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1. Introduction

The prediction of nontrivial properties of the vacuum is among the most interesting results of
quantum field theory. These properties are manifested in theresponse of the vacuum under external
influences. In particular, it is of interest to consider the influence of the classical gravitational field
on the characteristics of quantum vacuum. The corresponding problems are exactly solvable for
highly symmetric background geometries only. In particular, the investigations of quantum effects
in anti-de Sitter (AdS) spacetime have attracted a great deal of attention. There are several reasons
for that. Much of early interest to AdS spacetime was motivated by the questions of principle
nature related to the quantization of fields propagating on curved backgrounds. The lack of global
hyperbolicity and the presence of both regular and irregular modes give rise to a number of new
features which have no analogues in quantum field theory on the Minkowski bulk. The importance
of this theoretical work increased when it was realized thatAdS spacetime emerges as a stable
ground state solution in extended supergravity and Kaluza-Klein models and in string theories.
The appearance of the AdS/CFT correspondence and braneworld models of Randall-Sundrum type
has revived interest in this subject considerably.

The boundary conditions, imposed on the field operator, modify the spectrum of the vacuum
fluctuations of a quantum field. As a consequence, the vacuum expectation values (VEVs) of
physical observables are shifted. This is the well known Casimir effect (for reviews see [1]). The
investigations of the Casimir effect on AdS bulk have attracted a great deal of attention. The
Casimir energy and the corresponding forces for two parallel branes in AdS spacetime have been
evaluated in Refs. [2], both for scalar and fermionic fields,by using either dimensional or zeta
function regularization methods. Local Casimir densitieswere considered in Refs. [3]. The Casimir
effect in higher-dimensional generalizations of the AdS spacetime with compact internal spaces has
been investigated in [4]. Induced vacuum currents for a charged scalar field in AdS background
with toroidally compactified spatial dimensions have been recently studied in [5].

In the present paper we consider the influence of the plate parallel to the AdS boundary on
the properties of the electromagnetic field. On the plate theboundary condition is imposed that
is a generalization of the perfect conductor boundary condition in 4-dimensional spacetime. The
two-point function for the electromagnetic field in the boundary-free AdS spacetime is investigated
in [6]. The electromagnetic Casimir densities in de Sitter spacetime for flat boundaries have been
considered in [7]. The electromagnetic two-point functions and the Casimir effect in background
of more general Friedmann-Robertson-Walker cosmologies are discussed in [8].

The outline of our investigation is the following. First we consider the mode functions for the
electromagnetic field for the AdS background described in Poíncare coordinates. In Section 3 we
consider the two-point functions for the vector potential and for the field tensor in AdS spacetime
when the boundary is absent. The mode functions and the two-point functions in the geometry with
a plate parallel to the AdS boundary are discussed in Section4. Our main interest are the Casimir
densities and, in Section 5, we study the VEV of the energy-momentum tensor for both the regions
on the right and on the left of the boundary.
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2. Electromagnetic field modes

Consider the electromagnetic field in background of(D+1)-dimensional AdS spacetime. In
the Poincaré coordinates the corresponding line element has the form

ds2 = gikdxidxk = e−2y/α ηµνdxµdxν −dy2 (2.1)

whereηµν = diag(1,−1, .....−1) is the metric tensor forD-dimensional Minkowski spacetime and
α is the curvature radius. The latter is related to the Ricci scalarRof the background spacetime and
to the cosmological constantΛ by the formulaeR= −D(D+1)/α2 andΛ = −D(D−1)α−2/2.
Here and belowi,k = 0,1, ...,D, andµ ,ν = 0,1, ...,D− 1. By the coordinate transformationz=

αey/α , 06 z< ∞, the line element is presented in a conformally-flat form

ds2 = (α/z)2ηikdxidxk, (2.2)

with xD = z. For the action of the electromagnetic fields one has

S=− 1
16π

∫

dD+1x
√

|g|Fik (x)F ik (x) , (2.3)

whereFik (x) = ∂iAk (x)−∂kAi (x) is the field tensor. In what follows it is convenient to fix the gauge
by the conditionsAD = 0, ∇iAi = 0. For the line element (2.2) the second condition is reducedto
∂µAµ = 0.

