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1. Introduction

Nuclear physics is recognized to be an essential ingredient in astrophysics. The situation

is very challenging as very often data away from nuclear matter saturation density, n0 ≈ 0.16

fm−3 = 2 · 1014 g/cm3, and isospin symmetry is required. This is in particular the case of neutron

stars whose maximum mass is determined by exotic particle degrees of freedom and interaction

potentials at several times n0 and whose radii chiefly depend on the isovector properties of the

equation of state (EoS).

Weak interaction rates are known to play a role in many processes like late stages of mas-

sive star evolution, thermonuclear and core-collapse (CC) supernovae, nucleosynthesis and energy

generation in X-ray bursts, accreting neutron star crusts and neutron star mergers. A recent publi-

cation [1] has extensively investigated the impact of electron capture (EC) rates on core-collapse

and early post-bounce phases of core-collapse supernovae. By systematically modifying the EC

rates within the present experimental uncertainties, Sullivan et al. [1] have shown that the results

are more sensitive to weak interaction rates than to the progenitor model or the EoS. In particular,

EC rates are found to modify by +16/-4% the mass of the inner core at the time of shock formation

and by ±20% the peak of electron neutrino -luminosity during the deleptonization burst.

During core-collapse, thermodynamical conditions cover a very large range [2]. Typically,

baryonic number density nB ranges from 10−10 to 101 fm−3, and the temperature 100 keV < T <

100 MeV. The proton fraction 0 < Yp < 0.7, i.e. very neutron-rich states are populated. A genuine

question is therefore to which extend limited nuclear physics data away from stability affects the

astrophysical evolution of massive stars.

This is exactly the topic we aim to address in our contribution. More specifically, we shall

investigate the sensitivity of average EC rates on nuclear masses and magicity quenching of neutron

rich nuclei far from stability.

2. Sub-saturated nuclear matter at finite temperature

Pioneering models [3, 4] for core-collapse supernovae matter are generalizations of zero-

temperature models. Relying on the single nucleus approximation (SNA), they consider that sub-

saturated nuclear matter is composed of a unique representative heavy nucleus, a gas of unbound

self-interacting nucleons and a gas of α-particles generically accounting for light clusters. These

models, publicly available, have been widely used in astrophysical simulations. Though, the use of

a unique heavy cluster is expected to affect the EoS properties and, even more, the weak interaction

rates.

Quite recently a number of N(uclear) S(tatistical) E(quilibrium) models has been proposed as

alternative to model finite-temperature nuclear matter at sub-saturation densities [5, 6, 7, 8, 9, 10,

11]. All these models depict nuclear matter as a mixture of light and heavy nuclei treated as an

ideal gas and a uniform distribution of self-interacting nucleons. The basic ingredient which links

the multiplicity per unit volume of a cluster defined by its mass A and atomic Z numbers to the

single particle partition function is the nuclear physics counter part of the Saha equations.

The importance of including the whole distribution of heavy and light clusters was investi-

gated in Ref. [12] performing spherically symmetric core-collapse supernova simulations based on
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general relativistic radiation hydrodynamics and three-flavor Boltzmann neutrino treatment. NSE

EoS were used along with SNA ones, based on the same nuclear interaction. Systematic compar-

ison of various thermodynamical and dynamical observables at different moments and distances

from the star center shows that the treatment of in-homogeneous nuclear matter is as important as

the nuclear interactions for supernova dynamics and the neutrino signal. The study is nevertheless

incomplete as individual reaction rates were replaced, in the spirit of SNA, by a single rate on the

most probable cluster, using the simplified Bruenn parametrization [13].

Predictions of various NSE models are confronted in Ref. [14] along different constant-Yp

and constant-nB trajectories as a function of temperature. The authors show that practical choices

done for the fragment definition, the properties of the gas of unbound nucleons and their interaction

leave a trace on the chemical composition.

