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One of the currently available approaches to the problem of the accelerated expansion of the

Universe is based on cosmological models with various typesof scalar fields. In this paper we

consider a cosmological model based on the modified Jordan-Brans-Dicke (JBD) theory with a

cosmological scalarϕ(y) playing the role of the variable cosmological constant. Special cases

are considered withϕ(y) = αH2 andϕ(y) = αH4. In particular, we show the possibility of the

expansion with uniform acceleration.
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1. Introduction

In a series of papers [1]-[3] we have constructed different cosmological models of the de Sitter
type on the basis of the modified JBD scalar-tensor theory of gravity, by taking into account the
interaction of the vacuum and scalar fields, which in addition to the kinetic energy is described
by a cosmological scalarϕ(y). The latter is introduced in analogy with the cosmological constant
Λ. Essentially, the combinationyϕ(y)/k2 plays the role of the potential energy for the above
mentioned scalar field. As a result, in all the problems considered the expansion of the Universe at
late stages is qualitatively similar. The expansion is accelerating and the time-dependence of the
scale factor is not exponential. In all cases, the parameterq ("deceleration parameter") tends to 1.
The qualitative picture of the time-dependence of the energy contributions for the scalar field,Ωsc,
andΩΛ in all the cases is the same.

By taking into account known considerations [4] on the existence of the relationship between
Λ and the Hubble parameterH, in the first section of the paper we assume thatϕ(y) = αH2. This
assumption can also be argued on the base of the time-dependence ofH given in [5], where it has
been shown that in the limitt → ∞ one hasH2 = Λ/3. We consider a cosmological model in the
absence of the ordinary matter. As a result, a uniformly accelerated expansion is obtained with the
scale factor different from that discussed in the papers mentioned above. For the maximal possible
value ofαmax the model becomes de Sitter one. Consequently, we also consider the de Sitter model
with the equation of stateP = −ε .

In the second part of the paper, within the framework of two different conformal representa-
tions of the modified JBD theory, inflationary regimes are constructed with the specific potential of
the scalar fieldϕ(y) = αH4.

2. Uniformly accelerated expansion of the Universe

Here we consider the de Sitter cosmological model in the proper presentation of the JBD theory
with P = 0,ε = 0, ϕ(y) = αH2. The equations for the standard cosmological model, corresponding
to the modified action of the JBD theory [4]

W =
1
c

∫ √
−g[−

y
2k

(R +2ϕ(y))+ ζgµν yµyν

y2 ]d4x, (2.1)

in the notationsψ = ẏ/y, H = ȧ/a, have the form

ψ̇ + ψ2+3ψH =
2αH2

3+2ζ
(1−

2Ḣ
Hψ

), (2.2)

2Ḣ +3H2 = −ψ̇ −ψ2(1+ ζ/2)−2ψH + αH2, (2.3)

3H2 =
ζψ2

2
−3ψH + αH2. (2.4)

Here,ζ is the coupling constant between the metric and the scalar field. The cosmological scalar
ϕ(y) = αH2 (α being a dimensionless constant) plays the role of the vacuumenergy density. This
choice of the cosmological scalar leads to the relation

ψ
H

=
3±
√

9+2ζ (3−α)

ζ
= γ , (2.5)
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with the restrictionα ≤ 3+9/(2ζ ). Taking into account (2.5), from (2.2), (2.3) one can get

Ḣ
H2 = γ

1− γ(1+ ζ )

2+ γ
= −σ . (2.6)

From here we obtain the time dependence of the Hubble parameter H, of the scale factora and of
the scalar potentialy:

H
H0

=
1

1+ σ t ′
, (2.7)

a
a0

= (1+ σ t ′)1/σ , (2.8)

y
y0

=

(

a
a0

)γ
= (1+ σ t ′)γ/σ , (2.9)

with
t ′ = H0(t − t0) , q = 1−σ . (2.10)

HereH0, a0, y0 are the values of the corresponding functions at recent timet0, andq = äa/ȧ2 is the
dimensionless "deceleration" parameter. It is of interestto consider these relations for the limiting
valueαmax = 3+9/(2ζ ), for which one hasγ = σ = 3/ζ . The scale factor evolves in accordance
with

a = a0

(

1+
3
ζ

t ′
)ζ/3

. (2.11)

