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In this work we study the effects of strong magnetic fields on hybrid stars by using a

full general-relativity approach, solving the coupled Maxwell-Einstein equation in a self-

consistent way. The magnetic field is assumed to be axi-symmetric and poloidal. We take

into consideration the anisotropy of the energy-momentum tensor due to the magnetic

field, magnetic field effects on equation of state, the interaction between matter and the

magnetic field (magnetization), and the anomalous magnetic moment of the hadrons. The

equation of state used is an extended hadronic and quark SU(3) non-linear realization of

the sigma model that describes magnetized hybrid stars containing nucleons, hyperons

and quarks. According to our results, the effects of the magnetization and the magnetic

field on the EoS do not play an important role on global properties of these stars. On the

other hand, the magnetic field causes the central density in these objects to be reduced,

inducing major changes in the populated degrees of freedom and, potentially, converting

a hybrid star into a hadronic star.

The Modern Physics of Compact Stars 2015

30 September 2015 - 3 October 2015

Yerevan, Armenia

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons

Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/

mailto:franzon@fias.uni-frankfurt.de
mailto:vdexheim@kent.edu
mailto:schramm@fias.uni-frankfurt.de


P
o
S
(
M
P
C
S
2
0
1
5
)
0
1
8

Magnetic fields in hybrid stars Bruno Franzon

1. Introduction

Neutron stars undoubtedly belong to the most suitable environments for studying

properties of strongly interacting matter under extreme conditions. For example, the den-

sity inside these objects can reach values much higher than the nuclear saturation density

∼ 2.7×1014 g/cm3. This makes neutron stars natural laboratories where one can examine

and shed some light on the still open question concerning the equation of state (EoS) for

ultra-dense matter and the role played by exotic degrees of freedom, such as hyperons and

quarks.

Another important feature present in compact objects and studied in this work is their

strong magnetic field. From pulsar observations, the magnitude of the surface magnetic

field in neutron stars has been found to be generally of the order of 1012−1013 G. How-

ever, according to observations of star periods and period derivatives, classes of neutron

stars known as Anomalous X-ray Pulsars and Soft-Gamma-Ray-Repeaters can have surface

magnetic field as large as 1014−1015 G. These are usually referred to as magnetars, see

e.g. [1, 2, 3, 4, 5]. One expects to find even stronger magnetic fields inside these stars

as already calculated in [6]. According to virial theorem arguments, which give an upper

estimate for the magnetic inside neutron stars, they can possess central magnetic fields as

large as 1018−20 G, see e.g. [7, 8, 9, 10].

The origin of strong magnetic fields in compact stars is still unclear. One common

hypothesis involves the flux conservation of the progenitor magnetic field, see [11]. However,

this idea is not suitable for magnetars since a canonical neutron star M∼ 1.4M� would

require a radius less than its Schwarzschild radius in order to generate a surface magnetic

field of the order of 1015G, see [12]. Another possibility suggested by Thompson and Duncan

in [1] describes a newly born neutron star combining convection and differential rotation

to generate a dynamo process which is able to generate fields as large as 1015 G. However,

this standard explanation fails when trying to explain the supernova remnants associated

with these objects, see e.g. [13].

Whatever the origin of strong magnetic fields might be, they affect locally the micro-

physics of the equation of state (EoS), as for example, due to the Landau quantization of

the energy levels of charged particles and the effect of the anomalous magnetic moment

(AMM) of charged and uncharged particles. Globally, magnetic fields affect the structure

of neutron stars through the Lorentz force associated with the macroscopic currents that

generate the field. They also affect the structure of the spacetime, as magnetic fields are

now a source for the gravitational field through the Maxwell energy-momentum tensor. As

a consequence, magnetized stars are anisotropic and require a general-relativity treatment

beyond the solution of the Tolman-Oppenheimer-Volkoff (TOV) equations ([14, 15]).

In this work, we model magnetized hybrid stars in a self-consistent way by solving

Einstein-Maxwell equations in the same way as done in [16, 17]. In [17], the authors studied

magnetized quark stars taking into account the magnetic field in the equation of state, the

magnetization term for the matter, and also the magnetic field in the gravitational field

equations. They have found that neither the magnetic field nor the magnetization change

significantly the global properties of these stars for a magnetic field strength of the order
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of ∼ 1018 G. Note that, the equation of state used by those authors, namely, a quark

CFL model ([18]) possesses a high baryon density range reaching two times the saturation

density at the surface of star.