In order to test the validity of a specific NSE approach, an important requirement which should

be fulfilled is the convergence of the distribution at low temperatures, towards the most proba-

ble cluster as predicted by the SNA approach. Ref. [11] addresses this issue. It is shown that

the mean-field-inspired definition of nuclear clusters as systems composed of bound clusters (e-

representation) [15], obtained by subtracting the contribution of unbound nucleons from the total

number of particles populating the Wigner-Seitz cell, guarantees by construction the convergence

of the two approaches. With increasing temperature, the deviation between NSE and SNA increases

and, quite remarkably, the average NSE cluster is closer to the unique SNA cluster than the most

probable NSE cluster.

The results presented in this talk have been obtained within the extended NSE model of Ref.

[11]. In the grandcanonical ensemble, the multiplicity per unit volume of a cluster of mass and

atomic numbers (A, Z) writes,

〈n(A,Z)〉β ,µB,µ3
= ωβ µBµ3

(A,Z) = exp
[

−β
(

Fe
β (A,δ ,ρg,yg,ρp)−µBAe −µ3Ie

)]

, (2.1)

where Fe
β (A,Z) is the free energy of the (A,Z)-nucleus in e-representation,

Fe
β (i) = Ee −T lnV −T lncβ − 3

2
T lnAe, (2.2)

expressed in terms of energy, mass and charge numbers in e-coordinates, Ee(A,Z,ρg,ρp) = Evac −
εgA/ρ0 + δECoulomb, Ae = A(1−ρg/ρ0), Ze = Z (1−ρpg/ρ0p) [15]. cβ = gβ (mT/(2π h̄2))3/2

comes from the integration over kinetic degrees of freedom and gβ (A,δ ,ρg,ρgp)=∑E∗ exp(−βE∗)=
∫ <S>

0 dE∗ρA,δ (E
∗)exp(−βE∗) stands for the sum of the contributions of all excited states up to the

average separation energy of a neutron(proton), 〈S〉 = min(〈Sn〉,〈Sp〉). In the above equations m

stands for the nucleon mass, V for the volume and T = 1/β for the temperature. ρg, ρpg and εg

correspond to the unbound nucleon gas total and proton density and energy density. For the appli-

cations considered here, the non-relativistic mean-field approach will be employed and the SLY4

[16] effective interaction will be used. Evac denotes the cluster energy in vacuum and δECoulomb is

the Coulomb modification due to electron screening. ρ0 represents the saturation density of asym-

metric nuclear matter with bulk isospin asymmetry δ , different from the global isospin asymmetry

of the cluster (1−2Z/A). ρpg corresponds to the proton density at ρ0, ρpg = ρ0(1− δ )/2. For

more details, see Ref. [11].
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As one may see in eq. (2.1), the average multiplicity per unit volume of a cluster (A,Z)

depends on nuclear structure data via the nuclear mass and level density. In order to be as realistic

as possible, experimental masses [17] are used whenever data exist. When experimental data are

missing, predictions of phenomenological (FRDM [18], DZ10 [19]) or microscopic (BsK22 [20])

mass models can be used. Predictions exist, by definition, up to the drip-lines. As shown in Ref.

[21], bulk and surface in-medium modifications of cluster energetics are such that, when embedded

in a nucleon gas, nuclear ground states might be very different from the ground states in vacuum.

To account for exotic nuclei beyond the drip lines, mass tables have been supplemented by a SLY4-

compatible liquid drop model parametrization from Ref. [22]. Though, we stress that under the

thermodynamical conditions explored in this work these nuclei are not populated with significant

abundances.

Level densities are implemented according to Ref. [23] which offers parametrizations based

on the most comprehensive set of experimental data available so far in the literature.

