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1. Introduction

The discovery of new classes of compact stars with magnetic fields of the order of 1014−
1015 G, i.e., magnetars, anomalous x-ray pulsars (AXP), and soft gamma repeaters (SGR) [1], as
well as heavy neutron stars with masses of the order of 2M� [2, 3], has provided motivation for
new studies of the properties of matter at supranuclear densities, in particular the possibility of
formation of quark matter phases. The theories of strong interaction predict a phase transition
from baryonic matter to quark plasma at densities several times the nuclear saturation density.
In Refs. [4–7] the possibility of the appearance of strange quark matter where the s-flavor quarks
coexist in equal amounts with the light flavor u and d quarks was discussed. It was argued that such
state may be energetically more favorable than non-strange quark matter. Strange quark matter can
form self-sustaining bound states in the form of "strange quark stars" (SQS) even in the absence
of gravitation. Such an object may also constitute the core of an ordinary neutron star or a white
dwarf.

Quark matter may be in a normal (unpaired) state as well as in a superfluid and/or supercon-
ducting state. Above a critical temperature Tc ≈ 50 MeV and at densities characteristic for dense
compact stars u, d and s quarks do not form Cooper pairs, i.e., the quark matter is normal. For
temperatures T < Tc, however, quark matter becomes a superfluid and/or superconductor because
the attraction between quarks leads to formation of Cooper pairs. Model calculation show that at
densities of the order of 2ρ0 (where ρ0 is the nuclear saturation density) quark matter is in the
2SC phase [8], where only u and d flavor quarks of two colors are paired. In this case an electron
plasma must be present throughout the entire quark matter in order to ensure charge neutrality. For
densities ρ � ρ0, however, the CFL phase of quark matter is energetically more favorable than
the 2SC phase [9]. Under equilibrium with respect to weak interactions and charge neutrality the
matter of SQS consists of equal amounts of u, d and s quarks and electrons are absent. Under these
conditions the pairing corresponds to the CFL phase in which massless u, d, and s quarks of all
three colors pair [10,11]. In the above mentioned models for SQS, the density of s quarks decreases
towards the boundary of the quark core and this leads to emergence of electrons which are required
to maintain overall charge neutrality [12–14]. Since electrons are bound to the quark core only by
the Coulomb interaction, they may abandon the quark surface and form an electron plasma having
a thickness of the order of 102−103 fm. For this reason, a thin charged layer appears at the surface
of a strange quark star, where the electric field intensity attains values of 1017−1018 V/cm [15–17].
The electric field in the near-surface charged layer is directed outward. Consequently, it may sup-
port a crust that consists of atomic nuclei and degenerate electrons (the Ae phase). The Ae phase
cannot exist in chemical equilibrium with strange quark matter and, therefore, is bound to quark
matter core only by gravity. A strange quark star may acquire a crust during the collapse of a
supernova [18,19] or as a result of matter accretion [20,21]. Since free neutrons that have no elec-
tric charge can pass through the electrostatic barrier without hindrance and can be absorbed by the
strange quark matter, the maximum density of the crust is limited to the density of formation of
neutron drops ρdrip ∼ 4.3 ·1011 g/cm3.

For strange stars with masses M > 0.5 M�, the crust’s thickness and mass are negligible
compared to the star’s radius and mass [22]. If the mass of a strange star satisfies the condition
M < 0.02 M�, then the crust swells significantly and its maximum radius is of the order of that of
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white dwarfs. Unlike ordinary white dwarfs, these configurations, which are referred to as "strange
dwarfs", have a core consisting of a strange star, which has a small size and low mass. The family
of strange dwarfs is conventionally divided into two distinct categories [23]. The first one con-
sists of a core of strange matter enveloped within ordinary white dwarf matter with density up to
ρ ∼ 109 g/cm3. Such stars are hydrostatically stable with or without the strange core. The stars
of second category contain superdense nuclear material with density up to ρ ∼ 4.3 · 1011 g/cm3

and they owe their hydrostatic stability to the strange quark matter core. Below we model such
objects assuming that the nuclear matter envelope surrounding the quark core has density in the
range 109 ≤ ρ < 4 · 1011 g/cm3. This allows us to take into account both possibile categories of
strange dwarfs.