In order to assess the role that a magnetic field dependent equation of state and the

magnetization play in the global properties of stars, we use in this work a more complex

equation of state than in [17]. Our EoS describes magnetized hybrid stars containing

nucleons, hyperons and quarks and takes into account the anomalous magnetic moment

for all hadrons. As a consequence, it produces a magnetization much higher than the one

used in [17]. Despite this, we show that the neutron star structure, like its mass-radius

relationship, is not modified drastically with the inclusion of the magnetic field in the EoS

and the magnetization. On the other hand, the particle population is significantly modified

when the magnetic field is included. The main impact observed is the conversion of a non-

magnetized hybrid star with hadron and quark degrees of freedom to a highly magnetized

hadronic star composed simply by nucleons. In reality, the temporal star evolution goes in

the other direction, as the magnetic field of the star decays over time allowing a hadronic

star to become a hybrid one.

2. Formalism

We present here the effects of strong magnetic fields on the global properties of neutron

stars which are subjected to a quark-hadron phase transition in their interior. Stationary

and axi-symmetric stellar models were constructed with the same numerical procedure and

mathematical set-up as in Refs. [19, 17], where the coupled Maxwell-Einstein equations

were solved in a self-consistent way by means of a pseudo-spectral method. The magnetic

models are obtained by giving a constant current functions f0, which is related to the

macroscopic electric current through the relation jφ ∝ (e + p) f0, where e and p are the

energy density and the pressure of the system.

3. Magnetized Equation of State

When, in addition to a usual hadronic phase, neutron star models also include a quark

phase, they are normally described by two different equations of state. These equations of

state are connected at the point in which the pressure of the quark phase becomes higher

than the pressure of the hadronic phase. In our approach, we have instead a combined

model of hadrons and quarks and one equation of state for both phases. In this case, we

can study important features of the deconfinement phase transition, like the strength of the

transition, the mixing of phases and also the accompanying chiral symmetry restoration.

For this purpose, we extended the hadronic SU(3) non-linear realization of the sigma model,

see e.g. [20, 21, 22, 23], to include quark degrees of freedom in a spirit similar to the PNJL

model ([24]), in the sense that it uses the Polyakov loop Φ as the order parameter for

deconfinement. The Lagrangian density of the model in mean field approximation reads:

L = Lmag +LKin +LInt +LSel f +LSB−U, (3.1)
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where besides the kinetic energy term for hadrons, quarks, and leptons (included to insure

charge neutrality), the terms:

Lmag =−∑i ψ̄i(qieγµAµ + 1
2 κσ µνFµν)ψi, (3.2)

LInt =−∑i ψ̄i[γ0(giωω + giφ φ + giρτ3ρ)+ M∗i ]ψi, (3.3)

LSel f = 1
2(m2

ωω2 + m2
ρρ2 + m2

φ
φ 2)+ g4

(
ω4 + φ 4

4 + 3ω2φ 2 + 4ω3φ√
2

+ 2ωφ 3
√

2

)
− k0(σ2 + ζ 2 + δ 2)

−k1(σ2 + ζ 2 + δ 2)2− k2

(
σ4

2 + δ 4

2 + 3σ2δ 2 + ζ 4
)
− k3(σ2−δ 2)ζ

−k4 ln (σ2−δ 2)ζ

σ2
0 ζ0

, (3.4)

LSB =−m2
π fπσ −

(√
2m2

k fk− 1√
2
m2

π fπ

)
ζ , (3.5)

U = (a0T 4 + a1µ4 + a2T 2µ2)Φ2 + a3T 4
0 log(1−6Φ2 + 8Φ3−3Φ4), (3.6)

represent the magnetic and anomalous magnetic moment (AMM) interactions with the

fermions, the interactions between baryons or quarks and vector and scalar mesons, the

self interactions of scalar and vector mesons, an explicit chiral symmetry breaking term

(responsible for producing the masses of the pseudo-scalar mesons), and a potential U for

the Φ field. The later is important in order to reproduce a realistic structure for the QCD

phase diagram over the whole range of chemical potentials and temperatures, including

realistic thermodynamic behaviour at vanishing chemical potential as shown in [22].