3. Electron capture rates

Aiming to highlight the role of nuclear masses far from stability in CC, we shall consider

the EC rates as known and fixed quantities. Probably the best way to account for the available

theoretical uncertainties in weak interaction rates is the one employed in Ref. [1]. That is, to use all

existing data tables ranked according to the reliability and supplement the missing information by

analytic formula fitted on microscopic data. To avoid spurious effects due to interpolation between

table grid points and mismatch between table data and analytic formula, we opt for employing an

analytic expression for all nuclear species and thermodynamical conditions. As in Ref. [1], we use

the expression proposed by Langanke et al [24],

λEC =
ln2 ·B

K

(

T

mec2

)5
[

F4(η)−2χF3(η)+χ2F2(η)
]

, (3.1)

hereafter referred to as L03. η = (Q−∆E +µe)/T , T represents the temperature and me and µe

denote the electron rest mass and chemical potential, respectively. Fi(η) denotes the relativistic

Fermi integral, Fi(η) =
∫ ∞

0 dxxk/(1+ exp(x−η)). L03 corresponds to the threshold case of the

pioneering equation proposed by Fowler, Fuller and Newman [25], where the structure factor log <

f t > was replaced by the ratio between the typical Gamow-Teller plus forbidden matrix element B

and the constant K=6146 s. In addition, the influence of excited states in the parent and daughter

nuclei is approximately accounted for by a constant shift ∆E = E f −Ei. The values of B=4.6 MeV

and ∆E=2.5 MeV used in this work are those proposed in Ref. [24]. They have been obtained by

fitting large scale shell model calculations.

Fig. 1 investigates the performances of eq. (3.1) by confronting its predictions with those

of different shell model [26, 27, 28], empiric [29] and QRPA [30] calculations for two arbitrarily

chosen thermodynamical conditions as mentioned on the two panels. Different nuclei are repre-

sented by their Q-value for electron capture. At low temperatures and electron densities, structure

effects are very important: logλEC (Q) covers a huge domain and important scattering exists be-

tween neighboring-Q nuclei. Though different, the predictions of the four considered models show

the same pattern and, on the figure scale, close values. At high temperatures and electron densities,
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Figure 1: Electron capture rates: comparison between predictions of Eq. L03 and values of tables from

Refs. [26] (17 ≤ A ≤ 39), [27, 28] (45 ≤ A ≤ 65), [29] (65 ≤ A ≤ 80) and [30] (18 ≤ A ≤ 100) for T=0.17

MeV and ne = 10 g/cm3 (left panel) and, respectively, T=2.59 MeV and ne = 106 g/cm3 (right panel).

structure effects are washed out: logλEC (Q) covers a much smaller domain and dispersion between

neighboring-Q nuclei is reduced. As mentioned in Ref. [24], the scattering of microscopic rates is

an indication that several states with different transition strengths contribute to the same process.

When the electron chemical potential is large enough such that EC becomes independent of the

nuclear strength distribution, individual state structure is less important. Concerning the different

models, we note that those of Refs. [26, 27, 28, 29] are in fair agreement while the QRPA calcu-

lations of Ref. [30] lead to systematically higher rates at high temperatures and electron densities.

This behavior of QRPA rates has been discussed in Ref. [1], too. At high temperatures and elec-

tron densities, L03 is able to describe well the values of EC rates of Ref. [26, 27, 28, 29] even if

deviations are obtained at low values of temperature and electron density. The over-estimations at

positive Q-values are due to the truncated form of L03 with respect to the more general expression

of Ref. [25]. We do not expect this to be a serious problem, since most of the nuclei produced

during core collapse have negative Q-values. The underestimation at negative Q-values can be

attributed to the constant values of B and ∆E.

4. Core-collapse trajectories

To illustrate the consequences of experimentally unconstrained masses of neutron-rich nuclei,

two core collapse trajectories are considered. They correspond to the pre-bounce evolution of

the central element of two progenitors with zero age main sequence masses equal to 15M⊙ and,

respectively, 25M⊙ as reported in Ref. [31].

Fig. 2 displays the temperature and electron fraction evolution as a function of time translated

into baryonic number density. Upon collapsing, the central element becomes hotter and more

neutron-rich. The T (nB) and Ye(nB) patterns are the same for the two progenitors but the exact

values are different. The more massive progenitor leads to higher temperatures and larger isospin

asymmetries. The vertical bar on the Ye-axis marks the domain where information on nuclear

masses starts to be incomplete.
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Figure 2: Thermodynamic conditions (T,nB,Ye) spanned by the central element of two core-collapsing stars

with 15M⊙ and, respectively, 25M⊙ as reported in Ref. [31]. Figure taken from Ref. [32].

