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Mmax of the equilibrium quark configurations exceeding the recently accurately determined mass

2.01M⊙ for the radio pulsar PSRJ0348+ 0432 in a binary with a white dwarf. Meanwhile,

we find that if the quark-gluon interaction constantαc is limited to valuesαc < 0.6, then all

three pulsars with the most accurately measured masses(M/M⊙ = 1.44,1.97 and2.01) may be

candidates for strange stars. In the second part of this paper, the maximum masses for hybrid

stars are determined for various combinations of the equation of state of baryonic matter with the
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the dependence of the radius of the strange dwarfs on their mass is investigated for different
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1. Introduction

Functional relationships between integral parameters of compact stars (mass, radius, moment
of inertia, red shift, etc.) and the equation of state (EOS) allow us to uniquely define the char-
acteristics of a star for any model of the EOS. At present, it is impossible to uniquely select a
specific model for the EOS. As a criterion for this selection should be the comparison of the results
of theoretical calculations of the integral parameters of superdense stars with observational data
on pulsars. Unfortunately, the state of the art calculations do not have sufficient accuracy. Until
recently, the massM = 1.442±0.003M⊙ of the double pulsar PSR1913−16 was considered the
most well-determined mass measurement [1]. In recent years new accurate measurements were
reported of the masses of two pulsars each of which is in binary orbit with a white dwarf. Their
reported masses are very close to two solar masses: for PSRJ1614−2230M = 1.97±0.04M⊙ [2]
and for PSRJ0348+ 0432M = 2.01±0.04M⊙ [3]. These discoveries put certain constraints on
the EOS of baryonic superdense matter.

In the first part of the presented work (Section 2) we determine sets of values of the MIT
bag model constants. These are then used in the EOS of strange quark matter (SQM). We show
that they yield a maximal massMmax of the equilibrium quark configurations which exceeds the
recently accurately determined mass2.01M⊙ of the radio pulsar PSRJ0348+ 0432in a binary.
We show that if the quark-gluon interaction constantαc is limited to valuesαc < 0.6, then all of
the three pulsars with the most accurately measured masses(M/M⊙ = 1.44,1.97 and2.01) may
be candidates for strange stars.

If quark matter is not self-bound, then there may exist the so-called hybrid stars. The maximum
mass of such stars is determined by the EOS of ordinary nuclear and nucleonic matter (where
quarks are confined into hadrons) and by the EOS of deconfined quark matter. The question we
address is the following: what are the possible combinations of these EOS that can provide a
maximum mass for hybrid stars greater than2.01M⊙? The second part of this contribution (Section
3) is dedicated to this issue.

If, indeed, SQM exists as a form of self-bound matter, then there may be celestial bodies which
are called strange dwarfs (SD) [4, 5, 6]. These stars are composed of quark matter core with a mass
Mcore. 0.02M⊙ and an extended outer crust which consists of degenerate electrons and nuclei [the
so-called (Ae) matter]. The mass-radius relation for these stars is determined in the third part of
this paper (Section 4) for different chemical compositions of the outer shell is defined. Here we
also identify the probable strange dwarf candidates among the observable white dwarfs.

2. The Pulsar PSR J0348+0432 and Strange Stars

The energy densityρ of superdense stars is usually expressed in terms of the average energy
ε per baryon and the baryon concentrationn (the number of baryons per unit volume) by the
formula ρ = (m0c2 + ε(n))n, wherem0 is either set equal to the neutron massmn or, as we will
do in this paper, to the mass per nucleon in the iron nucleusM(56Fe)/56. As well known from
the extensive studies of physics of superdense stars, neutron stars configurations with masses close
to their maximum massMmax have central densitiesρc which are by an order of magnitude larger
than the nuclear saturation density. This is true for superdense stars composed of nucleons (with a
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possible admixture of hyperons) that do not contain quarks; these objects we shall nominally refer
to as neutron stars. For rigorous EOS of baryon matter, see for example [7, 8], the neutron star
masses are of the order of one solar mass for central densities comparable to nuclear saturation
density. On the other hand, because quark matter within the MIT bag model [9] is characterized by
extremely low compressibility, the transition to the SQM phase takes place at baryon concentrations
nmin < 2n0, wheren0 = 0.15fm−3 is the nuclear concentration (see Table1). These densities are
considerably below the central densityρc of the neutron star with maximal massMmax. Therefore
the transition to SQM matter takes place before neutron stars lose their stability. This has the
consequence that within the bag model neutron star and compact stars with SQM will form a
single family of stars on theM(ρc) diagram [10, 11]. On the other hand the softness of SQM EOS
would implyMmax < 2.01M⊙ for such configuration in contradiction with observations.