We make the Fourier transform with respect to the coordinates xµ , µ = 0, . . . ,D−1:

Aµ(x) =
∫

dDkAµ(z,k)e
−iηνα kν xα

. (2.4)

From the gauge conditions it follows thatkµAµ(z,k) = 0, kµ = ηµνkν . In terms of the Fourier
components for the vector potential, the action is written in the form

S=
(2π)D−1

4

∫

dz
∫

dDk(α/z)D−3 η µν [∂DAµ(z,k)∂DA∗
ν(z,k)−λ 2Aµ(z,k)A

∗
ν(z,k)

]

, (2.5)

where we have introduced the notationλ 2 = k2
0 −k2

1 −·· ·−k2
D−1, with k0 = ω and the star stands

for the complex conjugate.
For the variation of the action (2.5) with respect toA∗

ν(z,k) one gets

δS=−(2π)D−1

4

∫

dz
∫

dDk η µν{∂D[(α/z)D−3∂DAµ(z,k)]+ (α/z)D−3λ 2Aµ(z,k)}δA∗
ν(z,k),

(2.6)
where we have assumed that on the limits of the integration over zone has

(α/z)D−3η µν∂DAµ(z,k)δA∗
ν(z,k)|z = 0. (2.7)

This limits depend on the problem at hand. In the boundary-free AdS spacetime they are given by
z= 0 andz= ∞. FromδS= 0 the following equation is obtained for the Fourier component:

zD−3∂D
[

z3−D∂DAµ(z,k)
]

+λ 2Aµ(z,k) = 0. (2.8)
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The solution of this equation (2.8) is given by

Aµ(z,k) = ε(σ)µzD/2−1ZD/2−1(λz), (2.9)

whereZν(x) is a cylinder function of the orderν and ε(σ)µ are polarization vectors. Here the
indexσ , with the valuesσ = 1, . . . ,D−1, enumerates theD−1 independent polarizations for the
electromagnetic field.

As a complete set of mode functions for the electromagnetic field one can take

A(σλk)µ = ε(σ)µzD/2−1ZD/2−1(λz)eik·x−iωt , (2.10)

wherex= (x1,x2, . . . ,xD−1) andk = (k1,k2, . . . ,kD−1). We assume that the polarization vectors are
normalized by the condition

η µνε(σ ′)µε(σ)ν =−δσσ ′ . (2.11)

From the gauge conditions one hasε(σ)D = 0 andkµε(σ)µ = 0. In the evaluation of the two-point
functions we also need the sum∑D−1

σ=1 ε(σ)µε(σ)ν . It can be seen that the following relation takes
place:

D−1

∑
σ=1

ε(σ)µε(σ)ν =−ηµν +
kµkν

λ 2 . (2.12)

The mode functions are normalized in accordance with the orthonormalization condition
∫

dDx
√

|g|[A∗
(σ ′λ ′k′)µ∇0Aµ

(σλk)− (∇0A∗
(σ ′λ ′k′)µ)A

µ
(σλk)] = 4iπδσσ ′δkk ′δλλ ′ . (2.13)

By using the expression for the metric tensor we see thatA∗
ν∇0Aν − (∇0A∗

ν)A
ν = −2iωg00A∗

νAν .
Hence, the normalization condition takes the form

∫

dDx
√

|g|g00gµνA∗
(σ ′λ ′k′)µAν(σλk) =−2π

ω
δσσ ′δkk ′δλλ ′ . (2.14)

Substituting the mode functions (2.10) and by making use therelation (2.11) for the polarization
vectors, for the functionZD/2−1(λz) we find

∫

dzzZD/2−1(λ ′z)ZD/2−1(λz) =
δλλ ′

(2π)D−2αD−3ω
. (2.15)

The integration range depends on the problem under consideration. In the boundary-free geometry
one has 06 z< ∞.

3. Two-point functions in the boundary-free geometry

Here, the only interaction of the quantum electromagnetic field is with the background gravi-
tational field. As a result, all the information on the properties of the vacuum state are contained in
the two-point functions. We will evaluate the two-point functions for the vector potential and for
the field tensor. First we consider the case of the boundary-free AdS spacetime. ForD > 4, from
the normalizability condition of the modes on the AdS boundary it follows that in (2.10) we should
take

ZD/2−1(λz) =CJD/2−1(λz), (3.1)
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whereJν(x) is the Bessel function. Now, from the normalization condition (2.15), with the integra-
tion over the interval(0,∞), for the coefficientC we get

|C|2 = λ
(2π)D−2αD−3ω

. (3.2)

Hence, the electromagnetic field mode functions in the boundary-free geometry have the form

