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1. Introduction

Recent proposals of large extra dimensions use the concept of brane as a submanifold embed-
ded in a higher dimensional spacetime, on which the standardmodel particles are confined (for
reviews see [1]). Braneworlds naturally appear in string/Mtheory context and provide a novel
setting for discussing phenomenological and cosmologicalissues related to extra dimensions. The
model introduced by Randall and Sundrum [2] is particularlyattractive. The corresponding back-
ground solution consists of two parallel flat 3-branes in a 5-dimensional anti-de Sitter (AdS) bulk.
The fifth coordinate is compactified onS1/Z2 and the branes are on the two fixed points. It is as-
sumed that all matter fields are confined on the branes and onlythe gravity propagates freely in the
5-dimensional bulk. More recently, scenarios with additional bulk fields have been considered.

From the point of view of embedding the Randall-Sundrum model into a more fundamental
theory, such as string/M theory, one may expect that a more complete version of this scenario must
admit the presence of additional extra dimensions compactified on an internal manifold. From a
phenomenological point of view, higher dimensional theories have a richer geometrical and topo-
logical structure. The consideration of more general spacetimes may provide interesting extensions
of the Randall-Sundrum mechanism for the geometric origin of the hierarchy. More extra dimen-
sions also relax the fine-tunings of the fundamental parameters.

Motivated by the problems of the radion stabilization and the generation of cosmological con-
stant, the role of quantum effects in braneworlds has attracted a great deal of attention. In models
with compact dimensions, the periodicity conditions imposed on the operator of a quantum field
lead to a number of interesting physical effects that include topological mass generation, instabil-
ities in interacting field theories and symmetry breaking. The periodicity conditions modify the
spectrum of the zero-point fluctuations, as a result the vacuum energy density and the stresses are
changed. This is the well-known topological Casimir effect. It has been investigated for large
number of geometries and has important implications on all scales, from mesoscopic physics to
cosmology (for reviews see [3]). The vacuum energy depends on the size of extra dimensions
and this provides a stabilization mechanism for moduli fields in Kaluza-Klein-type models and in
braneworld scenario. In particular, motivated by the problem of the radion stabilization in Randall-
Sundrum-type braneworlds, the investigations of the Casimir energy on AdS bulk have attracted
a great deal of attention. The Casimir effect in AdS spacetime with compact internal spaces has
been considered in [4]. The vacuum energy generated by the compactification of extra dimensions
can also serve as a model of dark energy needed for the explanation of the present accelerated
expansion of the universe.

For charged fields, another important local characteristicof the vacuum state is the expectation
value of the current density. In the present paper we investigate the current density for a charged
scalar field in AdS spacetime, covered by Poincaré coordinates, assuming that a part of spatial
dimensions are compactified to a torus. In addition, we assume the presence of a brane parallel
to the AdS boundary and a constant gauge field. The VEV of the current density for a fermionic
field in flat spaces with toral dimensions has been investigated in [5]. The finite temperature effects
on the current densities for scalar and fermionic fields in topologically nontrivial spaces have been
studied in [6]. The VEV of the current density for charged scalar and Dirac spinor fields in de
Sitter spacetime with toroidally compact spatial dimensions are considered in [7]. The case of AdS
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background has been considered in [8]. The influence of boundaries on the vacuum currents in
topologically nontrivial flat spaces are studied in [9, 10] for scalar and fermionic fields. The effects
induced in AdS bulk with toral dimensions by branes were studied in [11, 12].

2. Geometry and the field content

In Poincaré coordinates, the line element for(D+1)-dimensional AdS spacetime is given by

ds2 = e−2y/aηikdxidxk−dy2, i,k= 0,1, . . . ,D−1, (2.1)