The effective masses of the baryons and quarks are generated by the scalar mesons

except for a small explicit mass term M0 and the term containing Φ:

M∗B = gBσ σ + gBδ τ3δ + gBζ ζ + M0B + gBΦΦ
2 (3.7)

M∗q = gqσ σ + gqδ τ3δ + gqζ ζ + M0q + gqΦ(1−Φ). (3.8)

With the increase of temperature and/or density, the σ field (non-strange chiral conden-

sate) decreases in value, causing the effective masses of the particles to decrease towards

chiral symmetry restoration. The field Φ assumes non-zero values with the increase of

temperature/density and, due to its presence in the baryons effective mass (Eq. (3.7)),

suppresses their presence. On the other hand, the presence of the Φ field in the effective

mass of the quarks, included with a negative sign (Eq. (3.8)), ensures that they will not

be present at low temperatures/densities. In this way, the interaction with the medium

determines which are the degrees of freedom present in the system.

The magnetic field in the z-direction forces the energy eigenstates in the x and y

directions of the charged particles to be quantized into Landau levels ν :

E∗iνs
=

√
k2

zi
+

(√
M∗2i + 2ν |qi|B− siκiB

)2

, (3.9)
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where ki is the fermi momentum and si the spin of each fermion. The last term comes from

the anomalous magnetic moment (AMM) of the particle that splits the energy levels with

respect to the alignment/anti-alignment of the spin with the magnetic field. The AMM

also modifies the energy levels of the uncharged particles

E∗is =

√
k2

i +
(
M∗i

2− siκiB∗
)2
. (3.10)

The AMM constants κi have values κp = 1.79, κn =−1.91, κΛ =−0.61, κ
+
Σ

= 1.67, κ0
Σ

= 1.61,

κ
−
Σ

=−0.38, κ0
Ξ

=−1.25, κ
−
Ξ

= 0.06. The sign of κi determines the preferred orientation of

the spin with the magnetic field. For zero temperature, the sum over the Landau levels

ν runs up to a maximum value, beyond which the momentum of the particles in the z-

direction would be imaginary

νmax =
E∗is

2 + siκiB−M∗i
2

2|qi|B
. (3.11)

We choose to include in our calculations the AMM effect for the hadrons only, since

the coupling strength of the particles κi depends on the corresponding magnetic moment,

that up to now is not fully understood for the quarks. Furthermore, it is stated in [25], that

quarks in the constituent quark model have no anomalous magnetic moment, and in [26],

that the AMM of quarks from one-loop fermion self-energy is very small. For calculations

including AMM effects for the quarks, see [27, 28, 29, 30]. The AMM for the electrons is

also not taken into account as its effect is negligibly small. Properties of the magnetized

SU(3) non-linear realization of the sigma model were presented in [31, 32] for an effective

(ad hoc) variation of the magnetic field inside the star.

4. Results

The equilibrium configurations are determined by the central enthalpy Hc and the

choice of the magnetic dipole moment µ. We could have, instead, chosen a fixed current

function f0 and allow the magnetic dipole moment to vary. We chose the former in order

to have a better control of the parameter space and to investigate exclusively the effect of

the magnetic field on the star. In order to do so, we built equilibrium sequences for fixed

magnetic dipole moments µ defined as (see [16]):

2µcosθ

r3 = B(r) |r→∞, (4.1)

which is simply the radial component (the orthonormal one) of the magnetic field of a

magnetic dipole seen by an observer at infinity.

The magnetization is defined as M =−∂Ω/∂B (for more details see [33]) and in Figure 1

we show: i) the case when the magnetic field is included only in the structure of the star (no

EoS(B), no mag); ii) the effect of the magnetic field also into the equation of state on the

neutron star structure without the magnetization term (EoS(B), no mag) and iii) the effect

of the magnetic field also into the equation of state on the neutron star structure plus the

5
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Figure 1: Relation between the gravitational mass and the central enthalpy for non-magnetized

and magnetized models. In the last case, we also include the effects of the magnetic field into the

equation of state (EoS(B)) and the magnetization term (mag) .

magnetization term (EoS(B), mag). We also show the non-magnetized cased denominated

TOV.

The results present in [17] show that the effects of the magnetic field in the equation

of state and the magnetization on the neutron star structure are not considerable. Note,

however, that those authors presented solutions for magnetized quark stars whose equation

of state (CFL model) is very stiff and reaches, for instance, a number baryon density of

about 2 times the nuclear saturation density at the surface of the star. In this work,

we model not only the quark phase with up, down quarks, but also the hadronic phase

containing the whole baryon octet, in a self-consistent way in the presence of the magnetic

field.