A(σλk)µ =Cε(σ)µzD/2−1JD/2−1(λz)eik·x−iωt . (3.3)

The two-point function of the vector potential can be evaluated by using the mode-sum formula

〈0|Aµ(x)Aν(x
′)|0〉 ≡ 〈Aµ(x)Aν(x

′)〉0 =
D−1

∑
σ=1

∫

dk
∫ ∞

0
dλ A(σλk)µ(x)A

∗
(σλk)ν(x

′), (3.4)

where|0〉 stands for the vacuum state. Substituting the expressions for the mode functions, we get

〈Aµ(x)Aν(x
′)〉0 =

(zz′)D/2−1

(2π)D−2αD−3

∫

dk
∫ ∞

0
dλ

λ
ω

eik·∆x−iω∆t

×JD/2−1(λz)JD/2−1(λz′)

(

−ηµν +
kµkν

λ 2

)

. (3.5)

For the integral with the part containing the tensorηµν one has the following result

∫

dk
∫ ∞

0
dλ

λ
ω

JD/2−1(λz)JD/2−1(λz′)eik·∆x−iω∆t =
2D−2π(D−3)/2Γ((D−1)/2)

(zz′)D/2 (u2−1)(D−1)/2
, (3.6)

with the notation
u= 1+

[

(∆z)2+ |∆x|2− (∆t)2
]

/(2zz′). (3.7)

The latter is related to the invariant distance between the points x andx′. As a consequence, the
two-point function is expressed as

〈Aµ(x)Aν(x
′)〉0 = −ηµνα3−D

π(D−1)/2

Γ((D−1)/2)

zz′ (u2−1)(D−1)/2
+

(zz′)D/2−1

(2π)D−2αD−3

×
∫

dk
∫ ∞

0
dλ

kµkν

λω
JD/2−1(λz)JD/2−1(λz′)eik·∆x−iω∆t . (3.8)

Though the second term in the right hand-side of this formulais not simplified, like the first one,
the corresponding contribution to the two-point functionsfor the field tensor is further transformed
to the form which is expressed in terms of the elementary functions (see below).

With the expression (3.8) we can evaluate the correspondingtwo-point functions for the field
tensor〈0|Fσ µ(x)Fρν(x′)|0〉 = 〈Fσ µ(x)Fρν(x′)〉0. First of all, we can see that the second term in
the right-hand side of (3.8) does not contribute to the components〈Fσ µ(x)Fρν(x′)〉0 with σ =

0,1, . . . ,D−1. For these components we get

〈Fσ µ(x)Fρν(x
′)〉0 = 4

g[µν(z)gσ ]ρ (z
′)+gσ [ρ(z)gµν ](z

′)

π(D−1)/2αD+1

Γ((D+1)/2)u

(u2−1)(D+1)/2
,

〈Fσ µ(x)Fzν(x
′)〉0 =

2Γ((D−1)/2)

π(D−1)/2αD−3
η[σν ∂µ ]∂ ′

z
1

zz′ (u2−1)(D−1)/2
, (3.9)
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for σ ,ρ = 0,1, . . . ,D− 1. Here the square brackets in the index expressions mean theantisym-
metrization with respect to the indices enclosed. The last term in the right-hand side of (3.8)
contributes only to the components〈Fzµ(x)Fzν(x′)〉0 and to the ones obtained from this by the in-
terchange of the indices. The corresponding integral is evaluated in a way similar to that for (3.6):

∫

dk
∫ ∞

0
dλ

λ
ω

JD/2−2(λz)JD/2−2(λz′)eik·∆x−iω∆t =
2D−2π(D−3)/2Γ((D−1)/2)u

(zz′)D/2 (u2−1)(D−1)/2
. (3.10)

For the two-point function this gives

〈Fzµ(x)Fzν(x
′)〉0 =

Γ((D−1)/2)

αD−3π(D−1)/2

(

∂µ∂ ′
νu−ηµν∂z∂ ′

z

) 1

zz′ (u2−1)(D−1)/2
, (3.11)

with µ ,ν = 0,1, . . . ,D−1.