In this contribution we assume a bag model for quark matter [9] that depends on three phe-
nomenological constants: the bag constantB (vacuum pressure), the quark-gluon interaction con-
stantαc, and the strange quark massms. We determined [12, 13] those sets of values of these
constants which predict such an EOS of SQM that yields a maximum mass of the equilibrium
configurations which exceeds the mass PSRJ0348+0432, Mmax> 2.01M⊙.

2.1 The Transition to SQM

It has been shown in Refs. [14, 15, 16] that SQM consisting ofu, d and s quarks can be
energetically more favorable, even at zero pressure, than nonSQM (NQM) consisting ofu and
d quarks and the matter in atomic nuclei (N). Ref. [17] showed that within the bag model [9]
description of the SQM that it consists of roughly equal amounts ofu, d and s quarks with a
small admixture of electrons which ensures electrical neutrality. Furthermore, it was shown that
for certain values of the bag constants(B,αc,ms), the average energyε per baryon as a function of
the specific baryon volume(1/n) can have not only a positive but also a negative local minimum,
which in its turn leads to two alternatives EOS, which we address in turn.

The first case corresponds toεmin > 0. For quark densities greater thannmin a first order phase
transition takes place between nuclear and SQM with a jump in density. Here, in accord with the
Gibbs condition (or by a Maxwell construction) a phase equilibrium is established between the
SQM and nucleon-hyperon (nuclear) matter. Thus, these two phases may coexist simultaneously.
Superdense stars based on the EOS of this type are referred to as hybrid stars. These stars with
M ≥M⊙ have a central core consisting ofSQMand low-density shell which consists of ordinary
neutron star matter. More that90%of the mass of such configuration is concentrated in the SQM
core. These configurations are discussed in the next section of this review.

The second alternative corresponds to the caseε(nmin) < 0, which is of special interest. In
this case a Maxwell construction is not possible; i.e., a phase transition from nuclear to SQM is
not possible. However, quark matter can be self-bound, so that instead of object bound by gravity
self-confining objects known as "strange stars" (SS) can arises [18, 19]. These stars can also exist
in the absence of gravitation. The maximum mass of these configurations, as in the case of neutron
stars, should be of the order2M⊙. Models of strange stars have been discussed and analyzed
comprehensively in Refs. [20, 21]. Research on SQM and its relation to superdense stars has been
reviewed in Ref. [22].
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2.2 Computational Results

The main parameters of spherically symmetric static superdense stars are determined by nu-
merical integration of a system of relativistic equations for stellar equilibrium, the Tolman-Oppenheimer-
Volkoff (TOV) equations [23, 24]. For any given value for star’s central energy densityρc TOV
equations determine the star’s radiusR (defined byP(R) = 0, whereP is the pressure), gravitational
mass

M = (4π/c2)
R∫

0

ρr2dr, (2.1)

whereρ is the energy density, rest mass

M0 = (4πm0)
R∫

0

nr2exp(λ/2)dr, (2.2)

wheren is the baryon number density, andexp(λ ) is the radial component of the metric tensor,
proper mass

Mp = (4π/c2)
R∫

0

ρr2exp(λ/2)dr, (2.3)

and the redshiftZs

Zs = (1−2GM/c2R)
−1/2−1 (2.4)

on the star’s surface.
For any given triplet of bag parameters, we first determine theε(n) dependence and the values

of nmin, εmin = ε(nmin) for which the pressureP = 0. If εmin < 0 the surface defined byP = 0
corresponds to that of SS and ifεmin > 0 then it corresponds to a surface of the quark core of a
hybrid star. For each EOS the dependence of the mass of the equilibrium stable configurations as
a function of the central energy densityρc, i.e., theM(ρc) curve, is found by integrating the TOV
equations. The maximum massesMmax at which stability is lost [25, 26] are found for each series.
Calculations were done forαc = 0.05,0.5, and0.6 and strange quark massesmsc2 = 150÷ 200
MeV, which are on the order of the difference in the masses of theΛ0 hyperon and a nucleon.
Note, that these values for strange quark mass exceed the current quark mass value for this flavor,
which is approximately equal to95 MeV [27]. It is conditioned by the fact that quarks are not
asymptotically free at the density region considered in this work.

We list in Table 1 the integral parameters of stellar configurations with maximum mass for
some example EOS defined by the values ofms, B, andαc. Table1 and Fig.1 demonstrate that out
of the three parameters of the bag model, i.e.B,αc,ms, the bag constantB is decisive in determining
the maximum mass of a stellar configuration. We see that asB increases,Mmax decreases and, at a
critical valueB0, yields a mass less than2.01M⊙. Only those equations of state for whichB≤ B0

are compatible with observations.
We note that, even though the maximum mass of configurations can be increased by decreasing

the value of the bag constantB, which makes the EOS compatible with observations, the transition
to SQM occurs at unrealistically low densities, which are slightly above the nuclear density. For
example, if we assumeB = 30 MeV/fm3, ms = 150 MeV andαc = 0.05) we haveMmax/M⊙ =
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Table 1: Integral Parameters of Maximum Mass Configurations, corresponding to the
EOS withαc = 0.5 andαc = 0.6.