The generation of a magnetic field in a quark star, with the star’s rotation taken into account,
has been studied [14] under the assumption that the matter in the star is in the normal state. It
was shown that if the angular velocity Ω+ of quark matter differs from that of the electrons, Ω−,
then a magnetic field will be generated that is uniform inside and dipolar outside the quark star.
The acquired stellar magnetic moment is proportional to the difference Ω+−Ω− of the angular
velocities, but the reason for the possible difference between Ω− and Ω+ was not discussed.

In the present article we refine the mechanism for generation of magnetic field in a rotating
SQS taking into account the superfluidity and superconductivity of quark matter. We shall see
below that this leads naturally to the difference ∆Ω = Ωs−Ωn in the angular velocities Ωs of the
superfluid quark matter and Ωn of the normal electron plasma, which is required to generate a
magnetic field. Section 2 considers the distribution of the electric field in the near-surface layer
of the quark core. Section 3 discusses the possibility of differential rotation of the superfluid and
normal quark star components. In Section 4 we find the distribution of the magnetic field of a quark
star with a crust. Finally in Section 5 we present several quark star models, determine the values
for their magnetic fields, and discuss the feasibility of detecting quark stars as magnetars or white
dwarfs.

2. Electric field at the surface of a strange quark core

As shown in Ref. [14], the differential rotation of the positively charged quark core and the
electron layer linked to the crust results in the appearance of a surface current

i =
σ

2π
(Ωs−Ωn) , (2.1)

where
σ =

E
4π

(2.2)

is the surface charge density, and E is the radial electric field at the surface of the quark core.
Positive charges at the quark core surface are distributed within a layer of thickness of the order of
15 fm [24], which is the effective range of the strong interaction. However, following Ref. [15] we
shall consider below a simple model, in which the charge of the quark core is taken to be uniformly
distributed over the entire volume of the star (the Thomas-Fermi model). Then the charge density
in the quark core is given by

ρcore =
e
3
(2nu−nd−ns)− ene, (2.3)
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where nu,nd ,ns and ne are, respectively, the density of u, d, and s quarks and electrons. The electron
density is found from the equation

ne =
p3

e

3π2h̄3 , (2.4)

where pe is the electron Fermi-momentum which, in turn, is found from the requirement of me-
chanical equilibrium. In the case of ultrarelativistic electrons this requirement reads

µ∞ = pec− eϕ = const. (2.5)

where ϕ is the electrostatic potential. At large distances from the star ϕ→ 0 and ne→ 0, therefore
µ∞ = 0 and consequently

pe =
e
c

ϕ. (2.6)

We consider a two-dimensional geometry of a quark star, in which the quark core occupies the
half-space z≤ 0, the electron layer, the region 0 < z≤ ze, and the star crust, the half-space z > ze.
In order to determine the electric field at the surface of the quark core, we first solve the Poisson
equation for the potential ϕ in each of these regions. In the present geometry the Poisson equation
takes the form

d2ϕ

dz2 =−4π


ρcore =

4α2

3π

1
h̄c

(
ϕ

3−ϕ
3
q
)
, z≤ 0,

ρel =
4α2

3π

1
h̄c

ϕ
3, 0 < z≤ ze,

ρcrust =
4α2

3π

1
h̄c

(
ϕ

3−ϕ
3
cr
)
, z > ze,

(2.7)

where α = e2/h̄c = 1/137 is the fine structure constant, ρcore, ρel, ρcrust are the charge densities in
the quark core, electron layer, and star crust. We used expressions (2.3) - (2.6) to obtain equation
(2.7). The potentials ϕq and ϕcr are defined via the density of quarks nu,nd ,ns in the core and ions
ni in the crust, respectively, in the following manner:

ϕ
3
q = π

2
(

h̄c
e

)3

(2nu−nd−ns)≈ 3π
2
(

h̄c
e

)3

ne, (2.8)

ϕ
3
cr = 3π

2
(

h̄c
e

)3

(Zeni)≈ 3π
2
(

h̄c
e

)3

ne. (2.9)

Note that eϕq and eϕcr are, in fact, the Fermi momenta of electrons in the quark core and at the
base of the crust, respectively. Consequently, the boundary conditions on Eqs. (2.7) are