4. Two-point functions in the geometry with a boundary

Now we assume the presence of a boundary located atz= z0 on which the field obeys the
boundary condition

nµF∗
µν1···νD−1

= 0, (4.1)

wherenµ is the normal vector to the boundary,F∗
µν1···νD−1

is the dual of the field tensorFµν . For
D= 3 this corresponds to the perfectly conducting boundary condition. Here we consider the region
z0 < z< ∞. The mode functions in this region are given by the expression (2.10) whereZD/2−1(λz)
is a linear combination of the functionsJD/2−1(λz) andYD/2−1(λz), whereY(x) is the Neumann
function. The relative coefficient in this combination is determined from the boundary condition.
By taking into account that in the gauge at handA(σλk)D = 0, from the boundary condition it
follows thatFµν |z=0 = 0 for µ ,ν = 0,1, . . . ,D−1. From here for the mode functions we find

A(σλk)µ =Cε(σ)µzD/2−1gD/2−1(λz0,λz)eik·x−iωt , (4.2)

with µ ,ν = 0,1, . . . ,D−1, and

gD/2−1(x,y) = JD/2−1(y)YD/2−1(x)−JD/2−1(x)YD/2−1(y). (4.3)

From the normalization condition (2.15), with the integration over[z0,∞), for the coefficientC one
gets

C2 =
α3−Dλ

(2π)D−2ω
[J2

D/2−1(λz0)+Y2
D/2−1(λz0)]

−1. (4.4)

With the mode functions (4.2), for the two-point functions of the vector potential one finds

〈Aµ(x)Aν(x
′)〉 =

(zz′)D/2−1

(2π)D−2αD−3

∫

dk
∫ ∞

0
dλ

λ
ω

(

−ηµν +
kµkν

λ 2

)

×
gD/2−1(λz0,λz)gD/2−1 (λz0,λz′)

Y2
D/2−1(λz0)+J2

D/2−1(λz0)
eik·∆x−iω∆t . (4.5)
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We are interested in effects induced by the boundary. In order to separate from the two-point
function the boundary-induced contribution, we subtract from (4.5) the two-point function for the
boundary-free geometry, given by (3.5). By using the relation

gD/2−1 (λz0,λz)gD/2−1 (λz0,λz′)

Y2
D/2−1(λz0)+J2

D/2−1(λz0)
= JD/2−1(λz)JD/2−1(λz′)

−1
2 ∑

j=1,2

JD/2−1(λz0)

H( j)
D/2−1(λz0)

H( j)
D/2−1(λz)H( j)

D/2−1(λz′), (4.6)

with H( j)
ν (x), j = 1,2, being the Hankel functions, the boundary-induced contribution is presented

as

〈Aµ(x)Aν(x
′)〉b = 〈Aµ(x)Aν(x

′)〉− 〈Aµ(x)Aν(x
′)〉0

= − (zz′)D/2−1

2(2π)D−2αD−3

∫

dkeik·∆x ∑
j=1,2

∫ ∞

0
dλ

λ
ω

JD/2−1(λz0)

H( j)
D/2−1(λz0)

×H( j)
D/2−1(λz)H( j)

D/2−1(λz′)e−iω∆t
(

−ηµν +
kµkν

λ 2

)

. (4.7)

As the next step, under the conditionz+ z′ > 2z0+ |∆t|, we rotate the integration contour in
the complex planeλ by the angleπ/2 for the term withj = 1 and by the angle−π/2 for j = 2.
Introducing the modified Bessel functions, for the boundary-induced part of the two-point function
we get the expression

〈Aµ(x)Aν(x
′)〉b =

4(zz′)D/2−1

(2π)D−1αD−3

∫

dk
∫ ∞

k
dx

(

ηµνx2+∂µ∂ ′
ν
)

eik·∆x

×cosh(∆t
√

x2−k2)

x
√

x2−k2
fD/2−1(xz0,xz,xz′), (4.8)

with µ ,ν = 0,1, . . . ,D−1 and the other components vanish. In (4.8) we use the notation

fD/2−1(u,v,w) =
ID/2−1(u)

KD/2−1(u)
KD/2−1(v)KD/2−1(w), (4.9)

whereIν(x) andKν(x) are the modified Bessel functions.