wherea is the AdS curvature radius,ηik = diag(1,−1, . . . ,−1) is the metric tensor forD-dimensional
Minkowski spacetime and−∞ < y<+∞. The coordinates(xi ,y) cover a part of the AdS manifold
and there is a horizon corresponding to the hypersurfacey= +∞. In what follows we assume that
the coordinatesxl , with l = p+ 1, . . . ,D− 1, are compactified to circles with the lengthsLl , so
06 xl 6 Ll . For the remaining coordinatesxl , with l = 1,2, . . . , p, one has−∞ < xl <+∞. Hence,
the subspace perpendicular to they-axis has a topologyRp×Tq, whereq+ p=D−1 andTq stands
for a q-dimensional torus. Introducing a new coordinatez, 06 z< ∞, in accordance with the re-
lation z= aey/a, the line element is presented in a conformally-flat form:ds2 = (a/z)2ηµνdxµdxν .
In terms of the new coordinate, the AdS boundary and horizon are presented by the hypersurfaces
z= 0 andz= ∞, respectively. Note that, for an observer with a fixed value of z, the proper length
of the l th compact dimension is given byL(p)l = aLl/zand it decreases with increasingz.

The physical quantity we are interested in is the vacuum expectation value (VEV) of the cur-
rent density

jµ(x) = ie[ϕ+(x)Dµϕ(x)− (Dµϕ+(x))ϕ(x)], (2.2)

for a charged scalar field,ϕ(x), in the presence of an external classical gauge fieldAµ . In (2.2),
Dµ = ∇µ + ieAµ , where∇µ is the standard covariant derivative operator associated with the metric
tensorgµν ande is the charge of the field quanta. The equation for the field operator reads

(

gµνDµDν +m2+ξ R
)

ϕ(x) = 0, (2.3)

with ξ being the curvature coupling parameter and for the Ricci scalar one hasR=−D(D+1)/a2.
In the most important special cases of minimally and conformally coupled fieldsξ = 0 andξ =

(D−1)/(4D), respectively. In models with nontrivial topology, in addition to the field equation,
we need also to specify the periodicity conditions along compact dimensions. Here we impose
quasiperiodicity conditions

ϕ(. . . ,xl +Ll , . . .) = eiαl ϕ(. . . ,xl , . . .), l = p+1, . . . ,D−1, (2.4)

with constant phasesαl . The special cases of untwisted and twisted scalars correspond toαl = 0
andαl = π, respectively. In what follows we assume that the gauge fieldis constant,Aµ = const.
Though the corresponding field strength vanishes, the nontrivial topology of the background space
gives rise to Aharaonov-Bohm-like effects on the VEVs of physical observables.
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3. Vacuum current density

First we consider the vacuum currents in the absence of branes. The corresponding VEVs
are evaluated by making use of a complete set of modes for the field under consideration obeying
the periodicity conditions (2.4). The charge density and the components along uncompactified
dimensions vanish:〈 j l 〉0 = 0, l = 0, . . . , p,D. For the component of the current density along the
l th compact dimension one gets

〈 j l 〉0 =
4ea−1−DLl

(2π)(D+1)/2

∞

∑
nl=1

nl sin(α̃l nl ) ∑
nq−1

cos(∑
i6=l

α̃ini)q
(D+1)/2
ν−1/2 (1+∑

i

n2
i L2

i /(2z2)), (3.1)

wherenq−1 = (np+1, . . . ,nl−1,nl+1, . . . ,nD−1),

α̃l = αl +eAlLl ,

ν =
√

D2/4−D(D+1)ξ +m2a2, (3.2)

and the summation goes over−∞ < ni < +∞, i 6= l . In (3.1), qµ
α(x) = e−iπµ(x2− 1)−µ/2Qµ

α(x),
with Qµ

α(x) being the associated Legendre function of the second kind. The phasesαl and the
componentsAl of the vector potential along compact dimensions enter in the expressions for the
VEVs in the form ofα̃l . Note thateAl Ll =−2πΦl/Φ0, whereΦl is the magnetic flux enclosed by
the l th compact dimension andΦ0 = 2π/e is the flux quantum. As is seen from (3.1), the current
density along thel th compact dimension is an odd periodic function of the phaseα̃l and an even
periodic function of the phases̃αi , i 6= l . In both cases the period is equal to 2π. In particular,
the current density is a periodic function of the magnetic fluxes with the period equal to the flux
quantum.

For the charge flux through the(D−1)-dimensional spatial hypersurfacexl = const one has
nl 〈 j l 〉0, wherenl = a/z is the corresponding normal. The VEVnl 〈 j l 〉0 depends on the coordinate
lengths of the compact dimensionsLi and on the coordinatez in the form of the ratioLi/z. The
latter is the proper length of the compact dimension measured in units of the curvature radiusa.