ϕ (z→−∞) = ϕq, ϕ (z→+∞) = ϕcr, ϕ|z=−0 = ϕ|z=+0 ,

dϕ

dz

∣∣∣∣
z=−0

=
dϕ

dz

∣∣∣∣
z=+0

, ϕ|z=ze−0 = ϕ|z=ze+0 ,
dϕ

dz

∣∣∣∣
z=ze−0

=
dϕ

dz

∣∣∣∣
z=z+0

. (2.10)

The magnitudes of eϕq and eϕcr can be obtained directly if the electron density in the strange quark
core and in the star’s crust is known. Equations of state of strange quark matter derived in Ref. [25]
predict electron density to be about 10−5 -10−4 of the baryon density. Then, in parallel to Ref. [15],
we may take eϕq ≈ 20 MeV. The electron density in the crust of a strange star is obtained in manner
analogous to ordinary neutron stars by imposing charge neutrality and β -equilibrium among the
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constituents of crustal material [26]. In the density range 109 ≤ ρ < 4 ·1011g/cm3 the value of the
potential in the crust is 4 ≤ eϕcr ≤ 10 MeV. Fig. 1 shows the result of numerical integration of
equations (2.7) with boundary conditions (2). The width of the electron layer between the quark
core and the crust of the star is of the order of ze ∼ 102−103fm. The rapid change of the potential

Figure 1: The potential eϕ(z) as a function of distance to the quark core for different values of potential in
the crust: (1) eϕcr = 10 MeV, (2) eϕcr = 7 MeV, (3) eϕcr = 4 MeV.

in the narrow electron layer induces an electric field of the order of 5 ·1017 V/cm in that layer. The
dependence of this electric field on the distance from the quark core is shown in Fig. 2. As shown

Figure 2: Electric field E(z) as a function of distance to the quark core for difference values of electron
energy in the crust: (1) eϕcr = 10 MeV, (2) eϕcr = 7 MeV, (3) eϕcr = 4 MeV.

in Refs. [17,24] the electric field can rise up to the order of 1018 V/cm due to the β decay of quarks
near the surface of a CFL quark matter core. Given a value for the electric field at the surface of the
quark core, we can calculate the surface charge density and the surface current density using Eqs.
(2.1) and (2.2) for a specified difference in angular velocities of the superfluid core and the normal
crust Ωs−Ωn. In the case of normal quark matter core and for a specified surface current i = const.
the magnetic field would be uniform inside the quark core and dipolar outside the core [14, 27].
However, the quark core is in a superfluid and superconducting state, which results in a change in
magnetic field distribution and the appearance of differential rotation in the strange quark star.
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3. Rotation of a two-component quark star

New non-Abelian superfluid and superconducting vortices M1 were found in Ref. [28], on the
basis of a topological and group theoretical analysis of the free Ginzburg-Landau energy for the
CFL phase. These vortices simultaneously exhibit quantized mechanical moment and quantized
magnetic flux and their density is proportional to the angular velocity of quark matter Ωs

n =
2Ωs

χ
, χ =

π h̄
mB

, (3.1)

where χ is the quantum of circulation for superfluid vortices M1, and mB is the baryon mass. It
follows From this expression, that when the quark core slows down, i.e., when Ω̇s < 0, the density
of superfluid vortices M1 is reduced, which means that these vortices move outward. Since they
also possess magnetic moment, electron will by scattered by the vortex magnetic field M1. Thus,
the motions of the superfluid and normal components of the quark star are coupled because the
motion of superfluid vortices M1 is accompanied by friction with the normal component of the star.
Since this is analogous to the situation that occurs in the case of rotation of superfluid in neutron
stars, we can take over the corresponding equations of rotational dynamics examined in Ref. [29]
and apply them in our study a two-component quark star. These equations are of the following
form [29]

∆Ω̇+ Ω̇n =−
∆Ω

τ0
, (3.2)

Is
∆Ω

τ0
= Kint , (3.3)

Is∆Ω̇+ IΩ̇n = Kext , (3.4)

where

τ0 =
1

2kΩs
, k =

χρs/η

1+(χρs/η)2 , I = Is + In, ∆Ω = Ωs−Ωn, (3.5)

and In, Ωn and Is, Ωs are the moments of inertia and angular velocities of the normal and superfluid
components, Kint is the internal moment of forces interacting between the normal and superfluid
components, Kext is the external retarding moment acting on the star, ρs is the density of the su-
perfluid matter, while η is the friction coefficient between the vortex and the normal component.
From equations (3.2)-(3.4) , we may obtain an equation that defines ∆Ω:

∆Ω̇+
∆Ω

τ ′0
=−γ, (3.6)

where
τ
′
0 = τ0

In

I
, γ =

Kext

In
. (3.7)

We assume that the star was rotating uniformly, i.e., ∆Ω = 0, at the moment when quark matter
made a transition to the superfluid state. When subjected to an external retarding moment of forces,
the normal component of the star continuously slows down, and consequently, ∆Ω and Kint increase
to the steady-state value ∆Ωst . The latter is defined from the condition ∆Ω̇ = 0 and the equation

∆Ωst

Ωn
=

In

I
γτ0

Ωn
=

τ0

τ
, (3.8)
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where τ = IΩn/γIn is the age of the quark star. As follows from expression (2.1), the surface
current i of a two-component, rotating quark star that generates a magnetic field is proportional
to ∆Ω = Ωs−Ωn. For generation of large magnetic fields the condition ∆Ω� Ωn is required or
τ0� τ (according to Eq. (3.8)). This condition is satisfied by suitable selection of parameter k. For
example, a value of τ0 = 102τ = 108years (τ = 106years is the age of a typical neutron star) may be
obtained if we take k = 10−18. From (3.5) it is easy to see that such a value for k is obtained both for
large values η ∼ 1030 g/cm/s, and for small values η ∼ 10−6 g/cm/s. In the case of a strange quark
star, the electron plasma is situated in a thin, near-surface layer. Consequently, electron interaction
with quark vortices will result in small values for the friction coefficient η and to large values of
∆Ω. Thus all of the prerequisites exist in a strange quark star for the occurrence of differential
rotation and surface currents, which result in the generation of a magnetic field of quark star.

4. Distribution of the magnetic field in the quark star

We consider a quark star of radius R, possessing a spherical core of radius a, consisting of
color superconducting quark matter. The core is surrounded by a normal component consisting of
an electron layer and a crust having an overall thickness equal to R− a. Differential rotation of
the superfluid quark core and the normal component results in the generation of a magnetic field.
Rotation of the quark color charge also generates a gluomagnetic field in the CFL phase of quark
matter. It turns out that the electromagnetic and gluomagnetic fields are interrelated owing to the
complex structure of one of the gluons, which results in so-called “rotational electromagnetism”.
The magnetic and gluomagnetic field may be described by vector potentials AAA(r,ϑ) and AAA8(r,ϑ),
which are governed by the Ginzburg-Landau equations [28, 30–33]:

λ
2
q rot rot AAA+ sin2

αAAA = fff sinα + sinα cosα AAA8, (4.1)

λ
2
q rot rot AAA8 + cos2

α AAA8 = − fff cosα + sinα cosα AAA, (4.2)

where the penetration depth λq and the angle of magnetic and gluomagnetic field “mixing” are
defined in Refs. [33, 34]. Since quark matter in the CFL phase is a type-II superconductor, the
magnetic and gluomagnetic fields may penetrate into the quark core by means of these quantum
vortices. To find the mean magnetic field in the quark core, the system of equations (4.1) and (4.2)
must be solved for AAA(r,ϑ) and AAA8(r,ϑ). The corresponding solution is of the form [34]:

Aϕ(r,ϑ) =
(

Mϕ(r)+ ctg2
αMϕ(r)

r
a
+

c0r
sinα

)
sinϑ = Aϕ(r)sinϑ , (4.3)

A8ϕ(r,ϑ) =−
(

Mϕ(r)−
r
a

Mϕ(a)
)

ctgα sinϑ = A8ϕ(r)sinϑ , (4.4)

where Mϕ(r) is defined by the following expression:

Mϕ (r) =
c1

r2

[
sh

r
λq
− r

λq
ch

r
λq

]
. (4.5)

In expressions (4.3) and (4.5) c0 and c1 are integration constants. We note that expression (4.4) for
A8 satisfies the gluon confinement condition, i.e., the disappearance of the gluomagnetic field at the
boundary of the quark core: A8 (a,θ) = 0, while Mϕ (r) satisfies the condition lim

r→0
Mϕ (r) = 0. The

7
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magnetic field components in the quark core BBBq are linked to the component of vector potential Aϕ

via the familiar relations:

Bq
r =

1
r sinϑ

∂

∂ϑ

(
sinϑAϕ(r,ϑ)

)
, Bq

ϑ
=−1

r
∂

∂ r

(
rAϕ(r,ϑ)

)
. (4.6)

Inserting the first of the solutions (4.5) in definition (4.6), we finally obtain the magnetic field
components in the quark phase, i.e., when r ≤ a:

Bq
r =

[
2Mϕ(r)

r
+2ctg2

α
Mϕ(a)

a
+

2c0

sinα

]
cosϑ ,

Bq
ϑ
=−

[
1
r

∂

∂ r

(
rMϕ(r)

)
+2ctg2

α
Mϕ(a)

a
+

2c0

sinα

]
sinϑ . (4.7)

Now we consider the normal electron layer in the region a < r < a+ ze. There, the vector potential
AAAn is determined from the equation rot rotAAAn = 0, the solution of which is of the form:

An
ϕ (r,θ) = c2r sinθ = An

ϕ (r)sinθ , (4.8)

where, c2 is an integration constant. The magnetic field in the electron layer a < r < a+ ze was
found in Ref. [33, 34] and has the form

Be
r =

[
2An

ϕ(r)
r

+B
]

cosϑ , Be
ϑ =−

[
1
r

∂

∂ r

(
rAn

ϕ(r)
)
+B
]

sinϑ , (4.9)

where B will characterize the mean value of the magnetic field in this layer. In the quark star crust,
i.e., in the region a+ ze < r < R, the magnetic field is dipolar and is given by

Bc
r =

2M
r3 cosϑ , Bc

ϑ =−M

r3 sinϑ , (4.10)

where M is the total magnetic moment of the rotating quark core. The constants that enter into
the solution (4.7), (4.9), and (4.10) are determined by the requirement for continuity of magnetic
field components at the surface of the quark core, where r = a : Bq

r (a) = Be
r(a) and Bq

ϑ
(a) = Be

ϑ
(a).

These conditions may be expressed as:

2Mϕ(a)
a

+2ctg2
α

Mϕ(a)
a

+
2c0

sinα
=

2An
ϕ(a)
a

+B,

1
r

∂

∂ r

(
rMϕ(r)

)∣∣∣∣
r=a

+2ctg2
α

Mϕ(a)
a

+
2c0

sinα
=

1
r

∂

∂ r

(
rAn

ϕ(r)
)∣∣∣∣

r=a
+B. (4.11)

From these equations one finds [17]

c1 = 0, c2 =−
D

a3 sin2
α
, D =

Ba3

2
sin2

α− c0a3 sinα. (4.12)

We shall also take advantage of the continuity of the magnetic field normal component in the
transition from the electron layer to the star core:

Be
r = Bc

r , ⇒
2An

ϕ(r)
r

+B =
2M
r3 ,

8
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or
2c2 +B =

2M
a3 = b− 2D

a3 sin2
α
. (4.13)

Thus, taking into account Eqs. (4.12) and (4.13), the magnetic field in the quark core, i.e. in the
region r ≤ a, is given by

Bq
r =

2c0

sinα
cosϑ =

2M
a3 cosϑ , Bq

ϑ
=− 2c0

sinα
sinϑ =−2M

a3 sinϑ . (4.14)

The field in the normal electron layer a≤ r ≤ a+ ze is given by

Bn
r = (2c2 +B)cosϑ = Bq

r , Bn
ϑ =−(2c2 +B)sinϑ = Bq

ϑ
. (4.15)

And finally, the field outside the core is determined using relations (4.10), and as follows from
these relations, the value of the external magnetic field at the pole and at the equator of the star are
equal to

Bext
p =

2M
R3 = Bq

( a
R

)3
, Bext

e =
M

R3 =
Bq

2

( a
R

)3
, (4.16)

Thus, the mean magnetic field of the quark core and of the magnetic field at the star’s surface is
completely determined by specifying the total magnetic moment M of the core, which is equal to
Bqa3/2.