Having the boundary-induced contribution to the two-pointfunction for the vector potential
we can find the corresponding contribution to the two-point function for the field tensor by differ-
entiations. First of all for the components withµ ,ν ,ρ ,σ = 1, . . . ,D−1 we get

〈Fσ µ(x)Fρν(x
′)〉b = − 8(zz′)D/2−1

(2π)D−1αD−3

∫

dk
(

δ[µνkσ ]kρ +δσ [ρkµkν ]
)

eik·∆x

×
∫ ∞

k
dx

xcosh(∆t
√

x2−k2)√
x2−k2

fD/2−1(xz0,xz,xz′). (4.10)

7
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The components with one index being zero are given by

〈F0µ(x)Fρν(x
′)〉b = 〈Fρν(x)F0µ (x

′)〉b

= − 8i (zz′)D/2−1

(2π)D−1αD−3

∫

dk δµ [νkρ ]e
ik·∆x

∫ ∞

k
dx

×xsinh(∆t
√

x2−k2) fD/2−1(xz0,xz,xz′), (4.11)

whereµ ,ν ,ρ = 1, . . . ,D−1. Next, for the components with two indices being zero one has

〈F0µ(x)F0ν(x
′)〉b =

4(zz′)D/2−1

(2π)D−1αD−3

∫

dk eik·∆x
∫ ∞

k
dxx

[(

x2−k2)δµν +kµkν
]

×cosh(∆t
√

x2−k2)√
x2−k2

fD/2−1(xz0,xz,xz′), (4.12)

with µ ,ν = 1, . . . ,D−1.
Now let us consider the functions havingD-components. After the appropriate differentiations

we get (µ ,ν = 1, . . . ,D−1)

〈FDµ(x)Fρν(x
′)〉b = − 8iz′D/2−1

(2π)D−1αD−3

∫

dk δµ [νkρ ]e
ik·∆x

∫ ∞

k
dxx

×cosh(∆t
√

x2−k2)√
x2−k2

∂z

[

zD/2−1 fD/2−1(xz0,xz,xz′)
]

, (4.13)

〈FDµ(x)FDν(x
′)〉b =

4α3−D

(2π)D−1

∫

dk eik·∆x
∫ ∞

k
dxx

cosh(∆t
√

x2−k2)√
x2−k2

×∂z∂z′

[

(

zz′
)D/2−1

fD/2−1(xz0,xz,xz′)
]

(

kµkν

x2 −δµν

)

, (4.14)

and

〈F0D(x)F0D(x
′)〉b =

4α3−D

(2π)D−1

∫

dk eik·∆x
∫ ∞

k
dx

cosh(∆t
√

x2−k2)√
x2−k2

∂z∂z′

[

(

zz′
)D/2−1

fD/2−1(xz0,xz,xz′)
] k2

x
. (4.15)

All the remaining components are zero. In the evaluation of the VEVs of local observables bilinear
in the field we need to have the coincidence limit of the boundary-induced parts in the two-point
functions. For points away from the boundary, this limit is finite. All the divergences are contained
in the boundary-free part. For the illustration of the details in the evaluation of the coincidence
limit we consider the components

〈Fσ µ(x)Fρν(x)〉b = −4zD−2
(

δµνδσρ −δµρδσν
)

(2π)D−1αD−3

∫

dk
(

k2
µ +k2

σ
)

×
∫ ∞

k
du

u fD/2−1(uz0,uz,uz)√
u2−k2

, (4.16)
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with σ ,µ ,ρ ,ν = 1, . . . ,D−1. By taking into account that

∫

dk k2
µg(k) =

π(D−1)/2

Γ((D+1)/2)

∫ ∞

0
dkkDg(k), (4.17)

this functions is written as

〈Fσ µ(x)Fρν(x)〉b = − 8zD−2
(

δµνδσρ −δµρδσν
)

(4π)(D−1)/2αD−3Γ((D+1)/2)

×
∫ ∞

0
dkkD

∫ ∞

0
dy fD/2−1(uz0,uz,uz)|

u=
√

k2+y2. (4.18)

Introducing polar coordinates in the(k,y)-plane, after the integration of the angular part we get the
final expression. Other components are evaluated in a similar way and one finds

〈Fσ µ(x)Fρν(x)〉b = −2
(

ηµνησρ −ηµρησν
)

zD−2

(4π)D/2−1Γ(D/2+1)αD−3

∫ ∞

0
duuD+1 fD/2−1(uz0,uz,uz),

〈FDµ(x)FDν(x)〉b =
ηµν (D−1)α3−DzD−2

(4π)D/2−1 Γ(D/2+1)

∫ ∞

0
duuD+1 ID/2−1(uz0)