For a conformally coupled massless field one hasν = 1/2 and for the current density we get
〈 j l 〉= (z/a)D+1〈 j l 〉(b)M , where

〈 j l 〉(b)M = 2eLl
Γ((D+1)/2)

π(D+1)/2

∞

∑
nl=1

nl sin(α̃l nl ) ∑
nq−1

cos(∑
i6=l

α̃ini)

×

[

(∑
i

n2
i L2

i )
−(D+1)/2− (∑

i

n2
i L2

i +4z2)−(D+1)/2

]

, (3.3)

is the current density for a massless scalar field in Minkowski spacetime with toroidally compact-
ified dimensions, in the presence of Dirichlet boundary atz= 0. The part with the first term in
square brackets corresponds to the VEV in the boundary-freeMinkowski spacetime. It is obtained
from the general result of [6] in the zero mass limit. The appearance of the boundary-induced term
in (3.3) is related to the boundary conditions imposed on thefield operator on AdS boundary.

The Minkowskian limit corresponds to the limiting transition a→ ∞ for a fixed value of the
coordinatey. In this limit one hasν ≈ma≫ 1 andz≈ a+y. To the leading order we get〈 j l 〉0 ≈
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〈 j l 〉M , where

〈 j l 〉M =
4eLl mD+1

(2π)(D+1)/2

∞

∑
nl=1

nl sin(α̃l nl ) ∑
nq−1

cos(∑
i6=l

α̃ini) f(D+1)/2(m(∑
i

n2
i L2

i )
1/2), (3.4)

is the VEV of the current density in Minkowski spacetime withtoroidally compactified dimensions
[6]. In (3.4) we have used the notationfν(x) =Kν(x)/xν with Kν(x) being the MacDonald function.

If the proper length of the one of the compact dimensions, sayxi , i 6= l , is large compared with
the AdS curvature radius,Li/z≫1, the dominant contribution into (3.1) comes from theni = 0 term
and the contribution of the remaining terms is suppressed bythe factor(z/Li)

D+2ν+2. To the leading
order, we obtain the current density for the topologyRp+1×Tq−1 with the uncompactified direction
xi . In the opposite limit corresponding to small proper lengthof the dimensionxi , Li/z≪ 1, the
behavior of the current density depends crucially on whether the phasẽαi is zero or not. For̃αi = 0,
to the leading order, for the combination(aLi/z)〈 j l 〉0 we obtain the expression which coincides
with the formula for〈 j l 〉0 in D-dimensional AdS spacetime, obtained from the geometry under
consideration by excluding the dimensionxi . For α̃i 6= 0, to the leading order one gets

〈 j l 〉0≈
2eLl σ

(D−1)/2
i sin(α̃l )

(2π)(D−1)/2aD+1

zD+1e−Ll σi/Li

(LiLl)(D+1)/2
, (3.5)

whereσi = min(α̃i ,2π− α̃i), 06 α̃i < 2π. In this case the current density is exponentially small.
For large values of the proper length compared with the AdS curvature radius,Ll/z≫ 1 and

for α̃i = 0, i = p+1, . . . ,D−1, i 6= l , to the leading order we have

〈 j l 〉0≈
4eΓ(p/2+ν +2)

π p/2+1Γ(ν +1)aD+1Vq

zD+2ν+2

Lp+2ν+2
l

∞

∑
nl=1

sin(α̃l nl )

np+2ν+3
l

, (3.6)

with the power-law decay as a function ofLl for both massless and massive fields. In this sense,
the situation for the AdS bulk is essentially different fromthat in the corresponding problem for
Minkowski background. For the latter, in the massless case and for large values ofLl the current
density decays as 1/Lp

l , whereas for a massive field the current is suppressed exponentially, by the
factor e−mLl . This shows that the influence of the background gravitational field on the VEV is
crucial. If Ll/z≫ 1 and at least one of the phasesα̃i , i 6= l , is not equal to zero, one gets

〈 j l 〉0≈
2ea−1−D

π(p+1)/2

sin(α̃l )zD+2ν+2

Γ(ν +1)Vqeβq−1Ll

β (p+3)/2+ν
q−1

(2Ll )(p+1)/2+ν , (3.7)

whereβq−1 = (∑D−1
i=p+1,6=l α̃2

i /L2
i )

1/2. In this case the current density, as a function ofLl , decays
exponentially.