5. Chemical composition

NSE cluster distributions obtained by using experimental masses supplemented with predic-

tions of the DZ10-model [19] and the SLY4-LDM parametrization [22] show wide and complex

shapes continuously evolving with T , nB and Ye. Fig. 3 gives a first glimpse of fragment composi-

tion as a function of baryonic number density along the two trajectories in terms of mass fractions

of unbound nucleons, light and heavy clusters. The two latter categories are arbitrarily defined

with respect to A = 20, where most of the bi- or multi-peaked mass distributions show a gap. One

may see that heavy nuclei are dominant at any moment of the evolution though their importance

decreases as the temperature increases. The mass fraction of unbound nucleons shows an overall

increase with nB. The mass fraction of light clusters shows a non-monotonic behavior and the

strongest dependence on the progenitor mass. This non-monotonic evolution is the subtle conse-

quence of the interplay between T and nB which acts in opposite directions.

A deeper insight on chemical composition is given in Fig. 4. Each panel presents the N and

Z numbers of the most probable and average heavy cluster. Vertical error bars correspond to the

statistical dispersion of the distributions. Chemical composition of the central element of the 15M⊙
progenitor is displayed on the left hand side while the one of the 25M⊙ progenitor is shown on the

right hand side. We may see that while the average proton number of heavy clusters is almost

constant, the average neutron number increases monotonically with time. This is obviously due

to the overall neutron-enrichment of stellar matter during collapse. The vertical bars show that, in

addition to the average values, also the width of the N-distribution increases. By comparing the

most probable with the average N and Z numbers, we note that they are never the same. This means

that the distributions are not only broad, but also asymmetric. It is worthwhile to note that very

often the most probable N value is a magic number, 28 or 50. The occurrence of N-magic numbers

in different astrophysical sites has already been noted in the literature. In this context it due to the

persistence of the stability valley magic numbers in neutron rich nuclei, according to DZ10 [19].

Indeed, Fig. 5 - that illustrates the two-neutron separation energy as a function of N-number

along different isotopic chains copiously produced under the considered conditions - shows that

gaps around N = 50 and N = 82 continue to be important in DZ10 even for extremely neutron-

6
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Figure 3: Mass fractions of free nucleons, light (2 ≤ A < 20) and heavy (A ≥ 20) clusters obtained for

the central element of the core-collapse with a 15M⊙ (thin blue lines) and a 25M⊙ (thick magenta lines)

progenitor [31]. The temporal evolution is labeled via the baryon number density as in the previous figure.

The color legend is the same as in the previous figure. Figure taken from Ref. [32].
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Figure 4: Average (solid symbols) and most probable (open symbols) proton and neutron numbers of heavy

(A ≥ 20) nuclei produced in the central element of the 15M⊙ and 25M⊙ progenitors [31] during collapse as

a function of baryonic density. The vertical bars correspond to the standard deviation of the distribution. For

better readability, N and Z data have been slightly displaced in density. Figure taken from Ref. [32].

rich nuclei. At variance with this, the microscopic model BsK22 [20] manifests some magicity

quenching for N=50. The situation is less clear for N=82 but, still, one can assume that magicity

quenching can, in principle, occur here as well. Recent experimental data [33, 34] corresponding

to N = 20 magic number show that magicity quenching in neutron rich nuclei is to be expected.

Indeed, while a huge gap is obtained for decreasing proton number up to 34Si, no gap is found

for the even-even isotope 32Mg. This effect is due to both modification of single-particle energies

far from stability and, more importantly, correlations which go beyond the single-particle shell

model picture. Magicity quenching implies that very neutron-rich nuclei around N = 28,50,82

will be less bound than if magicity survives. Eq. (2.1) shows that the multiplicity of a certain

species depends, among other quantities, on its binding energy. As such, magicity quenching will

7
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lead to a decrease of nuclear abundances around N = 28,50,82. In turn, in order to conserve nB

and Ye, nuclear species with neutron numbers situated between the magic numbers will be more

copiously produced. As EC rates are convolutions of individual rates and the abundances of various

species, 〈λEC〉 = ∑A,Z λ A,Z
EC n(A,Z)/∑A,Z n(A,Z) it is easy to anticipate that any modification of

nuclear masses will impact the NSE-averaged reaction rates.