KD/2−1(uz0)
K2

D/2−2(uz), (4.19)

for σ ,µ ,ρ ,ν = 0,1, . . . ,D−1. Remaining components vanish.
The consideration for the region 0< z< z0 is done in a similar way. The corresponding mode

functions, regular on the AdS boundary, are obtained from the expression (4.2) by the replacement
gD/2−1(λz0,λz)→ J(λz). From the boundary condition on the platez= z0 it follows that the eigen-
values forλ are roots of the equationJD/2−1(λz0) = 0. The mode-sum for the two-point function
contains series over these eigenvalues. For the summation of the series we use the generalized
Abel-Plana formula from [9]. As a result the two-point function is presented in the decomposed
form (the details will be presented elsewhere)

〈Aµ(x)Aν(x
′)〉= 〈Aµ(x)Aν(x

′)〉0+ 〈Aµ(x)Aν(x
′)〉b, (4.20)

where the boundary-induced contribution is given by

〈Aµ(x)Aν(x
′)〉b =

4(zz′)D/2−1

(2π)D−1αD−3

∫

dk
∫ ∞

k
dx

(

ηµνx2+∂µ∂ ′
ν
)

eik·∆x

×cosh(∆t
√

x2−k2)

x
√

x2−k2

KD/2−1(xz0)

ID/2−1(xz0)
ID/2−1(xz)ID/2−1(xz′). (4.21)

The latter is related to the corresponding expression in theregionz0 < z< ∞ by the replacements
Iν ⇄ Kν . The corresponding formulas for the two-point functions ofthe field tensor are obtained
from those given above by making these replacements.

5. VEV of the energy-momentum tensor

It is well known that the important characteristic of the vacuum state is the VEV of the energy-
momentum tensor. It acts as the source of gravity in the quasiclassical Einstein equations and plays

9
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an important role in modelling self-consistent dynamics involving the gravitational field. The VEV
of the energy-momentum tensor is decomposed into the boundary-free and boundary-induced parts:

〈

Tµ
ν
〉

=
〈

Tµ
ν
〉

0+
〈

Tµ
ν
〉

b . (5.1)

For points outside the plate the renormalization is required for the boundary-free part only. Because
of the maximal symmetry of the background geometry, the latter is proportional to the metric
tensor:

〈

Tµ
ν
〉

0 = const·δ µ
ν . Here we are interested in the boundary-induced part which is directly

evaluated with the help of the formula

〈

Tµ
ν
〉

b =− 1
4π

〈

Fµβ(x)F
νβ (x)

〉

b
+

δ µ
ν

16π

〈

Fβσ (x)F
βσ (x)

〉

b
. (5.2)

By using the expressions for the two-point functions in the coincidence limit, we can see that
the vacuum energy-momentum tensor is diagonal. For the boundary-induced contributions in the
VEVs of the diagonal components one gets (no summation overl )

〈T l
l 〉b =− (D−1)(z/z0)

D+2

(4π)D/2 Γ(D/2+1)αD+1

∫ ∞

0
dxxD+1 ID/2−1(x)

KD/2−1(x)
G(l)

D/2−1(xz/z0), (5.3)

where

G(l)
ν (u) = νK2

ν−1(u)+ (ν −1)K2
ν(u), l = 0,1, . . . ,D−1,

G(D)
ν (u) = (ν +1)

[

K2
ν(u)−K2

ν−1(u)
]

. (5.4)

It can be seen thatG(l)
1/2(u) = 0 and, hence, the boundary-induced contribution vanishes for D = 3.

Of course, we could expect this result from the conformal relation to the corresponding problem in
Minkowski bulk. From (5.4), by taking into account thatKν(u)> Kν−1(u) for ν > 1, we conclude
that for D > 4 all the components of the boundary-induced VEV are negative: 〈0|T l

l |0〉b < 0.
The boundary-induced contribution in the VEV of the energy-momentum tensor for the region
0< z< z0 is obtained from (5.3) and (5.4) by the replacementsIν ⇄ Kν .

Note that the boundary-induced VEVs (5.3) depend onz andz0 in the form of the ratioz/z0

which is related to the proper distance from the boundary,y−y0, by z/z0 = e(y−y0)/α . Hence, for a
given proper distance from the boundary, the VEVs do not depend on the location of the boundary.
The latter property is a consequence of the maximal symmetryof the AdS spacetime.