For small values ofLl , Ll/z≪ 1, the dominant contribution to the current density comes from
the term withnq−1 = 0 and to the leading order we obtain

〈 j l 〉0≈
2eΓ((D+1)/2)

π(D+1)/2(a/z)D+1LD
l

∞

∑
nl=1

sin(α̃l nl )

nD
l

. (3.8)

The right-hand side, multiplied by(a/z)D+1, coincides with the VEV of the current density for a
massless scalar field in(D+1)-dimensional Minkowski spacetime compactified along the direction
xl to the circle with the lengthLl .
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Near the AdS boundary,z→ 0, from the general expression (3.1), to the leading order weget

〈 j l 〉0≈
4eLl Γ(ν +D/2+1)

πD/2Γ(ν +1)aD+1
zD+2ν+2

∞

∑
nl=1

nl sin(α̃l nl ) ∑
nq−1

cos(∑i6=l α̃ini)

(∑i n
2
i L2

i )
D/2+ν+1

, (3.9)

which shows that the current density vanishes on the AdS boundary. Near the horizon one has
z→ ∞, and one finds〈 j l 〉0 ≈ (z/a)D+1〈 j l 〉M, where〈 j l 〉M is the corresponding current density in
Minkowski spacetime for a massless scalar field. The latter is directly obtained from (3.4) taking
the limit m→ 0.

In what follows, the numerical results are presented for theD= 4 model with a single compact
dimension with the lengthL. The corresponding value of the phase we will denote byα̃ . In figure
1 we have displayed the quantityaDnl 〈 j l 〉0/eas a function of the phase in the periodicity condition
for ma= 0.5. The numbers near the curves correspond to the values of theratio z/L and the
full/dashed curves are for minimally/conformally coupledfields.

1.5

2

2.5

0.0 0.2 0.4 0.6 0.8 1.0

-6

-4

-2

0

2

4

6

Α
�
�2Π

aD
n l
X
jl \
�e

Figure 1: The quantityaDnl 〈 j l 〉/eas a function of̃α for D= 4 AdS space with a single compact dimension.
The numbers near the curves correspond to the values of the ratio z/L and the full/dashed curves are for
minimally/conformally coupled fields.

For the same model withD = 4, in figure 2 we have plotted the ratio of the current densities
in AdS and Minkowski bulks for the same proper lengths of the compact dimension,L(p), as a
function of the proper length measured in units of the AdS curvature radius. The current density in
Minkowski bulk is given by the right-hand side of (3.4), specified to the special case under consid-
eration. The graphs are plotted forα̃ = π/2 and the numbers near the curves are the corresponding
values of the parameterma (mass measured in units of the AdS energy scale). As before the full
and dashed curves correspond to minimally and conformally coupled fields. We see the feature
already described before: for a massive field and for large values of the proper length the decay of
the current density in the Minkowski bulk is stronger than that for AdS background.

4. Vacuum currents induced by a brane

In this section we consider the effects induced by a brane parallel to the AdS boundary and
located aty = y0. The corresponding value for the conformal coordinatez will be denoted by

6
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Figure 2: The ratio of the current densities in AdS and Minkowski backgrounds as a function of the proper
length of the compact dimension. The numbers near the curvescorrespond to the values ofmaand we have
takenα̃ = π/2. The full and dashed curves are for minimally and conformally coupled fields.

z0 = aey0/a. On the brane we assume a gauge invariant boundary conditionof the Robin type:

(1+βnµDµ)ϕ(x) = 0, y= y0, (4.1)

whereβ is a constant with the dimension of length andnµ is the inward pointing normal to the
brane. For the latter one hasnµ = δ µ

D in the regiony > y0 and nµ = −δ µ
D in the regiony <

y0. The Robin boundary condition is a generalization of Dirichlet and Neumann conditions and
naturally appears in a number of physical problems, including those in branworld scenario. In the
presence of the brane, the component of the current density along thel th compact dimension can
be decomposed as

〈 j l 〉= 〈 j l 〉0+ 〈 j
l 〉b, l = p+1, . . . ,D−1, (4.2)

where〈 j l 〉0 is the corresponding VEV in the absence of the brane and the part 〈 j l 〉b is induced by
the brane. We consider the brane-induced contribution in the VEVs of the current density for the
regionsy> y0 (R-region) andy< y0 (L-region) separately.

