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1. Introduction

Recent proposals of large extra dimensions use the contbme as a submanifold embed-
ded in a higher dimensional spacetime, on which the stanaedel particles are confined (for
reviews see [1]). Braneworlds naturally appear in strindifdory context and provide a novel
setting for discussing phenomenological and cosmologgsales related to extra dimensions. The
model introduced by Randall and Sundrum [2] is particulatlyactive. The corresponding back-
ground solution consists of two parallel flat 3-branes indirbensional anti-de Sitter (AdS) bulk.
The fifth coordinate is compactified @&t/Z, and the branes are on the two fixed points. It is as-
sumed that all matter fields are confined on the branes andtmmbyravity propagates freely in the
5-dimensional bulk. More recently, scenarios with addilobulk fields have been considered.

From the point of view of embedding the Randall-Sundrum rhade a more fundamental
theory, such as string/M theory, one may expect that a momplaie version of this scenario must
admit the presence of additional extra dimensions comfpattbn an internal manifold. From a
phenomenological point of view, higher dimensional thesfave a richer geometrical and topo-
logical structure. The consideration of more general graes may provide interesting extensions
of the Randall-Sundrum mechanism for the geometric orifjithe hierarchy. More extra dimen-
sions also relax the fine-tunings of the fundamental pararset

Motivated by the problems of the radion stabilization arelgeneration of cosmological con-
stant, the role of quantum effects in braneworlds has &ttie& great deal of attention. In models
with compact dimensions, the periodicity conditions imgmb®n the operator of a quantum field
lead to a number of interesting physical effects that ineltapological mass generation, instabil-
ities in interacting field theories and symmetry breakindne Pperiodicity conditions modify the
spectrum of the zero-point fluctuations, as a result thewmcenergy density and the stresses are
changed. This is the well-known topological Casimir effetit has been investigated for large
number of geometries and has important implications oncalles, from mesoscopic physics to
cosmology (for reviews see [3]). The vacuum energy dependthe size of extra dimensions
and this provides a stabilization mechanism for moduli fiefdKaluza-Klein-type models and in
braneworld scenario. In particular, motivated by the peabbf the radion stabilization in Randall-
Sundrum-type braneworlds, the investigations of the Ciagtmergy on AdS bulk have attracted
a great deal of attention. The Casimir effect in AdS spacaetivith compact internal spaces has
been considered in [4]. The vacuum energy generated by thpaxification of extra dimensions
can also serve as a model of dark energy needed for the efiplamd the present accelerated
expansion of the universe.

For charged fields, another important local characterigtihe vacuum state is the expectation
value of the current density. In the present paper we iryaigithe current density for a charged
scalar field in AdS spacetime, covered by Poincaré coombnaissuming that a part of spatial
dimensions are compactified to a torus. In addition, we assilm presence of a brane parallel
to the AdS boundary and a constant gauge field. The VEV of thewrudensity for a fermionic
field in flat spaces with toral dimensions has been invegifjat [5]. The finite temperature effects
on the current densities for scalar and fermionic fields potogically nontrivial spaces have been
studied in [6]. The VEV of the current density for chargedlacand Dirac spinor fields in de
Sitter spacetime with toroidally compact spatial dimensiare considered in [7]. The case of AdS
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background has been considered in [8]. The influence of kariewlon the vacuum currents in
topologically nontrivial flat spaces are studied in [9, 1dY $calar and fermionic fields. The effects
induced in AdS bulk with toral dimensions by branes wereistlich [11, 12].