ms B εmin nmin/n0
Mmax
M⊙

M0
M⊙

Mp
M⊙ ρc R

MeV MeV/fm3 MeV 1015g/cm3 km

αc = 0.5

150 35 -81.5 1.24 2.336 3.062 2.959 1.42 12.95
150 40 -55.9 1.37 2.198 2.798 2.787 1.62 12.16
150 45 -32.5 1.49 2.084 2.584 2.641 1.79 11.52
150 48 -19.5 1.56 2.023 2.473 2.567 1.92 11.17
150 51 -6.95 1.63 1.968 2.374 2.496 2.02 10.86
200 35 -60.3 1.25 2.235 2.847 2.823 1.52 12.54
200 40 -34.9 1.37 2.105 2.607 2.661 1.73 11.78
200 44 -16.3 1.48 2.017 2.449 2.549 1.86 11.28
200 45 -11.8 1.51 1.997 2.413 2.524 1.90 11.17
200 47 -3.09 1.55 1.959 2.345 2.477 2.00 10.93

αc = 0.6

150 35 -64.1 1.22 2.337 3.002 2.961 1.41 12.94
150 40 -38.1 1.34 2.200 2.745 2.790 1.61 12.15
150 45 -14.3 1.46 2.086 2.536 2.647 1.81 11.5
150 50 7.58 1.58 1.989 2.362 2.523 1.98 10.96
150 52 15.9 1.63 1.953 2.300 2.478 2.05 10.77
200 35 -43.8 1.23 2.231 2.789 2.817 1.52 12.51
200 40 -18.1 1.36 2.103 2.558 2.658 1.72 11.76
200 44 0.74 1.46 2.016 2.404 2.551 1.89 11.25
200 45 5.25 1.49 1.996 2.369 2.526 1.92 11.14
200 47 14.1 1.54 1.959 2.303 2.478 1.99 10.92

2.52, but the transition density is onlynmin/n0 = 1.16, wheren0 is the nuclear concentration of
baryons. Such low transition densities render the underlying EOS unrealistic. The same trend can
be observed from Table1, which implies that even for the bag model EOS producing liming values
of maximal massMmax/M⊙ ≈ 2.01, the transition to strange quark matter takes place at densities
below twice the nuclear density,nmin/n0 ≤ 1.7.

The configurations containing SQM that have been examined in terms of the bag EOS are
characterized by extremely low compressibility. Thus, as opposed to neutron stars, the radii of
these configurations increase with increasing mass. Only prior to the onset of instability close to
the maximal mass this scaling stops because of general relativistic effects.

By definition the rest massM0 is equal to the total baryon numberNB of the equilibrium config-
urations consisting of SQM multiplied bym0, i.e.,M0 = m0NB . Thus, the difference(M−M0) de-
termines the binding energyEB of these configurations and the packing coefficientf = 1−M/M0.
While this quantity is less than1%for ordinary atomic nuclei, for neutron star configurations with
Mmax it can reach12% [28]. For configurations consisting of SQM, which are SS withεmin < 0
in the overwhelming majority of cases, it is considerably higher. Thus, for the configurations with
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Mmax andαc = 0.05, B = 40 then f = 0.26, while for those withMmax andαc = 0.6, B = 40 then
f = 0.26.

Figure 1: The maximum mass of equilibrium con-
figurations as a function of the parameterB for dif-
ferent values of the strange quark massms: ¥−
ms = 150 MeV, •−ms = 175 MeV, andN−ms =
200MeV and three values of the parameterαc indi-
cated in the panels. The dashed line corresponds to
the configuration withM/M⊙ = 2.01.

Figure 2: The minimum average energy per
baryonεmin as a function ofB for EOS leading to
Mmax/M⊙ ≥ 2.01for different values of the strange
quark massms and αc. The crosses indicate the
maximum possible values ofεmin. The notation is
as in Fig. 1.

Figure 1 shows the dependence ofMmax on B for three values ofαc and three values of
the strange quark massms. The dashed line corresponds to the limiting configuration with mass
Mmax/M⊙ = 2.01 and determines the value ofB0 for the different values ofms. Recall that only
those EOS for whichB≤ B0 are compatible with astronomical observations.

Figure2 shows analogous plots as in Fig. 1, but forεmin as a function ofB. The crosses on the
lines mark the values ofεmin corresponding toB0. We denote these values by(εmin)0. Only those
equations of state for whichεmin < (εmin)0 are compatible with astronomical observations. We can
see from Table1 and Figs.1 and2 thatB0 depends very weakly onαc: it decreases slightly with
increasing strange quark mass, but remains within the narrow interval of values44< B0 < 49.