4.1 R-region

In the R-region the brane-induced contribution in (4.2) is given by the expression

〈 j l 〉b =−
eCpzD+2

2p−1aD+1Vq
∑
nq

kl

∫ ∞

k(q)
dxx(x2−k2

(q))
p−1

2
Īν(z0x)
K̄ν(z0x)

K2
ν(zx), (4.3)

wherenq = (np+1, . . . ,nD−1),−∞ < ni <+∞, k2
(q) = ∑D−1

i=p+1(2πni + α̃i)
2/L2

i , Iν(x) is the modified
Bessel function and

Cp =
π−(p+1)/2

Γ((p+1)/2)
. (4.4)

Here and in what follows, for a given functionF(x), the notation with the bar is defined in accor-
dance with

F̄(x) =

(

1+δy
Dβ
2a

)

F(x)+δy
β
a

xF′(x), (4.5)

7
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whereδy = 1 for the R-region andδy = −1 for the L-region. Similar to the case of the brane-
free part, the brane-induced contribution to the current density along thel th compact dimension is
an odd periodic function of the phaseα̃l with the period 2π and an even periodic function of the
remaining phases̃αi , i 6= l , with the same period. In particular, the VEV of the current density is a
periodic function of the magnetic flux with the period equal to the flux quantum. The brane-induced
contribution to the charge flux through the(D− 1)-dimensional spatial hypersurfacexl = const,
nl 〈 j l 〉b, depends on the lengths of compact dimensions and on the coordinatez in the form of the
ratiosLi/z0 andz/z0. The latter is expressed in terms of the proper distance fromthe brane,y−y0,
asz/z0 = e(y−y0)/a.

First of all, it can be seen that in the flat spacetime limit, corresponding toa→ ∞ for fixed
values ofy and y0, from (4.3) we obtain the boundary-induced part of the current density for
the geometry of a single Robin plate in(D+ 1)-dimensional Minkowski spacetime with spatial
topology Rp+1× Tq (see [10]). For a conformally coupled massless field the modified Bessel
functions in (4.3) are expressed in terms of the elementary functions. In this case the expression
for the total current density takes the form

〈 j l 〉= (z/a)D+1

[

〈 j l 〉M +
eCp

2pVq
∑
nq

kl

∫ ∞

k(q)
dx(x2−k2

(q))
p−1

2 e−2x(z−z0)
β+

M x+1

β+
M x−1

]

, (4.6)

where

β±M =
βz0/a

1± (D−1)β/(2a)
. (4.7)

The right-hand side of (4.6), divided by the conformal factor (z/a)D+1, coincides with the current
density in the corresponding problem on Minkowski bulk withthe plate atz= z0 on which the field
obeys the Robin boundary condition (4.1) with the replacement β → β+

M .

At large distances from the brane compared with the AdS curvature radius,y−y0≫ a, one has
z≫ z0. In addition, assuming thatz≫ Li, we can see that the dominant contribution to the integral
in (4.3) comes from the region near the lower limit and the contribution of the mode with a given
nq is suppressed by the factore−2zk(q) . Under the condition|α̃i |< π, assuming that all the lengthsLi

are of the same order, the main contribution comes from the term with ni = 0, i = p+1, . . . ,D−1,
and to the leading order we find

〈 j l 〉b≈−
ezD−(p−1)/2α̃l k

(0)(p−1)/2
(q)

2p+1π(p−1)/2aD+1VqLl

Īν(z0k(0)(q))

K̄ν(z0k(0)(q))
e−2zk(0)

(q) , (4.8)

wherek(0)2(q) = ∑D−1
i=p+1 α̃2

i /L2
i . This asymptotic corresponds to points near the AdS horizon. In this

limit, for the boundary-free part one has〈 j l 〉0 ≈ (z/a)D+1〈 j l 〉M , where〈 j l 〉M is the current den-
sity for a massless scalar field in(D+1)-dimensional Minkowski spacetime with spatial topology
Rp+1×Tq and with the lengths of the compact dimensionsLi, i = p+1, . . . ,D−1. From here we
conclude that near the horizon the boundary-free part dominates in the total VEV.