2. Geometry and the field content
In Poincaré coordinates, the line element(r+ 1)-dimensional AdS spacetime is given by
d€ = e ¥/2ndXd¥ —dy? i,k=0,1,...,D—1, (2.1)

whereais the AdS curvature radiugi = diag(1,—1,...,—1) is the metric tensor fdD-dimensional
Minkowski spacetime and- < y < +o0. The coordinate$x,y) cover a part of the AdS manifold
and there is a horizon corresponding to the hypersurfager-co. In what follows we assume that
the coordinates, with | = p+1,...,D — 1, are compactified to circles with the lengths so
0< X < L. For the remaining coordinates with | = 1,2,...,p, one has—o < X < +o0. Hence,
the subspace perpendicular to yhaxis has a topologRP x T9, whereq+ p= D — 1 andT 9 stands
for a g-dimensional torus. Introducing a new coordinat® < z < o, in accordance with the re-
lation z = a€’/3, the line element is presented in a conformally-flat fod: = (a/2)2n,,, dx*dx".
In terms of the new coordinate, the AdS boundary and horizempeesented by the hypersurfaces
z= 0 andz = o, respectively. Note that, for an observer with a fixed valfig ¢the proper length
of thelth compact dimension is given ty;, = aly/zand it decreases with increasing

The physical quantity we are interested in is the vacuumaagen value (VEV) of the cur-
rent density

ju(X) =ie[@ T (x)Dud (X) — (Dud ™ (x) ¢ (X)), (2.2)

for a charged scalar field)(x), in the presence of an external classical gauge fgldIn (2.2),
Dy =0y +ieAy, wherell, is the standard covariant derivative operator associaittttie metric
tensorgy,y andeis the charge of the field quanta. The equation for the fieldaipereads

(9"YDuDy + 1M+ E&R) ¢(x) =0, (2.3)

with & being the curvature coupling parameter and for the Ricd¢ascame hak= —D(D + 1) /a°.

In the most important special cases of minimally and conédlyncoupled fields$ = 0 andé =
(D—1)/(4D), respectively. In models with nontrivial topology, in atioin to the field equation,
we need also to specify the periodicity conditions along jpach dimensions. Here we impose
guasiperiodicity conditions

d(.. X +L,...)=€%(...X,..), | =p+1,....D—1, (2.4)

with constant phases;. The special cases of untwisted and twisted scalars camdsfpa; = 0
anda) = m, respectively. In what follows we assume that the gauge igetdnstantA, = const.
Though the corresponding field strength vanishes, the in@tropology of the background space
gives rise to Aharaonov-Bohm-like effects on the VEVs of gibgl observables.
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3. Vacuum current density

First we consider the vacuum currents in the absence of §rafbe corresponding VEVs
are evaluated by making use of a complete set of modes forelteuinder consideration obeying
the periodicity conditions (2.4). The charge density anel tbmponents along uncompactified
dimensions vanish(j')o =0,1 =0,..., p,D. For the component of the current density along the
Ith compact dimension one gets

| dea ! Pl 2 o0+ 2
(iNo= (271)(T1/2 z ny sin(an) cos(Za.n. V13 1+Zn L2/(27)), (3.1)
Ng—1

whereng_1 = (Npy1,---,M—1,N11,...,Nb_1),

ar = a1 +eALy,
v = /D2/4-D(D+ 1) +mée?, (3.2)
and the summation goes overo < n; < 4, i #1. In (3.1), gh(X) = e "™ (x% — 1)~ #/2Qk (%),

with Q4 (x) being the associated Legendre function of the second kirite phasesr, and the
componentsd, of the vector potential along compact dimensions enter énetkpressions for the
VEVs in the form ofd;. Note thateAL; = —2md, /g, whered; is the magnetic flux enclosed by
thelth compact dimension artly = 271/eis the flux quantum. As is seen from (3.1), the current
density along théth compact dimension is an odd periodic function of the pliasend an even
periodic function of the phases, i # |. In both cases the period is equal tm.2In particular,
the current density is a periodic function of the magnetigdtuwith the period equal to the flux
quantum.