Our calculations show that whenαc ≤ 0.5 we have(εmin)0 < 0. Therefore all the EOS which
satisfy this condition describe SS stars; the integral parameters for such stars are listed in Table 1
(see also Figure2).
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Table1 lists also data for the caseαc = 0.6. Here the distinction between SS and hybrid star
configurations depends on the values of other parameters as well and one may have bothεmin < 0
(SS configurations) andεmin > 0 (hybrid star configurations). However, in the limiting case where
B approaches toB0 (Mmaxdecreases and approaches to2.01M⊙ ), we have(εmin)0 > 0, i.e., we find
configurations consisting of SQM that correspond to hybrid stars. However, as Figure2 implies,
even in the case ofαc = 0.6, the overwhelming majority of the EOS haveεmin < 0 ; i.e., in this
case, as well, most of the EOS yield strange stars.

In the range of parameter values0.6 < αc < 1 we find EOS which predict configurations of
hybrid stars with SQM cores and massesMmax/M⊙ > 2.01. However, some caution is needed here
since we have used the results of Ref. [17], which determines the basic thermodynamic quantities
of SQM via perturbation theory with respect to the small quark-gluon interaction. More precisely,
these computations where carried out to first order with respect to the small expansion parameter
(2αc/π); clearly the perturbative expansion fails for the values ofαc mentioned above.

2.3 Summary to Sec. 2

In this section we have studied possible limitations on the EOS of superdense baryon matter
imposed by precise measurements of the masses of two radio pulsars withM ∼ 2M¯ during last
few years [2, 3]. Our study of the EOS of SQM matter within the bag model [9] shows that the
transition to SQM takes place at densities less than twice the density in atomic nuclei. This density
is well below the central energy density of most massive neutron stars. Thus in the framework of
the bag model we find that the low-mass neutron stars and superdense stars consisting of SQM
form a single family of compact stars, i.e., are described by a singleM(ρc) curve in the mass vs
central density diagram. We have found sets of values of the phenomenological constants for the
bag model(B,αc,ms) which yield maximal masses of the equilibrium configurations in excess of
the measured mass of PSRJ0348+0432(Mmax> 2.01M⊙) using EOS of SQM. Our study shows
that for the values of the quark-gluon interaction constantαc < 0.6, the resulting EOS predict SQM
in stellar models with masses corresponding to those most accurately measured for known pulsars,
specificallyMmax/M⊙ = 1.44, 1.97, 2.01. Thus, we conclude that these objects would be strange
stars.

3. Maximum masses of hybrid stars

In this section we consider sets of the values of the MIT bag model parameters for which the
conditionεmin > 0 is fulfilled. As already discussed in Sec. 2, this is a necessary condition for the
phase coexistence of quark gluon plasma and hadron matter. The hadron matter close and above the
nuclear saturation density will be described by an EOSs which were obtained in the framework of
the relativistic nuclear field theory [29]. Specifically we will use the model constructed on a basis
of a potential [30, 31, 32], where the impact of the two-particle correlations is taken into account in
the so-calledλ 00 - approximation [33, 34]. These EOSs, which are marked as "Bonn" and "HEA",
were merged with the EOS of Baym-Bethe-Pethick (BBP) which is valid in the density range below
half the nuclear saturation density and above the neutron drip density [35]. As an example of an
EOS that is more stiff than the EOSs "Bonn" and "HEA" we use in our calculations the EOS of
Bethe-Johnson (BJ-V) [36].
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Figure 3: The mass-radius relations for hybrid stars constructed from various combinations of the three
EOSs of hadronic matter and four EOSs of quark matter based on MIT bag model.

Following Refs. [37, 38], we assume that the surface tension between the hadronic and the
SQM phases is high enough so that the phase transition is the ordinary first-order phase transition,
i.e., the pressure during the phase transformation remains constant, and the density undergoes a
jump. In this case, the transition parameters are defined through the Maxwell construction. By
combining the above three EOSs of hadronic matter "HEA", "Bonn" and "BJ-V" with four EOSs for
quark-electronu,d,s,e plasma, calculated in the framework of the MIT bag model in accordance
with the values of the model parameters given in Table2, we obtain ten distinct EOSs. The phase
transition in all these EOSs is of Maxwell-type. We then integrated the TOV equations for this set
of EOS to find the integral parameters of hybrid stars.

Table 2: MIT bag model parameters for different variants of SQM EOS withεmin > 0.

Quark Model ms B αc εmin nmin

MeV MeV/fm3 MeV fm−3

MIT-1 175 55 0.5 10.44 0.258
MIT-2 200 55 0.5 20.71 0.263
MIT-3 175 55 0.6 28.61 0.258
MIT-4 175 60 0.5 28.97 0.276

Figure3 shows the mass-radius relationship for hybrid stars, where each panel corresponds to
a different EOS of the hadron component.