Consequences of magicity quenching in astrophysics have been previously addressed in Refs.

[35, 36] in the context of r-processes. It has been shown that the discrepancy between canonical

calculations in the regions A ≈ 110 and A ≈ 180 and experimental solar abundances is reduced.
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Figure 5: Two-neutron separation energy over selected isotopic chains as predicted by the DZ10 [19] and

BsK22 [20] mass models (solid stars). Experimental data (solid circles) from Ref. [17] are plotted as well.

Figure taken from Ref. [32].

6. Evolution of magicity far from stability

We follow the strategy proposed in Ref. [36] and introduce a modified expression of the

binding energy,

Bm(A,Z)











= Bexp(A,Z), Z
exp
i (A)≤ Z ≤ Z

exp
s (A)

= BLD(A,Z)+ f (Zexp
i (A)−Z,∆Z,α)

(

BDZ(A,Z)−BLD(A,Z)
)

, ZDZ
i (A)≤ Z < Z

exp
i (A)

= BLD(A,Z)+ f (Z−Z
exp
s (A),∆Z,α)

(

BDZ(A,Z)−BLD(A,Z)
)

, Z
exp
s (A)< Z ≤ ZDZ

s (A),
(6.1)
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where Bexp(A,Z) and BDZ(A,Z) stand for the experimental binding energy [17] and predictions of

DZ10 mass model [19], respectively. Z
exp
i (A) (resp., ZDZ

i (A)) and Z
exp
s (A) (resp. ZDZ

s (A)) corre-

spond to the most neutron-rich and, respectively, most neutron-poor nucleus with A nucleons for

which experimental masses (resp., predictions of DZ10) exist. BLD(A,Z) is a simple liquid-drop

binding energy calculated according to

BLD(A,Z) = avA−asA
2/3 −avi4I(I +1)/A+asi4I(I +1)/A4/3 −acZ(Z−1)/A1/3 +Vp(A,Z),

(6.2)

with I = |A− 2Z|/2, av=15.62 MeV, as=17.8 MeV, avi=29 MeV, asi=38.5 MeV, ac=0.7 MeV and

Vp =±12/
√

A MeV for even-even (+) and, respectively, odd-odd nuclei (-).
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Figure 6: LDM-shifted binding energy as a function of neutron number for different isotopes strongly

populated during core collapse. DZ10 [19] results (solid black dots) are plotted along modified results Bm

corresponding to two different scenarios of shell quenching. Figure taken from Ref. [32].

The arbitrary smearing function,

f (x,∆Z,α) = exp [αx/∆Z] . (6.3)

depends on two parameters ∆Z and α < 0 which determine how fast the shell quenching occurs.

Small values of ∆Z lead to a sudden quenching while the limit ∆Z → ∞ corresponds to nuclear

masses described according to DZ10.

Fig. 6 illustrates the liquid drop shifted evolution of the modified binding energy introduced

in eq. (6.1) as a function of neutron number for different isotopic chains of relevance for our study.

Several values of ∆Z are considered, as mentioned on the figure. In all cases, α = log(10−2). As

one may see, Bm(A,Z) = Bexp(A,Z) whenever experimental nuclear mass data exist. Outside the

stability valley, Bm(A,Z) smoothly evolves towards BLD(A,Z), which shows no structure effect.

Peaks corresponding to magic numbers are suppressed faster for more exotic nuclei.