We proceed to a calculation of the total magnetic moment ~M of a strange quark star. First, we
note that the magnetic moment is directed along the star’s rotation axis; consequently, only the z
component of vector ~M, which we have previously designated as M, is non-zero. The quantity M

may be determined from the boundary condition of the tangential component of the magnetic field
at the core surface. Indeed, this condition is

Bc
ϑ (a)−Bn

ϑ (a) =
4π

c
i′, (4.17)

where i′ is expressed using the surface current density i, specified by relation (2.1), as follows

i′ = i2πasinϑ = σ (Ωs−Ωn)asinϑ . (4.18)

Inserting the values of the ϑ components of magnetic fields from (4.15) and (4.10) into expression
(4.17), we obtain a relation that determines M

M=
4πσ

3c
a4 (Ωs−Ωn) . (4.19)

Here, 4πσ = E is the electric field created in the double charged layer at the star’s surface. Taking
account of this, relation (4.19) assumes the form

M=
Ea4

3c
∆Ω. (4.20)

For the magnetic field on star’s surface we obtain:

Bext ∼ M

R3 =
Ea4

3cR3 ∆Ω (4.21)
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Thus, the star’s magnetic moment M and external magnetic field B are proportional to the differ-
ence between the angular velocities of the quark matter and the electron plasma ∆Ω. When the
star’s rotation slows down this difference increases, since Ωn initially decreases and then only Ωn

follows its change. The increase in ∆Ω leads to a rise in the tangential component of the magnetic
field in the normal phase. When this field reaches the value of Hc1 characterizing the lower super-
conducting critical field for quark matter, the vortices formed at the surface of the quark core move
inward carrying magnetic flux with them. Assuming that the characteristic time for redistribution
of the vortices inside the quark core is shorter than the characteristic time for the increase in the
magnetic field in the normal phase, the field Bq can follow the rise in the field Bn. Therefore, the
steady-state condition Bq = Bn is satisfied almost all the time. We now prove that this proposition
is true.

In fact, according to Refs. [35, 36], the characteristic time for redistribution of M1 vortex
filaments with magnetic flux is given by

τ1 =
1
k

mc
eB̄

=
1

kΩL
, (4.22)

where ΩL is the Larmor frequency for the quark matter and B̄ is the average magnetic induction.
Here the constant k is given by Eq. (3.5). The characteristic rise time was found in Section 3 and
is given by (cf. Eqs. (3.5) and (3.6))

τ
′
0 =

1
2kΩs

In

I
. (4.23)

From Eqs. (4.22) and (4.23) we have
τ1

τ ′0
=

2Ωs

ΩL

I
In
. (4.24)

We now estimate this ratio. Taking Ωs ≈ 700 Hz, ΩL ≈ 1018 Hz and I/In ≈ 1011, we obtain for the
ratio τ1/τ ′0 a value on the order of 10−5, which confirms the above proposition.

5. Models of strange quark stars and their magnetic fields

Strange quark matter is a possible state of cold matter which could be self-bound by the strong
interaction. Strange quark matter can be described using three phenomenological parameters: the
MIT bag model constant B, the quarkâĂŞgluon interaction constant αc, and the mass of the strange
quark ms. The existence of self-bound strange stars is possible for certain values of these parame-
ters. The principal properties of stellar configurations consisting of strange quark core and a crust
were studied in Refs. [13, 22]. We will use the result of Ref. [13] since it contains detailed infor-
mation needed for our estimates in this Section. Table 1 shows the integral parameters for static
strange stars with a crust for various central densities and for B = 60 MeV/fm3 [13]. As seen from
Table 1, for small stellar masses, the crust thickness attains a value of the order of 35% of the
overall star radius, while for large star masses, it is of the order of 5%. The parameters of strange
dwarfs with masses M < 0.02M� will be discussed separately at the end of this Section. We note
that rotation leads to both an increase in the mass of the configuration and to an increase in its ra-
dius. However most known pulsars rotate with angular velocities which are much smaller than the
Keplerian angular velocities. For this reason, we will hereafter use the integral parameters of static
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configurations in order to estimate the magnitude of the magnetic field at the surface of a strange
quark star. Finally, we evaluate the value of the magnetic field B of quark star models using the