Table2 lists the MIT bag model parameters of the EOSs of quark matter component used in
our calculations. We also give the values of energy per baryonεmin and baryon number density
nmin corresponding to the minimum energy state. Table3 presents the values of parameters of
hybrid star configurations with maximum gravitational mass for various combinations of the EOS
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of hadronic and quark matter phases.

Table 3: Parameters of hybrid star configurations with maximum gravitational mass.

Hadronic EOS Quark EOS ρc
Mmax
M⊙ R M0

M⊙ Rcore

1015g/cm3 km km

HEA MIT-1 2.1.05 1.863 10.65 1.845 10.33
MIT-2 2.2.80 1.831 10.88 1.707 9.77

Bonn MIT-1 2.241 1.864 10.77 1.847 10.26
MIT-2 2.283 1.831 10.87 1.713 9.79
MIT-3 1.407 1.820 10.85 1.438 9.61
MIT-4 2.359 1.806 10.81 1.594 9.28

BJ-V MIT-1 2.214 1.863 10.72 1.790 10.32
MIT-2 2.302 1.826 10.67 1.809 10.11
MIT-3 1.407 1.799 11.65 1.629 10.22
MIT-4 2.413 1.796 10.64 1.695 9.59

The results of our calculations, presented in Table3, show that within the framework of the
MIT bag model, the maximum masses of the hybrid star do not reach the value2.01M⊙. Note that,
for sufficiently small values of the bag constantB which result in a positive value of the energy
per baryon, the value of the hybrid star masses can reach the required value2.01M⊙. However, in
such configurations the phase transition from hadronic to quark matter occurs at a densities below
the normal nuclear density. Therefore, such low values of theB parameter should be considered as
unrealistic.

Despite the fact that models for EOS considered in this section do not allow us to obtain
values of masses of hybrid starsM > 2.01M⊙, this is not yet a proof of absence of deconfined
quarks inside stellar cores. Investigations of hadronic phases and their EOS in the framework of
relativistic mean field theories shows that the inclusion of scalar-isovector interaction channel leads
to a more stiff EOS and, consequently, to an increase in the maximum masses of neutron stars [39].
Alternative models of quark matter phase, such as, for example, the NJL model [40], also predict
stiffer EOS for quark matter than the MIT bag model considered here. We relegate the investigation
of the EOS of superdense matter with a first order phase transition on the basis of these models to
future work. This will allow us to carry out a complete analysis of characteristics of hybrid stars
and in particular to clarify the issue of maximum possible mass of such objects.

4. Mass-radius relation of the strange dwarfs: theory vs observations

If the SQM is self-bound, then there may exist celestial bodies which consist of a quark core
with massMcore≤ 0.02M⊙ and an external shell consisting of lattice of nuclei with a charge neu-
tralizing background of degenerated electrons (the so-calledAematter). These objects are called
strange dwarfs (SD) [4, 5, 6].

The strong electrostatic field on the surface of the quark core(∼ 1018V/cm) prevents the pene-
tration ofAematter into the quark core [20]. The maximum density of the matter in ordinary white
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dwarfs (WD) is limited to a value in the range109−1010g/cm3. In SD the maximum density of
matter of the envelope residing over the quark core is given by the density of the drip of neutrons
from nuclei which is in the rangeρdrip = (2−5) ·1011g/cm3 The stability of SD was studied in
Ref. [5, 41, 42].

The radii of WD and SD which have same masses differ insignificantly. In the case of SD
the larger is the portion of the mass of the quark core, the smaller is the radius of the strange star.
Depending onMcore this difference can reach up to10% for stars with massesM ∼ 0.3− 1M⊙.
The WD and SD is difficult to distinguish by their radii, because of the small difference in this
parameter. Therefore, it is not an easy task to search for SD candidates among the known WD-
type objects. Observationally, the masses and radii of the white dwarfs should be "measured" with
sufficient accuracy. At the same time, theoretical calculations needed to take into account all the
decisive factors. For non-rotating WD and SD these factors are the chemical composition and the
equation of state ofAematter.

In Ref. [43] it was assumed that theAe matter in WD and SD is in the state of minimum
energy, in which case theAeplasma consist of nuclei of iron group. In such matter the chemical
composition, the energy density and the pressure are uniquely determined by the concentration of
baryons. TheAematter in SD and WD can reach such state only after a very long evolution. The
time-scale of this transition assuming a “quiet” evolution is more than the cosmological time-scale.
Even in case of supernova explosion the nuclear transformations do not lead the matter to the state
of minimum energy. Therefore, the final chemical composition during such an explosive evolution
would be also different from the state of minimum of energy [44]. Therefore the existence of WD
which consist of only (or mostly) iron nuclei is questionable. Thus, the assumption of Ref. [43]
that matter in WD and SD can be described by EOS based on state of minimum energy may not
apply. It is known, that the closer the matter is to the state of minimum energy, the smaller is the
radius of the star. Therefore, the radii obtained in Ref. [43] for these stars correspond to an extreme
compact limit of such stars and, therefore, place a lower limit onR.