8
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For fixed values ofzandLi, when the location of the brane tends to the AdS boundary,z0→ 0,
to the leading order, from (4.3) one finds

〈 j l 〉b ≈ −
4eCpzD+2z2ν

0

22ν+pνΓ2(ν)aD+1Vq

a+(D/2+ν)β
a+(D/2−ν)β ∑

nq

kl k
2ν+p+1
(q)

×
∫ ∞

1
dxx2ν+1(x2−1)(p−1)/2K2

ν(zk(q)x), (4.9)

and the VEV vanishes asz2ν
0 .

Now, let us consider the limit when the length of thel th dimension is much smaller than the
lengths of the other compact dimensions,Ll ≪ Li . In this case, in (4.3) the dominant contribution
to the sum overni , i = p+1, . . . ,D−1, i 6= l , comes from large values of|ni | and we can replace
the summation by the integration. As a result, to the leadingorder we get

〈 j l 〉b≈−
eCD−2zD+2

2D−3aD+1Ll

+∞

∑
nl=−∞

kl

∫ ∞

|kl |
dxx(x2−k2

l )
D−3

2
Īν(z0x)
K̄ν(z0x)

K2
ν(zx), (4.10)

with kl = (2πnl + α̃l )/Ll . The expression in the right-hand side coincides with the brane-induced
contribution in the model with a single compact dimension ofthe lengthLl (q= 1, p= D−2). If
in addition toLl ≪ Li one hasLl ≪ z0, the argumentsz0x of the modified Bessel functions in (4.10)
are large. By using the corresponding asymptotic expressions, after the integration overx we find

〈 j l 〉b≈

(

1−2δ0β
)

e(z/a)D+1

2D−2πD/2Ll (z−z0)
D/2−1

+∞

∑
nl=−∞

kl |kl |
D/2−1KD/2−1(2(z−z0) |kl |). (4.11)

Here, for non-Dirichlet boundary conditions we have assumed that|β |/a≫ Ll/z0. From (4.11) it
follows that the brane-induced contribution is located near the brane within the regionz− z0 . Ll

and has opposite signs for Dirichlet and non-Dirichlet boundary conditions. At distancesz−z0≫

Ll it is suppressed by the factore−2(z−z0)α̃l/Ll .
The VEV of the current density is finite on the brane. For Dirichlet boundary condition both

the current density and its normal derivative vanish on the brane. The finiteness of the current den-
sity is in clear contrast to the behavior of the VEVs for the field squared and the energy-momentum
tensor which suffer surface divergences. In quantum field theory the ultraviolet divergences in the
VEVs of physical observables bilinear in the field are determined by the local geometrical charac-
teristics of the bulk and boundary. On the background of standard AdS geometry with non-compact
dimensions the VEV of the current density in the problem under consideration vanishes by the
symmetry. The compactification of the part of spatial dimensions toq-dimensional torus does not
change the local bulk and boundary geometries and, consequently, does not add new divergences
to the expectation values compared with the case of trivial topology.

In figure 3, for theD = 4 model with a single compact dimension of the lengthL, we have
depicted the current density for a minimally coupled field asa function of the phasẽα for fixed
values of the parametersz0/L = 1, z/z0 = 1.2. The graphs are plotted for Dirichlet (D), Neumann
(N) and for Robin (withβ/a= −1, the number near the curve) boundary conditions. The dashed
curve presents the current density in the same model when thebrane is absent. As is seen, depend-
ing on the boundary condition, the presence of the brane leads to the increase or decrease of the
current density.
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Figure 3: The VEV of the current density as a function of the phase in theperiodicity condition forD = 4
AdS space with a single compact dimension and for Dirichlet,Neumann and Robin (β/a= −1) boundary
conditions. The graphs are plotted forz0/L = 1, z/z0 = 1.2.