M/M� R, km ∆Rcr, km

0.1 6 1.8

0.5 8 0.8

1 9.2 0.5

Table 1: Integral parameters of quark stars. Here M is the star mass in units of the solar mass (M�), R is the
radius of the star and ∆Rcr is the thickness of the crust.

formula (4.21). The maximum magnetic field may be obtained if we assume that ∆Ω ∼ Ωs ∼ 104

rad/s, which is the maximum possible value for bare quark star [37]. For the electric field we take
the value E ∼ 1018 V/cm∼ 3 ·1015 cgs units. If for the model of a quark star with mass M/M� = 1
we take the radius of a neutron star a ∼ R ∼ 10 km, then we obtain magnetic field at the star’s
surface Bext ∼ 3 ·1014 G, which is of the order of a hypothesized magnetar field.

Besides magnetars, i.e., objects with superpowerful magnetic fields, objects have also been
observed with small magnetic field values, of the order of 1010− 1011 G, the so-called central
compact objects (CCO) [38]. Such magnetic field values may also be explained in terms of the
quark star model. It follows from Table 1 that a magnetic field value of the order of 1011 G can be
obtain for a quark star model having a mass of the order of M/M� = 0.5, electric field E18 ∼ 1017

V/cm and the difference of angular velocities ∆Ω∼ 102 rad/s.
We can provide yet another argument in favor of the quark model of magnetars. If the observ-

able magnetic fields at their surfaces attain the order of 1015 G, then the interior field may exceed
the surface value by an order of magnitude. Ref. [39] examined the possibility of destruction of
proton superconductivity in the interior regions of neutron stars, where the magnetic field exceeds
the value of the upper critical field for the proton superconductor. Their calculations show that in
the larger part of the hadronic matter region, especially for dense configurations, protons make a
transition to the normal state, which would result in the destruction of the proton vortex structure.
However, in the quark star model of magnetars vortex structures are preserved, since the value of
the upper critical field for quark matter is much higher than the one that was considered in Ref. [39].
As shown in Ref. [40], the motion of vortex lattices results in the observation of sudden changes
in the angular rotation velocities of compact stars. Observing sudden changes in the angular veloc-
ity of magnetars would support the magnetar model considered by us. To date, one such sudden
change has been observed in anomalous X-ray pulsar 1RXS J170849.0-400910 [41].

We have also calculated the values of magnetic fields for models of strange dwarfs given in
Ref. [22]. The results of these calculations are shown in Table 2. As is seen from Table 2, the
maximum values of magnetic field can attain B ∼ 103− 105 G. In Ref. [20] seven objects were
chosen among white dwarfs as candidates for strange dwarfs. Magnetic fields of five of these seven
were given in Refs. [42–44]. The object names, masses and observed values of magnetic fields of
these five stars are shown in Table 3. As is seen from calculated values of magnetic field in Table
2 the mechanism of generation of magnetic field discussed in this work can explain the observed
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ρcrust, g/cm3 Mcore/M� M/M� Rcore, km R, km Bmax, kG

4.3 ·1011 0.01405 0.9646 2.561 2347 110

4.3 ·1011 0.01732 0.7232 2.745 5280.7 13

1010 0.00133 1.0145 1.170 2289.9 5

1010 0.00303 0.7938 1.538 5136.1 1.4

109 0.00080 0.7625 1.005 5519.5 0.2

Table 2: Integral parameters of strange dwarfs. ρcrust is crust density, M and Mcore are masses of star and
quark core, respectively; R and Rcore are radii of the star and the quark core, respectively, [22], Bmax is the
maximum value of magnetic field on the surface of the star.

Star number Star name M/M� B, kG

WD 1134+300 GD 140 0.79 0.6

WD 0644+375 EG 50 0.5 5

WD 0148+467 GD 279 0.44 6

WD 2007-303 LTT 7987 0.44 <10

WD 1337+705 G 238-44 0.42 17

Table 3: Observed parameters of compact objects, which were proposed in Ref. [20] as candidates for
strange dwarfs. Here M is the mass of the star, B is average magnetic field on the star surface.

values of magnetic fields listed in Table 3. However, larger values of magnetic fields B ≥ 105G
were reported recently in Ref. [45]. The present mechanism of magnetic field generation cannot
explain magnetic fields of white dwarfs of such magnitude.
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