4.1 Characteristics ofAeand quark matter phases

We start with a summary of the EOS of a cold degenerate matter used to determine the
parameters of WD and SD. We use the EOS of Ref. [45] for densities below the densityρ1 =
11.4AZ (g/cm3), whereA is the mass number andZ is the atomic number (charge) of nuclei. At
densityρ1 the average distance between atoms is equal to the size of the atom. Forρ > ρ1 we use
the EOS derived in Ref. [46]. This EOS accounts for the Coulomb interactions of electrons, the
correlation and exchange effects, as well as inhomogeneous distribution of electrons in the vicinity
of the nuclei. Within the range of densitiesρ1 ≤ ρ ≤ ρ2 = 8.33AZ2(g/cm3) the plasma becomes
full ionized by the pressure. Hereρ2 is the density at which the average distance between the elec-
trons is equal to the radius of the K-shell of the atom. The effect of pressure ionization is also taken
into account in Ref. [46].

Below we describe our effort to find candidates for the SD in the list of known WD. For this
we determine theoretically the areas of mass-radius(M−R) plane where the SD are located. We
confront these results with the known information on WD object by showing these objects in the
same diagram. The location of WD on this plane depends on the chemical composition of the
stellar matter. In the case of SD, their area of location in the(M−R) plane also depends on the
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mass and radius of the quark core. Following Ref. [47] we computed the integral parameters of
WD and SD which consist of nuclei with mass numbersA = 12, 16, 24, and 56. It is assumed
that the mass numberA of the nuclei in the star does not depend on the density and the atomic
numberZ is determined from theβ− equilibrium condition. We used the experimental data for the
masses of these nuclei [48] to determine the thresholds of neutronization of individual nuclei and
the density when a free neutron gas is formed in theAematter. For isobars of iron group(A = 56)
the experimental data forZ < 20 is not available. Therefore for this group Weizsacker’s formula
was partially used.

As noted above, a strong electrostatic field on the surface of the quark core prevents the pen-
etration of atomic nuclei into the core. In the presence of degenerated Ae matter above the quark
core the strength of this field and the charged layer thickness decrease. The greater the density
of Ae matter is, the weaker is the electric field and thinner the charged layer. When the Fermi
energy of the electrons inAematter and the Fermi energy of the electrons in the quark matter are
equal then the electric field disappears completely [20]. If the equality of these Fermi energies is
achieved at some densityρ0 < ρdrip then the maximum density ofAematterρmax at the base of the
Aeenvelope isρ0, otherwiseρmax = ρdrip.

The parameters of the quark core are determined on the basis of the EOS of SQM according to
the MIT bag model. We use the accepted values of the parameters of this models in our numerical
calculations: the bag constantB = 60 MeV/fm3, the strange quark massms = 175 MeV and the
constant of the quark-gluon interactionsαc = 0.05.

4.2 Numerical calculations and comparison with the observational data

We have determined the integral parameters of WD and SD by integrating the TOV equa-
tion [23, 24]. Our results for the radius-mass relations (i.e. the curvesR = R(M)) for the WD
are presented in Fig.4 by solid lines - black for carbon WD, red for magnesium WD and blue for
iron WD. These curves replicated the results of [47]. Unlike the WD, the strange dwarfs fill in the
individual stripes labeled in the figure asCSDfor carbon,MgSDfor magnesium andFeSDfor iron
envelopes. EachR= R(M) curve of WD is the upper boundary of the corresponding stripe of SD.
The curveR= R(M) of SD withρtr = ρdrip (dashed curve of the corresponding color) is the lower
limit of this stripe. The position of SD with a given mass in the stripe depends on the proportion
of the mass of the quark coreMcore. The largerMcore is, the lower is the location of the SD in the
stripe. Those stripes of iron, magnesium and carbon SD are shown on Fig.4. The results of the
calculations for oxygen WD and SD are not shown in Fig.4, as the stripe of these stars overlap
with those of carbon and magnesium SD.

