealeda long-term trend
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due to a massive companion on a wide orbit which, under the assumption of a significant mutual
inclination to the inner transiting planets, can explain the misalignment through a precession of the
orbital axis of the inner planets due to the torque of the wide companion (Figure 5) [70]. This sce-
nario has previously been proposed theoretically [71, 72, 73], and demonstrated for the first time
that spin-orbit misalignments are not confined to hot Jupiter systems.

In addition to precise exoplanet radii and orbital architectures, asteroseismology can also be
used to constrain orbital eccentricities [74, 75]. The variety of applications highlights the impor-
tance of stellar astrophysics for the field of exoplanet science, and the need to improve stellar
models in order to advance our understanding of exoplanets.

3. Optical Long-Baseline Interferometry

3.1 Basic Principles of Interferometry

The principle of interferometry is traditionally illustrated by a variation of Young’s double
slit experiment performed in the early 19th century (Figure 6). As monochromatic light from a
point source passes through a double slit (left panel), an interference (“fringe”) pattern is formed.
Each point of the wavefront is a source of spherical wavelets, which constructively and destruc-
tively interfere at the screen behind the slits. The spacing between dark and bright patches of the
interference pattern is:

∆Θ =
λ
b
, (3.1)

whereλ is the wavelength andb the separation between the slits (the “baseline”). Suppose that
the light hitting the double slit is emitted by two point sources that are separated inangle by half
the fringe spacing (λ2b) (right panel of Figure 6). In this case, the fringes are in anti-phase and the
interference patterns form an incoherent sum to give an evenly illuminatedscreen.

It is evident from this simple discussion that any intermediate separation of thetwo point
sources or a single extended source will result in different contrasts.This fringe contrast is the
ratio of the fringe amplitude to the fringe intensity:

V =
Imax− Imin

Imax+ Imin
, (3.2)

whereV is the fringe visibility. A measurement of the visibility at a given wavelength and sep-
aration of the two slits (or telescopes) is therefore directly related to the structure of the object
being observed. Stating the above more generally, it can be shown that thecomplex visibility is
equal to the spatial Fourier transform of the intensity distribution of a givenobject [76]. Therefore,
measuring visibilities at different baselines in principle allows image reconstruction with angular
resolutions that far exceed the diffraction limit of the largest telescopes in the world.

3.2 Stellar Angular Diameters and the CHARA Array

The most basic measurement in stellar interferometry is the angular size of a star. The total
energy radiated by a star per unit surface area and per unit time is:
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Figure 6: Young’s two slit experiment illustrating the basic principle of stellar interferometry. From [76].

F = σT4
eff , (3.3)

whereσ is the Stefan-Boltzmann constant andTeff is the effective temperature. Given a star with a
radiusRat a distanced, the total (bolometric) flux emitted over all wavelengthsfbol received by an
observer on Earth is:

fbol = F
R2

d2 . (3.4)

Combined with the straightforward relationR= dθ
2 for the apparent angular diameterθ , Equation

(3.3) can be rearranged as:

Teff =

(

4 fbol

σθ 2

)1/4

. (3.5)

The angular diameter of a star combined with a distance (e.g. from a trigonometricparallax) or with
a measurement of the received bolometric flux (e.g. from spectrophotometry) therefore enables a
measurement of the radius and effective temperature of star. Importantly,both measurements (in
particular the radius) are almost model independent. An important exceptionis the limb darkening
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correction for the angular diameter, which can become the dominant sourceof uncertainty if the
visibility curve is well constrained (see next section).

The first stellar angular diameter measurement dates back to Michelson [77], who visually
determined the size ofα Ori using a 20-foot interferometer mounted on the 100-inch Hooker tele-
scope on Mt. Wilson observatory. The first systematic study was performed by Hanbury Brown and
collaborators [78] using the Narrabri Intensity Interferometer to measure diameters of 32 bright
stars, which subsequently led to the first calibration of color-temperature relationships [79].

The following decades saw the development of a number of modern interferometers, most
notably the CHARA (Center for High Angular Resolution Astronomy) Array [80] located at Mount
Wilson Observatory. The array consists of six 1-m class telescopes arranged in a non-redundant
Y-shaped configuration with baselines ranging from 34 m to a maximum of 331m. The CHARA
array uses instruments in both optical and near-infrared wavelengths, and is currently the largest
operating optical long-baseline interferometer in the world. Since commencing science operations
in 2004 it has produced several breakthrough results, such as the first image of a single main-
sequence star [81]. One of the most influential results of the CHARA Array in terms of fundamental
stellar properties have been angular diameter measurements of more than a hundred stars across the
H-R diagram [82, 83, 84], including several exoplanet host stars [85, 86, 87], yielding empirical
radii and temperatures to test stellar atmosphere and interior models across arange of spectral types
and evolutionary states (Figure 7).