In the Einsteinian limitζ → ∞, by taking into account the formula limn→∞(1+ x/n)n = ex, one
gets an exponential expansiona = a0eH0(t−t0), which corresponds to the uniformly accelerated
evolutionary scenario withq = 1. Note that

ψ̇
H2 =

3
ζ

Ḣ
H2 = −

9
ζ 2 → 0, (2.12)

and, hence,H = H0 andψ = ψ0. For the equation of state one hasP = −ρ ≈ −3H2. Thus, for
α = αmax, in the absence of the ordinary matter, the model of the uniformly accelerated expansion
of the Universe is of the de Sitter type within the framework of general relativity in the presence
of the cosmological scalarϕ(y) = αH2. Therefore, it makes sense to consider the problem of
de Sitter cosmological model with the equation of stateP = −ε and with the cosmological scalar
ϕ̃(y) = α̃H2 for arbitrary values ofζ . Denoting byΩ0 = 8πGε0/

(

3H2y
)

the contribution of the
vacuum energy, the analogs of equations (2.2)-(2.4) are written as

ψ̇
H2 + γ̃2+3γ̃ =

2
3+2ζ

(

6Ω0 + α̃ −
2α̃Ḣ
γ̃H2

)

, (2.13)

2Ḣ
H2 = −

ψ̇
H2 − γ̃2

(

1+
ζ
2

)

−2γ̃2 + α̃ −3+
3Ω0

3+2ζ
, (2.14)

1 = Ω0 +
ζ γ̃2

6
− γ̃ +

α̃
3

. (2.15)

Excluding from the equations (2.13) and (2.14)ψ̇ , one can obtain

Ḣ
H2 = q−1 =

1
2

(1+2ζ )ζ γ̃2−8ζ γ̃ −2α +12
2α/γ̃ −3−2ζ

≡−σ̃ . (2.16)

3



P
o
S
(
M
P
C
S
2
0
1
5
)
0
1
9

Evolution of the Universe in the early and late stages G.H. Harutyunyan

From (2.15) we have

γ̃ ≡
ψ
H

=
3±
√

9−2ζ (α −3+3Ω0)

ζ
, (2.17)

with the constraint̃α ≤ 3−3Ω0+9/2ζ .
For givenγ̃ andσ̃ , the results of the integration have the same form as (2.7)-(2.10). Again we

get q = 1−3/ζ . The difference from the first variant is the presence in the model of the vacuum
energy density withΩ0 ≈ 0.7. The behavior of the Hubble function, scale factor and the scalar field
is shown in figures 2 and 3 forα = 2.5.

In Figure 1 we have presented the parameterq as a function ofα . It is remarkable that for
the maximum allowed valueαmax = 3+9/(2ζ ), for largeζ this version of theory is equivalent to
the de Sitter model in the framework of the Einstein theory inthe presence of the cosmological
scalarϕ (y) = αH2. In the left panel of Figure 2 we displayed the characteristic time dependence
for H/H0. The right panel shows the quasi-exponential growth of the scale factora, which is
transformed into a purely exponential in the limiting caseα = 3+ 9/(2ζ ) . Figure 3 shows the
time dependence of the gravitational scalary which can be interpreted as gravitational constantG,
decreasing in time.

Figure 1: The dependence ofq on the parameterα.

3. Inflationary models in the "Einstein" representation

In this section we consider a model with a minimally coupled scalar field in the presence of
the cosmological scalarϕ(Φ), described by the action

W =

∫ √
−g

[

−
y0

16π
(R +2ϕ(Φ))+

1
2

gαβ Φα Φβ

]

d4x. (3.1)

Introducing the notationy0ϕ(Φ)/(8π) ≡V (Φ), the respective field equations take the form

Φ̈+3HΦ̇+V ′(Φ) = 0, (3.2)

3H2 =
8π
y0

(

1
2

Φ̇2 +V (Φ)

)

=
8π
y0

ρe f f , (3.3)
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Figure 2: The Hubble function (left panel) and the scale factor (rightpanel) versus time.