The assumption that theAematter in the WD and SD contains only one type of isobars is an
idealization. Furthermore, the stripes of carbon, oxygen and magnesium SD overlap, therefore we
can consider a combined region covered by these stripes where SD may reside. WD and SD with
the mixed chemical composition (carbon-oxygen-magnesium) will be located in a one common
stripe in theR−M plane. One can distinguish by mass and by radius such WD from SD. If the
matter of stars contains only the nuclei with mass numbers in the range24≤ A≤ 56, then on the
planeM−R the WD will be located between magnesium and iron WD, and the SD will be located
below the magnesium WD including the iron stripe. The greater the relative content of iron in such
star is, the closer to the iron SD is its position on theM−R plane. However, the presence of a big
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Figure 4: The mass-radiusM−R relations of the carbon, magnesium and iron white dwarfs ( the black,
red and blue solid lines accordingly ). The curvesR = M(R) of the carbon, magnesium and iron strange
dwarfs withρtr = ρdrip (dashed curve of the corresponding color). Between the solid and dashed curves are
the corresponding stripes of the carbon, magnesium and iron (CSD, MgSDandFeSD) strange dwarfs. It is
marked the locations of known white dwarfs with errors in the determination the masses and radii.

amount of nuclei withA > 24 in SD is improbable. Therefore, the wide area between theM(R)
curve (solid blue line in Fig.4) of the iron WD and the stripe of magnesium SD should be almost
empty. Thus, the stars that are between the regionsMgSDandFeSDin Fig. 4 are either WD or SD
the matter of which contains nucleiA > 24. Below the curveR= R(M) of the iron WD (region
FeSD) only iron strange dwarfs can exist. The closer a star is toFeSD, the higher is the probability
that this star is a SD.

4.3 Comparison with the observational data and critical remarks

The masses and radii of WD which are relatively accurately defined by the observational data
are given in Refs. [49, 50]. The positions of nine white dwarfs on theM−R plane are shown in
Fig. 4. We have selected those stars whose parameters are defined with low errors and are in the
region of possible SD. The Fig.4 also shows the errors in determining of masses and radii.

As in Ref. [43] we assume that the WDEG−50 (black circle) with a very high probability is
a SD. The starsG238−44 andG181−135B (red triangles) are close to the region ofFeSD, but
their parameters are determined not precisely enough. Therefore, we can only indicate that they
are possible candidates to be SD.

The mass and radius of the starGD− 140 are defined with very small errors. If the matter
of this star contains a small number of nuclei ofA > 24 then it is also most likely a SD. The rest
of the selected stars (green circles) are in region of theM−R plane, where the existence of SD is
theoretically possible. However, it is unlikely that among these stars there are SD.

The masses and radii of the observed WD are determined indirectly, i.e., by processing the
observational information on other parameters. This is done on the basis of certain theoretical
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models of WD. Therefore, we need to be aware of the fact that the extraction of information on
the mass and radius may contain theoretical background which is not compatible with our models
of SD. Part of the uncertainties are related to the measurements of WD/SD luminosities which
actually give an information on the radius of the radiating region, which need not be the radius of
the star. It is known that those two radii are slightly different. However, are the numerical values
of these radii close enough in order to distinguish a WD from a SD? An analysis of uncertainties
involved in the mass/radius determination for WD is needed to answer this and related questions.

In closing this section we note that we considered so far only non-rotating configurations. A
rotating configuration experiences centrifugal stretching and may have a radius larger than its non-
rotating counterpart (in the plane orthogonal to the rotation axis). This implies that the region of
M−R plane which can be populated by WD and SD may expand if we allow for the rotation of
these objects. Consequently, there could be, for example, pure iron hot strange dwarfs above the
region where the cold iron strange dwarfs (regionFeSD) reside. These issues require a separate
study.

4.4 Summary to Sec. 4

Here we provide a brief summary of the key results of this section:

• The regions of the existence of WD and SD overlap on the mass-radius plane. There might
exist SD among the observed WD which could have the same masses and radii as the WD
counterpart.

• The observed WD which are located below the curveR= R(M) for iron white dwarfs are
suggested to be SD.

• We need to find other distinguishing characteristics for non-iron SD that can discriminate
them from non-iron WD, because both types of objects have similar in masses and radii.

• The WDEG−50 is with high probability a SD, whereasG238−44, G181−85B andGD−
140are good candidates for being a SD.

References

[1] J.H. Taylor, J.M. Weisberg,Astrophys. J.345(1989) 434 .

[2] P. Demorest et al.,Nature467(2010) 1081.

[3] J. Antoniadis et al.,Science340(2013) 1233232.

[4] N.K. Glendenning, Compact Stars:Nuclear Physics, Particle Physics, and General Relativity,
Springer, Heidelberg 2000.

[5] N.K. Glendenning, Ch. Kettner, F. Weber,Astrophys. J.450(1995) 253.

[6] Yu.L. Vartanyan, A.K. Grigoryan, T.R. Sargsyan,Astrophysics47 (2004) 223.

[7] B.D. Serot,Phys.Lett.B86 (1979) 146.

[8] V.R. Pandharipande, D. Pines, and R.A. Smith,Astrophys. J.208(1976) 550.

[9] A. Chodos, R.L. Jaffe, K. Johnson, C.B. Thorn, V.F. Weisskopf,Phys. Rev.D9 (1974) 3471.

13



P
o
S
(
M
P
C
S
2
0
1
5
)
0
0
6

SQM in compact stars

[10] Yu.L. Vartanyan, A.R. Arutyunyan, A.K. GrigoryanAstrophysics37 (1994) 271.