3.3 Calibrating Models and Indirect Methods: How Accurate is Interferometry?

Interferometric angular diameters have traditionally been used as benchmarks to test stellar
models and calibrate indirect methods to estimate fundamental properties of stars. For example,
CHARA diameters have confirmed that interior models overpredict radii of Mdwarfs by up to
10% for a fixedTeff [83], in agreement with constraints from eclipsing binary systems [88, 89].
CHARA diameters have since been used to calibrate methods to predict radii of late-type dwarfs for
which direct measurements are not possible [90, 91] and (in combination witheclipsing binaries)
explore new physical mechanisms to improve models for cool stars [92, 93,94]. Such calibrations
are particularly important for exoplanet transit surveys such as K2 [95] and TESS [96], which
predominantly target late-type dwarfs.

While interferometry is often considered as the “ground-truth”, it is important to realize that
interferometric data can be affected by strong systematic errors. Observed visibilities are reduced
by atmospheric turbulence and hence need to be calibrated by observing unresolved point sources
as closely in time and position on the sky as possible. In practice calibrators are often somewhat
resolved, and hence systematic errors in the assumed calibrator sizes propagate into uncertainties
of the angular diameter, in particular if the target is not well resolved [97].Additional uncertainties
include errors in the wavelength scale and limb-darkening correction. However, such error sources
are not always taken into account, leading to uncertainties that sometimes failto encompass differ-
ences between diameter measurements by different groups and instruments.

Such differences can have a significant impact on the calibration of more indirect methods. A
recent comparison of effective temperatures determined from the infrared flux method (IRFM) with
interferometry revealed a systematic difference for CHARAK-band diameters to predict higher
temperatures for stars with angular sizes. 1 mas [98], while smaller diameters measured inH
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Figure 7: Stellar radius versus effective temperature derived from angular diameters measurements with
the CHARA Array. The symbol size scales with the size of the star, and the color coding denotes the
spectroscopically determined metallicity. From [84].

band showed better agreement [99]. Since calibration errors are more severe for smaller diameters
(corresponding to more unresolved sources, given a fixed baseline and wavelength), this indicates
that some diameters measured with CHARA may be affected by systematic errors.

To test the accuracy of interferometric angular diameters, we have recently started cross-
calibration efforts with the CHARA Array by revisiting stars which were observed with the Classic
(H/K band) beam combiner with the higher-resolution PAVO (Rband) beam combiner [100]. Fig-
ure 8 shows preliminary results for the K dwarf HD 219134, the closest transiting exoplanet known
to date [101, 102]. PAVO data were taken over four nights in August andSeptember 2015 us-
ing two baselines (E2W2, W1W2), and calibrated using HD 218376 (θ = 0.304 mas), HD 225289
(θ = 0.206 mas) and HD 223386 (θ = 0.177 mas). The PAVO data resolve HD 219134 nearly down
to the first null, making them largely independent of calibrator diameter uncertainties. The Classic
(red squares) and PAVO (black diamonds) data show good agreement, with limb-darkened diame-
ters ofθLD,Classic= 1.093±0.012 mas (usingµK = 0.29±0.05) andθLD,PAVO = 1.109±0.008 mas
(usingµR= 0.67±0.05). Limb darkening coefficients were taken from [103] for a solar metallicity,
Teff = 4750 K and logg= 4.5 model, and a 5% and 3 nm uncertainty was assumed for the calibrator
diameters and wavelength scale, respectively. Note that the PAVO diameter isdominated by the
uncertainty in the limb-darkening correction, while the Classic diameter is dominated by measure-
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Figure 8: Squared visibility verus spatial frequency for the exoplanet host star HD 219134 measured in the
K band using the Classic beam combiner (red squares) [82] and preliminary new data obtained with theR
band PAVO beam combiner (black diamonds). The green solid line shows the fitted diameter model to the
PAVO data, while the dashed green line shows the fit to the Classic data.

ment/calibrator diameter uncertainties1. Future observations will focus on measuring fringes in the
second visibility lobe, which will allow direct constraints on the limb-darkening intheRband.