Figure 3: The time dependance of the gravitational scalary.

2Ḣ +3H2 =
8π
y0

(

−
1
2

Φ̇2 +V (Φ)

)

= −
8π
y0

Pe f f . (3.4)

The corresponding energy-momentum tensor is of the perfectfluid form with the energy density
and pressure given byρe f f = Φ̇2/2+V (Φ) andPe f f = Φ̇2/2−V (Φ). Here and in what follows
the dot stands for the time derivative and the prime means thederivative with respect toΦ.

The form of (3.2) allows us to use a simple physical interpretation: the mechanical rolling in
the potentialV (Φ) in the presence of the time-dependent friction coefficient 3H (Hubble friction)
[6]-[8].

Inflation in the slow roll-approximation occurs when the term 3HΦ̇, responsible for the fric-
tion, dominates the acceleration term̈Φ:

∣

∣

∣

∣

Φ̈
3HΦ̇

∣

∣

∣

∣

<< 1. (3.5)

The Hubble friction leads to the displacement ofΦ in the direction of decreasing of the potential.
The second condition for the slow roll-approximation corresponds to the smallness of the kinetic
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termΦ̇2/2 with respect to the potential one:

Φ̇2

2V (Φ)
≪ 1, (3.6)

which leads to the equation of statePe f f ≈−ρe f f and corresponds to a vacuum type source required
for the inflation. Under the conditions (3.5), (3.6), the setof equations takes the form

3HΦ̇ ≈−V ′, (3.7)

3H2 ≈V, (3.8)

2Ḣ +3H2 = V. (3.9)

From the first two equations we get
2H ′ = −Φ̇. (3.10)

The equations (3.8), (3.9) can be considered as the third condition for the slow roll-approximation
∣

∣

∣

∣

Ḣ
H2

∣

∣

∣

∣

≪ 1. (3.11)

We assume thatV = αH4, take into account Eq.(3.10), and present Eq. (3.8) in the form

4H ′2 = 3H2−V, (3.12)

in order to determine the dependence ofH (Φ) andV (Φ). We will consider the caseα > 0.
Introducing the notation

x ≡
√

3
α

1
H

, (3.13)

in the general case, under the conditionα < 3/H2, the solution of (3.12) can be written as

x = cosh

(

C +

√
3

2
(Φ0−Φ)

)

. (3.14)

Here

C = Arccoshx0, x0 ≡
√

3
α

1
H0

, (3.15)

H0,Φ0 are the initial values of the corresponding quantities. Choosing the constants in accordance
with

Φ0 = 0, α = 3/H2
0 ⇒C = 0, (3.16)

we get

x ≡
√

3
α

1
H

= cosh

(√
3

2
Φ

)

, (3.17)

and

H
H0

=
1

cosh(
√

3Φ/2)
, (3.18)

V (Φ) =
3H2

0

cosh4(
√

3Φ/2)
. (3.19)
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The time dependence ofH (t) is determined from Eq. (3.9):

2
.

H +3H2−
3

H2
0

H4 = 0. (3.20)

As a result, the solution can be written as

3
2

H0t +const=
H0

H
+

1
2

ln

∣

∣

∣

∣

H0−H
H0+ H

∣

∣

∣

∣

. (3.21)

The scalar potentialV (Φ) and the time dependence of the Hubble function are presentedin the left
and right panels of Figure 4, respectively.

Figure 4: The left panel presents the potentialV (Φ). In the right panel the time dependence ofH/H0 is
plotted.

Another possible inflationary model within the framework ofthe proper representation of the
modified JBD theory can be constructed on the basis of the solution of the problem presented in
the previous section for the valueα = αmax. In fact, this case is realized within the framework of
the Einstein theory in the presence of the cosmological scalar ϕ (y) = αH2.

4. Conclusion

In the present paper, on the basis of the modified JBD theory and under the assumptionϕ (y)∼
Hn (n is a parameter equal to four in the regime of inflation and two -at late stages), we have
considered the inflation and late stages of the Universe expansion. For the late stage, a dynamical
picture of the uniformly accelerated expansion is obtainedwith q = const.
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