Figure 4 presents the rationl 〈 j l 〉/〈 j l 〉M as a function ofz/z0 in the case of Robin boundary
condition for several values ofβ/a (numbers near the curves). Here,

〈 j l 〉M =
2eΓ((D+1)/2)

π(D+1)/2(aL/z)D

∞

∑
n=1

sin(α̃n)
nD , (4.12)

is the current density for a massless scalar field in(D+1)-dimensional Minkowski spacetime with
topologyRD−1×S1 and with the length of the compact dimensionaL/z. Note that the latter is the
proper length of the compact dimension in AdS spacetime measured by an observer with a givenz.
The graphs are plotted for̃α = π/2 andz0/L = 1.

Figure 4: The dependence of the quantitynl 〈 j l 〉/〈 j l 〉M on z/z0 for Robin boundary conditions. The graphs
are plotted forα̃ = π/2, z0/L = 1 and the numbers near the curves correspond to the values ofβ/a.

From the results in this section we can obtain the current density in Z2-symmetric braneworld
models of the Randall–Sundrum type with a single brane. In the original Randall–Sundrum 1-
brane model [2] the universe is realized as aZ2-symmetric positive tension brane in 5-dimensional
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AdS spacetime. However, most scenarios motivated from string theories predict the presence of
small compact dimensions originating from 10D string backgrounds. In a generalized(D+ 1)-
dimensional version of the Randall-Sundrum 1-brane model the line element is given by (2.1) with
the warp factore−|y−y0|/a wherey0 is the location of the brane. The background geometry contains
two patchesy > y0 of the AdS glued by the brane and related by theZ2-symmetry identification
y−y0←→ y0−y. The expressions for the VEV of the current density in the generalized Randall-
Sundrum 1-brane model with compact dimensions are obtainedfrom those given above with an
additional factor 1/2 and with the Robin coefficientβ =−1/(c+2Dξ/a) for untwisted fields and
with β = 0 for twisted fields. Herec is the so-called brane mass term for a scalar field.

4.2 L-region

Now we turn to the current density in the L-region. It is decomposed as (4.2) with the brane-
induced part

〈 j l 〉b =−
eCpzD+2

2p−1aD+1Vq
∑
nq

kl

∫ ∞

k(q)
dxx(x2−k2

(q))
p−1

2
K̄ν(z0x)
Īν(z0x)

I2
ν(zx). (4.13)

Note that the expressions in the R- and L-regions are relatedby the replacementsIν ⇄ Kν . For
large values of the AdS curvature radiusa, we can see the limiting transition to the corresponding
formula for a plate in Minkowski bulk.

For a conformally coupled massless field, the expression of the total current density takes the
form

〈 j l 〉 = (z/a)D+1
{

〈 j l 〉M−
eCp

2pVq
∑
nq

kl

∫ ∞

k(q)
dx

×(x2−k2
(q))

p−1
2

[

e−2zx+
4sinh2(zx)

1−β−M x
1+β−M x

e2z0x−1

]}

, (4.14)

with β−M defined by (4.7). Here, the first term in the figure braces and the part with the first term
in the square brackets come from〈 j l 〉0. The expression on the right of (4.14), divided by the
conformal factor(z/a)D+1, coincides with the current density in the region between two plates
on Minkowski bulk with Dirichlet boundary condition on the left plate and Robin condition (4.1),
with β → β−M , on the right one (see [10] for the problem with Robin boundary conditions on
both the plates). The fact that the problem with a single brane in AdS bulk in the L-region is
conformaly related to the problem with two plates in Minkowski bulk is a consequence of the
boundary condition we have imposed on the AdS boundary.

Near the AdS boundary,z→ 0, to the leading order, we get

〈 j l 〉b ≈ −
21−2ν−peCpzD+2ν+2

aD+1VqΓ2(ν +1) ∑
nq

kl k
2ν+p+1
(q)

×
∫ ∞

1
dxx2ν+1(x2−1)(p−1)/2 K̄ν(z0k(q)x)

Īν(z0k(q)x)
, (4.15)

and the brane-induced contribution vanishes aszD+2ν+2. Recall that near the AdS boundary the part
〈 j l 〉0 in the VEV of the current density behaves in a similar way and,hence, on the AdS boundary
the ratio of the brane-induced and boundary-free contributions tend to a finite limiting value.
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In the limit when the brane tends to the AdS horizon,z0→∞, the dominant contribution to the
integral in (4.13) comes from the region near the lower limit. To the leading order one has

〈 j l 〉b≈
(1−2δ0β )eα̃l zD+2e−2z0k(0)

(q)

2pπ(p−1)/2aD+1VqLl z
(p+1)/2
0

k(0)(p+1)/2
(q) I2

ν(zk(0)(q)). (4.16)

This shows that, for a fixed value ofz, when the brane location tends to the AdS horizon, the
brane-induced contribution is exponentially suppressed.