It can be seen that the boundary-induced contributions in the VEV of the energy-momentum
tensor obey the continuity equation∇k〈Tk

i 〉b = 0 which for the geometry under consideration takes
the form

zD+1∂z
(

z−D〈TD
D 〉b

)

+D〈T0
0 〉b = 0. (5.5)

Let us consider the asymptotic behavior of the VEVs at large distances from the plate and near
the plate. At distances larger that the AdS curvature radiusone hasy−y0 ≫α and, hence,z/z0 ≫ 1.
In (5.3) we introduce a new integration variableu= xz/z0 and use the asymptotic expressions for
the modified Bessel functions for small arguments. For the VEV of the energy-momentum tensor
we find

〈TD
D 〉b ≈

D〈T0
0 〉b

2(D−1)
, (5.6)

10
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and

〈T0
0 〉b ≈−(D−1)2 (D−2)(D−3)

2πD/2αD+1(z/z0)D−2

Γ2(D)Γ(3D/2−2)
Γ2(D/2)Γ(2D)

. (5.7)

Hence, at large distances the VEVs are suppressed as functions of the proper distance by the factor
e−(D−2)(y−y0)/α .

At small distances from the plate, compared with the AdS curvature radius, one hasy−y0 ≪α
and, hence, 1−z0/z≪ 1. In this case the dominant contribution to the integrals in(5.3) comes from
the region withx∼ 1/(z/z0−1)≫ 1 we can use the asymptotic expressions for the modified Bessel
functions for large values of the argument. To the leading order this gives

〈T0
0 〉b ≈ −(D−1)(D−3)Γ((D+1)/2)

2(4π)(D+1)/2(y−y0)D+1
,

〈TD
D 〉b ≈ −(D−1)(D−3)Γ((D+1)/2)

2(4π)(D+1)/2α(y−y0)D
, (5.8)

for the components of the energy-momentum tensor. The leading terms for the VEVs of the energy
density do not depend on the curvature radiusα and coincide with the corresponding results for
the plate in Minkowski spacetime. Hence, for these VEVs nearthe plate the effects of gravity are
small.

6. Conclusion

We have discussed the effects of a boundary in AdS spacetime on the properties of the elec-
tromagnetic vacuum in an arbitrary number of spatial dimensions. The boundary is parallel to the
AdS boundary and on it the electromagnetic field obeys the condition (4.1). ForD = 3 the latter
corresponds to the standard perfect conductor boundary condition. First we have considered the
complete set of mode functions for the electromagnetic fieldin the boundary-free AdS spacetime,
given by (3.3). With these functions, the two-point functions for the vector potential is expressed
as (3.8). Though the last term in this formula is not expressed in terms of elementary functions,
its contribution to the two-point functions for the field tensor is simplified and one gets simple
expressions (3.9) and (3.11).

In the regiony> y0, the mode functions obeying the boundary condition (4.1) aty= y0, are
given by (4.2) and for the two-point function of the vector potential one gets the expression (4.5).
In order to extract the part induced by the boundary, we subtracted from the two-point function the
corresponding function in the boundary-free AdS spacetime. After the appropriate rotations of the
integration contours, the boundary-induced part in the two-point function for the vector potential
is written in the form (4.8). The corresponding part in the two-point function of the field tensor
is obtained by simple differentiations. In particular, forthe evaluation of the VEVs for physical
quantities bilinear in the field, we need the boundary-induced part of the two-point function in
the coincidence limit of the arguments. For points away fromthe boundary the latter is finite and
the nonzero components are given by the expressions (4.19).The divergences are contained in
the boundary-free parts only and the renormalization is reduced to the one for the boundary-free
geometry. The expressions of the boundary-induced contributions in the two-point functions for
the regiony< y0 are obtained from those in the regiony> y0 by the replacementsIν ⇄ Kν ..
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In section 5 we have investigated the boundary-induced contributions in the VEV of the
energy-momentum tensor. For spatial dimensionsD > 4, the boundary-induced contributions to
all the components of the energy-momentum tensor are negative. At distances from the bound-
ary much larger than the AdS curvature radius the boundary-induced contributions are suppressed
by the factore−(D−2)(y−y0)/α . For points near the boundary the contribution of the vacuumfluc-
tuations with the wavelengths much smaller that the AdS curvature radius dominates and the
boundary-induced VEVs, in the leading order, coincides with the corresponding VEVs for a plate
in Minkowski bulk. We have shown that the boundary-induced energy density is negative and the
normal stress corresponds to positive pressure. The results obtained can be used for the investi-
gation of the vacuum characteristics in the geometry of two parallel plates, including the Casimir
forces acting on the plates.
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