While the results for HD 219134 demonstrate that&1 mas diameters measured inK band are
likely reliable, cross-calibrations for smaller diameters and for a larger number of beam combiners
are needed. Some results have shown good agreement for stars as smallas 0.6 mas (16 Cyg A)
[104], while other measurements (such as 18 Sco andθ Cyg) have shown stark discrepancies
[105, 104]. In addition to revisiting diameters, we are also pursuing simultaneous dual beam com-
biner observations of the same target and calibrators with baselines corresponding to near-identical
spatial frequencies for each instrument. This will eliminate most sources of systematic errors ex-
cept for the absolute visibility calibration between instruments, which is still poorly understood.

3.4 Combining Interferometry and Asteroseismology

The combination of asteroseismology and interferometry allows a powerful tests of interior
models. Using asteroseismic densities and interferometric angular diameters, near-model indepen-
dent measurements of the radius, mass and effective temperature can be made for single stars, and

1Note that the Classic uncertainty is larger than the published value due to the inclusion of uncertainties in cali-
brator sizes, limb darkening and wavelength scale. The uniform disc diameters areθUD,Classic= 1.066±0.011 mas and
θUD,PAVO = 1.033±0.005 mas, respectively.
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Figure 9: Interferometric radii divided by asteroseismic radii derived from scaling relations as a function
of asteroseismic radii. Different colors and symbols denote the source of the measurements as given in the
legend. From [110].

hence directly compared to evolutionary models. Such approaches have been used to confirm that
18 Sco is a true solar twin [105], detect a potential discrepancy in interior models for the metal-rich
Keplerstar HD 173701 [106], and constrain the modeling of individual oscillation frequencies for
solar-type stars [107, 108, 109].

Alternatively, interferometry can also be used to test asteroseismology. Inparticular, astero-
seismic scaling relations (Equations 2.2 and 2.4) have become increasingly popular to determine
stellar properties. However, these relations are only approximate and require careful calibration, in
particular for stars which are significantly more evolved than the Sun. Figure 9 shows comparions
between radii from both methods based on a collection of high S/N asteroseismic detections and
well resolved diameters [106, 104, 111, 112]. The comparison shows excellent agreement between
interferometric radii and asteroseismic radii for dwarfs with a scatter of. 4%, while giants are
dominated by large uncertainties in the Hipparcos parallaxes. Future observations will alleviate
this problem by focusing on brighter red giants, as well as the use of more precise parallaxes which
will soon be available from the Gaia satellite.

4. Future Prospects

Asteroseismology and interferometry will continue to flourish as tools for stellar astrophysics
over the coming decades. A particularly important synergy concerns the calibration of astero-
seismic scaling relations for giants. While space-based missions will continue the asteroseismic
revolution initiated byKepler, ground-based surveys such as APOGEE [113], GALAH [114] and
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Figure 10: Illustration of the Milky Way with predicted detections of oscillating red giants targeted in the
first 10 campaigns of the K2 Mission (colored dots). Asteroseismology combined with spectroscopy will
allow to map the metallicity and age distribution of stars inan unprecedented manner. Image Credit: Kristin
Riebe (Potsdam), Sanjib Sharma (Sydney) and Dennis Stello (Sydney).

LAMOST [115] are obtaining spectra of thousands of stars throughoutthe galaxy. Recognizing
the powerful synergy between both methods, major efforts are currentlyunderway to combine as-
teroseismic and spectroscopic data to probe the chemo-dynamical history ofstellar populations in
our Galaxy (often referred to as “galactic archeology”). In particular, Kepler’s follow-up mission
K2 [95] is measuring oscillations of red giants throughout the ecliptic plane [116, 117], therefore
dramatically expanding the galactic field of view ofKeplerand CoRoT (see Figure 10). However,
the determination of stellar ages depends sensitively on stellar masses, and hence asteroseismic
scaling relations. Therefore, the success of galactic archeology reliescrucially on our ability to
accurately calibrate asteroseismology using direct methods such as interferometry.

Importantly, future space-based missions will also obtain asteroseismic observations of stars
which will be significantly brighter than typicalKepler targets, and hence amenable to interfero-
metric follow-up observations. At the same time, the increased sensitivity of theCHARA Array
with an upcoming adaptive-optics upgrade will further increase the overlap between stellar sam-
ples that can be observed with both techniques. Combined with the release ofparallaxes by Gaia,
the sample of single stars with directly measured fundamental properties will allow unprecedented
tests of stellar models over the coming decade.
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