[11] Yu.L. Vartanyan, A.R. Arutyunyan, A.K. Grigoryan,Astron.Lett21 (1995) 122.

[12] Yu. L. Vartanyan, A. K. Grigoryan, A.A. Shahinyan,Astrophysics58 (2015) 276.

[13] Yu. L. Vartanyan, A. K. Grigoryan, A.A. Shaginyan,Astronomy Letters, 41 (2015) 343.

[14] A.R. Bodmer,Phys. Rev.D4 (1971) 1601.

[15] H. Terazawa, JNS-Report-336 JNS,University of Tokyo,(1979)

[16] E. Witten,Phys. Rev., D30 (1984) 272.

[17] E. Farhi, R.L. Jaffe,Phys. Rev., D30 (1984) 2379.

[18] C. Alcock, A. Olinto,Ann. Rev. Nucl. Part. Sci.38 (1988) 161.

[19] O.G. Benvenuto, J.E. Horvarth,Phys. Rev. Lett63 (1989) 716.

[20] C. Alcock, E. Farhi, A. Olinto,Astrophys. J.310(1986) 261.

[21] P. Hansel, J.L. Zdunik, R. Shaeffee,Astron. Astrophys160(1986) 12.

[22] F. Weber,Prog. Part. Nucl. Phys.54 (2005) 193.

[23] R.C. Tolman,Phys. Rev., 55 (1939) 364.

[24] J.R. Oppenheimer, G.M. Volkoff,Phys. Rev.55 (1939) 374.

[25] Ya.B. Zel’dovich,Voprosy kosmogonii (Problems of Cosmogony)9 (1963) 36. [in Russian]

[26] G.S. Bisnovatyi-Kogan,Astron. Astrophys.31 (1974) 3910.

[27] K.A. Olive et al. (Particle Data Group),Chin. Phys.C 38 (2014) 090001.

[28] G.S. Sahakyan, Yu.L. Vardanyan,Sov. Astron.8 (1964) 147.

[29] F. Weber, N.K. Glendenning, M.K. Weigel,Astrophys. J.373(1991) 579.

[30] R. Machleidt, K. Holinde, Ch. Elster,Phys. Rep.149(1987) 1.

[31] K. Holinde, K. Erkelenz, R. Alzetta,Nucl. Phys.A194 (1972) 161.

[32] K. Holinde, K. Erkelenz, R. Alzetta,Nucl. Phys.A198 (1972) 598.

[33] P. Poschenrieder, M.K. Weigel,Phys. Lett.B200(1988) 231.

[34] P. Poschenrieder, M.K. Weigel,Phys. Rev.C38 (1988) 471.

[35] G. Baym, H.A. Bethe, C. Pethick,Nucl. Phys.A175 (1971) 225.

[36] R.C. Malone, M.B. Johnson, H.A. Bethe,Astrophys. J.199(1975) 741.

[37] G.B. Alaverdyan, A.R. Harutyunyan, Yu.L. Vartanyan,Astrophysics, 46 (2003) 361.

[38] G.B. Alaverdyan, A.R. Harutyunyan, Yu.L. Vartanyan,Astrophysics, 47 (2004) 52.

[39] G.B. Alaverdyan,Research in Astron. Astrophys.10 (2010) 1255.

[40] Y. Nambu and G. Jona-Lasinio,Phys. Rev.122 (1961) 345.

[41] Yu.L. Vardanyan, G.S. Hajyan, A.K. Grigoryan, T.R. Sarkisyan,Gravitation and Cosmology15
(2008) 188.

[42] Yu.L. Vardanyan, G.S. Hajyan, A.K. Grigoryan, T.R. Sarkisyan,Astrophysics55 (2012) 98.

14



P
o
S
(
M
P
C
S
2
0
1
5
)
0
0
6

SQM in compact stars

[43] Yu.L. Vartanyan, G.S. Hajyan, A.K. Grigoryan, T.R. Sargsyan,Journal of Physics: Conf. Ser.496
(2014) 012009.

[44] G.S. Bisnovatyi-Kogan,Physical Problems of the Theory of Stellar Evolution, Moscow, Nauka, 1989.
[in russian]

[45] H.S. Zapolsky, E.E. Salpeter,Astrophys. J.158(1969) 809.

[46] E.E. Salpeter,Astrophys. J.134(1961) 669.

[47] T. Hamada, E.E. Salpeter,Astrophys. J.134(1961) 683.

[48] A.Audi et al.,Chin. Phys.C36 (2012) 1287.

[49] J.L. Provencal, H.L. Shipman, E.Hog,Astrophys. J.494(1998) 759.

[50] J.L. Provencal, H.L. Shipman, D. Koester, F. Wesemael, P. Betgeron,Astrophys. J.568(2002) 324.

15