The results in Figure 1 corroborate in part the results presented in [17], showing also

that the magnetic field does not have a considerable effect on the maximum mass and

radius of highly magnetized neutron stars through the effect on the equation of state for

given magnetic fields. Only a very small reduction of the star mass is seen for the largest

magnetic moment used in the most massive star calculated. We see, however, from our

calculation a difference in the curves when the magnetization term is included. This is due
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to the fact that, in our case, the magnetization strength can reach a value of about 10

times the value as in [17]. Note that the effect of the magnetization is to decrease stellar

masses.

From this point on, all the results shown will include, for consistency, the magnetic

field effect in the EoS and the magnetization effect. The mass-radius diagram for highly

magnetized neutron stars determined by a constant magnetic dipole moment µ is presented

in Figure 2. In this figure, we also show calculations for evolutionary sequences at fixed

star baryonic mass of MB = 2.2M�. These lines may represent the transition from a highly

magnetized neutron star (a younger star) to a non-magnetized one (an older star).

 0.5
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 11  12  13  14  15  16

M
g
/ 
M
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Rcirc (km)

TOV

µ = 1.0x10
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2

µ = 3.0x10
32
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2

µ = 3.5x10
32
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2

MB = 2.20 MO•   

Figure 2: Mass-radius diagram for non-magnetized and magnetized models. The calculation

was done for different fixed magnetic moments µ. The higher the magnetic moment, the higher

the magnetic field. Effects of the magnetic field into the equation of state and the magnetization

are also included. The gray line shows an equilibrium sequence for a fixed baryon mass of 2.2M�.

The full purple circles represent a possible evolution from a highly magnetized neutron star to a

non-magnetized and spherical star.

We have chosen a fixed baryon mass of 2.2M� because its evolution line ends almost

at the maximum mass for the non-magnetized and spherical configuration. Looking at

different magnetic dipole moment lines, i.e µ = 1.0× 1032 Am2, 2.0× 1032 Am2, µ = 3.0×
1032 Am2 and µ = 3.5× 1032 Am2, one sees that increasing µ (and therefore the magnetic

field) affects the structure of the neutron star in many ways. First, the maximum mass

increases, but not so much as in the case of no-fixed baryon number, what had been already
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raised in [34] using spherical approach. This is an effect of the Lorentz force acting outward

and against gravity. For this reason, the star can support more mass. Second, the circular

equatorial radius of the sequence increases and the star becomes much more deformed with

respect to the symmetry axis. This deformation is also an effect of the assumption of a

poloidal magnetic field, which makes the star more oblate. Calculations including toroidal

magnetic field components have shown that magnetized stars become more prolate with

respect to the non-magnetized case, see e.g. [35, 36, 37].

Figure 3 shows the magnetic field profile and the enthalpy iso-contours for a star with

the maximum mass for a magnetization µ = 3.5× 1032 Am2, as can be seen in Figure 2.

This value roughly corresponds to the solution with maximum field configuration achieved

with the code.

Now we follow the fixed baryon mass MB = 2.2M� in Figure 2 and present microscopic

and macroscopic properties as a function of the central magnetic field in the stars. First,

as shown in Fig. 4, the central baryon number density decreases with the central magnetic

field and it has the maximum value at the center only in the static case. In the other cases,

its maximum is found somewhere inside the star. This is due to the Lorentz force, which

is related to the macroscopic currents that create the magnetic field, acting on the matter

which has been pushed off-center. This is analogous to the number density reduction in

the rotating star case. As we will see, this has a huge impact on the particle population

of these objects. Second, the gravitational mass also increases, as already mentioned in

this section. Third, as we fixed the baryon mass MB, each star in the sequence reproduces

different values of the central enthalpy Hc and a different magnetic dipole moment µ. The

latter is free to vary and increases with the central magnetic field. Fourth, the ratio between

the polar and the equatorial radii increases as the magnetic field increases and, therefore,

the star becomes more deformed (oblate). For all quantities in Figure 4, the curves have

a qualitatively change in behaviour for a magnetic field strength of 0.9−1.0×1018 G. At

this point, the magnetic force has pushed the matter off-center and a topological change

to a toroidal configuration can take place ([10]). However, our current numerical tools do

not enable us to handle toroidal configuration, which gives a limit for the magnetic field

strength that we can obtain within this approach. As a consequence, the baryon number

density, for example, will never reach zero at the center of the star. Still, the value of the

magnetic field shown in Figure 4 represents the limit in terms of magnetic field strength for

a star at fixed baryon mass of MB = 2.2M�. Other configurations, as depicted in Figure 3,

can reach values higher than 1.0×1018 G.