If the length of thel th dimension is much smaller than the lengths of the remaining compact
dimensions,Ll ≪ Li, to the leading order, the brane-induced contribution coincides with the corre-
sponding quantity in the model with a single compact dimension of the lengthLl . The expression
for the latter is obtained from the right-hand side of (4.10)by the replacementsIν ⇄ Kν . If in
additionLl ≪ z, the corresponding asymptotic expression is given by the right-hand side of (4.11)
with z0− z instead ofz− z0, and the brane-induced contribution is concentrated near the brane in
the regionz0−z. Ll . Similar to the VEV in the R-region, the current density is finite on the brane
and vanishes on the brane for Dirichlet boundary condition.

Figure 5 displays the vacuum current density in the L-regionfor Dirichlet, Neumann and
Robin (withβ/a = −1/2) boundary conditions as a function of the phase in the quasiperiodicity
condition along the compact dimensions. The graphs are plotted for z0/L = 1, z/z0 = 0.8. The
dashed curve corresponds to the current density in the absence of the brane.

Figure 5: The current density in the L-region as a function ofα̃ for Dirichlet, Neumann and Robin (with
β/a = −1/2) boundary conditions. The graphs are plotted forz0/L = 1, z/z0 = 0.8. The dashed curve
corresponds to the current density in the geometry without the brane.

In figure 6, for α̃ = π/2, we show the dependence of the rationl 〈 j l 〉/〈 j l 〉M on z/z0 in the
case of Robin boundary condition for several values ofβ/a (numbers near the curves). As it
follows from the asymptotic (4.15), near the AdS boundary the charge flux densitynl 〈 j l 〉 behaves
aszD+2ν+1. For the Minkowskian VEV with the length of the compact dimension aL/z, equal to
the proper length on the AdS bulk, one has〈 j l 〉M ∝ zD+1. Hence, the ratio plotted in figuire 6
vanishes on the AdS boundary asz2ν .
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Figure 6: The rationl 〈 j l 〉/〈 j l 〉M versusz/z0 in the case of Robin boundary condition. The numbers near
the curves correspond to the values ofβ/a. For the phase we have takenα̃ = π/2 andz0/L = 1.

5. Conclusion

We have discussed combined effects of the gravitational field and topology on the VEV of the
current density for a charged scalar field. In order to have anexactly solvable problem we have
taken highly symmetric background geometry correspondingto a slice of AdS spacetime with a
toroidally compactified subspace. Currently, the AdS spacetime is among the most popular back-
grounds in gravitational physics and appears in a number of contexts. The vacuum charge density
and the components of the current along uncompactified dimensions vanish and the current den-
sity alongl th compact dimension is an odd periodic function of the phaseα̃l and an even periodic
function of the phases̃αi , i 6= l . In particular, the current density is a periodic function of the mag-
netic fluxes with the period equal to the flux quantum. The appearance of the vacuum currents is
an Aharonov-Bohm type effect and is closely related to the nontrivial topology of the background
spacetime. In the presence of the brane, in both the R- and L-regions the VEV of the current density
is decomposed into the boundary-free and brane-induced contributions. Both these contributions
vanish on the AdS boundary. Near the horizon, the leading term in the asymptotic expansion of the
current density is conformally related to the corresponding quantity on the Minkowski bulk with
compact dimensions. From the results in the R-region we can obtain the vacuum currents in the
generalized Randall-Sundrum 1-brane model with additional compact dimensions. We have shown
that, depending on the value of the Robin coefficient, the presence of the brane can either increase
or decrease the current density. In particular, in the examples considered, the modulus of the cur-
rent density takes its minimal value for Dirichlet boundarycondition. Note that the current density
discussed above is a source of magnetic fields in the uncompactified subspace. In particular, they
induce magnetic fields on the visible brane in braneworld models of the Randall-Sundrum type.
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