9



P
o
S
(
M
P
C
S
2
0
1
5
)
0
0
5

Magic nuclei, electron-capture rates and core collapse Ad. R. Raduta

The effect of the modification of the mass formula on the nuclear distribution is shown in Fig. 7

for two ∆Z-values, as mentioned on the figure. Three thermodynamical conditions explored by the

central element during the collapse of the more massive 25M⊙ progenitor are considered. We note

that as far as the baryonic matter has reduced isospin asymmetries and the most abundant nuclei lie

in the stability valley, the modified Bm(A,Z) binding energies do not produce any difference with

respect to the DZ10 binding energy. On the contrary, at late stages in the pre-bounce evolution,

where matter is neutron-rich, any modification of the binding energies results in a significant change

of the produced species.
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Figure 7: Impact of nuclear binding energies on nuclear abundances for three thermodynamic conditions

(T [MeV], nB [fm−3], Yp) corresponding to different moments in the evolution of the central element of the

collapse of a 25 M⊙ progenitor [31]. The distributions of clusters with a given neutron number are shown.

The same prescriptions for the binding energies as in the previous figure are used. Figure taken from Ref.

[32].

7. Shell quenching and NSE averaged electron capture rates

The main result of our investigation is depicted in Fig. 8. The consequences to different

scenarios of shell quenching far from stability on NSE-averaged electron capture are plotted in

terms of relative deviation with respect to the benchmark mass model DZ10. The values considered

for the parameters of the smearing function are ∆Z = 2, 5, 10 and α = log(10−2). The results

corresponding to each parameter set are plotted with a different color. Solid and dashed lines

correspond to the collapse trajectories of the central element of the 15M⊙ and, respectively, 25M⊙
progenitors. The left panel represents the average EC rate on heavy (A > 20) nuclei. The right

panel illustrates the inclusive effect of all species. Individual EC rates given by eq. (3.1) [24] are

considered.

The pattern of both 〈λ m
EC heavy〉/〈λEC heavy〉 and 〈λ m

EC〉/〈λEC〉 is similar for the two collapse

trajectories. The maximum deviation with respect to the fiducial model is obtained, as anticipated,

at important neutron enrichment of matter provided that the temperature is small enough such that

medium and heavy clusters are produced in a sizable amount. The most important message is that

modifications in nuclear binding energies may lead to modifications of the total EC rates of more

than 30%. Similar calculations performed employing different EC parametrizations show that both

the shape of 〈λ m
EC heavy〉 and 〈λ m

EC〉 and the amplitude of modification with respect to the fiducial

model depend on the individual EC rates, as well. As such, it is of dramatic importance to better

constrain nuclear masses and EC rates of neutron-rich nuclei by future experiments.
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Figure 8: Ratio between NSE-averaged electron capture rates using the shell-quenched mass functional and

the original DZ10 [19] mass model. The thermodynamic trajectories correspond to the central element of a

15M⊙ (dashed lines) and a 25M⊙ (full lines) core-collapsing progenitor [31]. The averaged rate is calculated

only on heavy nuclei (A ≥ 20) in the left panel and on all nuclei in the right panel. Different quenching

factors ∆Z are considered. For individual electron capture rates eq. (3.1) are considered.

8. Conclusions

We have examined the consequences of a possible quenching of neutron-magic numbers in

very neutron rich nuclei on electron captures rates during core collapse. A recently developed

extended NSE model [11] has been employed and typical thermodynamical conditions of the late

stage of the pre-bounce evolution have been considered. They correspond to the central element of

a 15M⊙ and, respectively, a 25M⊙ progenitors as reported in [31].

We have proven that a possible quenching of shell closures considerably affects the nuclear

distribution and consequently the electron capture rates during the late stages of the collapse. The

amplitude of the effect, measured with respect to the fiducial mass model of Duflo-Zuker [19],

depends on the thermodynamical conditions, assumed scenario of shell quenching and the value

of individual electron capture rates. The maximum value we have obtained when using the L03

parametrization of the electron-capture rates is of 30%, meaning that important modifications in

the astrophysical evolution can be expected.

We believe that additional experimental data of masses and electron capture rates of neutron-

rich nuclei around N=50 and 82 could be of great importance for a better understanding of the

evolution of the collapse of massive stars at the end of their life.
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