Note that, in Figure 4, the ratio between the polar and the equatorial radii can reach

50% for a magnetic field strength of ∼ 1×1018 G at the center. Therefore, one sees that

the deviations from spherical symmetry are quite significant and need to be taken into

consideration while modelling these highly magnetized objects and a simple TOV solution

can not be applied.

The changes in the global properties of stars due to the inclusion of the magnetic field

into the gravitational equations are remarkable, and in order to study how the microphysics

is modified with the magnetic field, we present in Figure 5 the particle population Yi = ρi/ρb

as a function of the baryon chemical potential µB for different values of the magnetic dipole
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Figure 3: Magnetic field surfaces (on the top panel), i.e Aφ iso-contours measured by the Eulerian

observer O0 for the chiral EoS. This star is near the maximum equilibrium configuration achieved

by the code and the maximum mass for the value µ = 3.5×1032 Am2, as shown in Figure 3. In the

bottom panel, the corresponding enthalpy profile is shown, which corresponds to a central enthalpy

of Hc = 0.26c2 (n = 0.463 fm−3). The gravitational mass obtained for the star is 2.46 M� and the

polar and the central magnetic fields are 8.59×1017 G and 1.62×1018 G, respectively. The ratio

between the magnetic pressure and the matter pressure in the center for this star is 0.793.
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Figure 4: Microscopic and macroscopic star quantities, i.e central baryon number, gravitational

mass, dipole magnetic moment and ratio between polar and equatorial coordinate radii, as a function

of the central magnetic field. These curves represent an equilibrium sequence at fixed baryon mass

MB = 2.2M� for different magnetic field intensities. See the line for MB = 2.2M� in Fig. 3).

moment µ for a fixed baryon mass MB = 2.2M� . The kinks in the population plot that can

be observed for values equal to or greater than µ = 2.0×1032 Am2 are due to the Landau

quantization.

For the spherical non-magnetized case, the TOV solution was obtained for a hybrid

star (with mixed phase) composed by the baryon octet, electrons, muons and u, d and s

quarks. In Figure 5, the red vertical line represents the baryon chemical potential reached

at the center of the maximum mass star in the non-magnetized case. With the inclusion of

the magnetic field through the dipole magnetic moment of µ = 1.0×1032Am2, the central

baryon chemical potential is reduced due to the Lorentz force. The new central value for

µB is below threshold for the creation of quarks, which are, therefore, suppressed. An

even larger effect can be seen in the star for higher values of the magnetic dipole moment

µ = 2.0×1032 Am2, µ = 3.5×1032 Am2, when even the hyperons are suppressed. As a result,

the properties of these objects such as neutrino emission and consequently the star cooling,

are strongly affected by the magnetic field strength in their interior as already pointed out

in [31] for a spherical solution.

In this way, younger stars that possess strong magnetic fields might go through a phase

10



P
o
S
(
M
P
C
S
2
0
1
5
)
0
1
8

Magnetic fields in hybrid stars Bruno Franzon

 0.001

 0.01

 0.1

 1

 900  1100  1300  1500

Y
i

B = 0
n

p

star center

µ Λ

d
u

s

 900  1100  1300  1500

µ = 1.0x10
32

 Am
2

 0.001

 0.01

 0.1

 1

 900  1100  1300  1500

Y
i

µB  (MeV)

 µ = 2.0x10
32

 Am
2

 900  1100  1300  1500

µB  (MeV)

µ = 3.5x10
32

 Am
2

Figure 5: Stellar particle population as a function of the baryon chemical potential. All figures

represent an equilibrium sequence at fixed baryon mass MB = 2.2M�. As one increases the magnetic

field, the particle population changes inside the star. These stars are represented in Fig. 2 by the

full purple circles. For the non-magnetized case (B=0), the vertical red line represents the chemical

potential reached at the center of the star, namely, 1320 MeV.

transition later along their evolution, when their central densities increase enough for the

hyperons and quarks to appear. Such phenomena might have observable signatures such

as a distinct change in the cooling behaviour as well as a very different rotational slowing

down, reflected in the stellar braking index.
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