For the charge flux through th® — 1)-dimensional spatial hypersurfage= const one has
n (j")o, wheren, = a/zis the corresponding normal. The VEY(j')o depends on the coordinate
lengths of the compact dimensiohsand on the coordinatein the form of the ratid.i/z. The
latter is the proper length of the compact dimension medsaranits of the curvature radius

For a conformally coupled massless field one has 1/2 and for the current density we get
(j') = (z/a)P*1(j')\y), where

. NMb+1
(hE = Zel"((n(o+)32/ z nisin(an) cos(;or.n.
Ng-1 1

(3 npLy) (P2 <Zn?L?+4zz><D”>/2] : (3.3)

is the current density for a massless scalar field in Minkdwpkcetime with toroidally compact-
ified dimensions, in the presence of Dirichlet boundarg &t0. The part with the first term in
square brackets corresponds to the VEV in the boundaryMiakowski spacetime. It is obtained
from the general result of [6] in the zero mass limit. The appace of the boundary-induced term
in (3.3) is related to the boundary conditions imposed orfitié operator on AdS boundary.

The Minkowskian limit corresponds to the limiting transitia — oo for a fixed value of the
coordinatey. In this limit one has’ ~ ma>> 1 andz~ a+y. To the leading order we géj')o ~
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(j"»m, where

(J')m= (27‘[)T1/2 Z n sin(a, n|)n coq; aini) fipr1)/2(m Zn L)), (3.4)
q-1

is the VEV of the current density in Minkowski spacetime wibhoidally compactified dimensions
[6]. In (3.4) we have used the notatidp(x) = K, (x) /x” with K, (x) being the MacDonald function.
If the proper length of the one of the compact dimensionsxsay# |, is large compared with
the AdS curvature radiug; /z>> 1, the dominant contribution into (3.1) comes from the- 0 term
and the contribution of the remaining terms is suppressedéfactor(z/L;)°+2V*2. To the leading
order, we obtain the current density for the topol&®#y ! x T4~ with the uncompactified direction
. In the opposite limit corresponding to small proper lengththe dimensiork, L;/z < 1, the
behavior of the current density depends crucially on whetthteephase; is zero or not. Fod; =0,
to the leading order, for the combinatigal;/z)(j')o we obtain the expression which coincides
with the formula for(j')o in D-dimensional AdS spacetime, obtained from the geometneund
consideration by excluding the dimensign Forﬁri =0, to the leading order one gets

y 2eL.o S|n(a|) AL+lg-Lio/Li
<J >0"“ (Zn)(D 1)/2aD+l (L||—I)(D+l)/27

(3.5)

whereg; = min(&;,2m— G;), 0< @; < 2. In this case the current density is exponentially small.
For large values of the proper length compared with the Ad8ature radiusl,/z> 1 and
fora; =0,i=p+1,...,D—1,i#1, to the leading order we have

W del(p/2+v+2) 2PTT2 2 sin(an)
<J >0 ~ np/2+1r(v+1)aD+1vq L|p+2v+2 z p+2v+3 )

(3.6)

with the power-law decay as a function lof for both massless and massive fields. In this sense,
the situation for the AdS bulk is essentially different frahat in the corresponding problem for
Minkowski background. For the latter, in the massless casefar large values ok, the current
density decays as/LP, whereas for a massive field the current is suppressed entialhg by the
factore ™4, This shows that the influence of the background gravitatidield on the VEV is
crucial. IfL;/z>> 1 and at least one of the phasesi # 1, is not equal to zero, one gets

2ea 1D sin(d))2t2v+2 ﬁép+3)/2+v
PHD/2 [ (v 4 1)VgePatbi (2L)(PH1)/2+v”

(i~ (3.7)
wherefq 1 = (321 4 G7/L7)Y2. In this case the current density, as a function.ofdecays
exponentially.

For small values ok, L, /z< 1, the dominant contribution to the current density comesnfr
the term withng_; = 0 and to the leading order we obtain

()0 ~ 2l ((D+1)/2) &2 sin( or|n|
JI0% 755 /2(a/z)P+ILP Z

(3.8)

The right-hand side, multiplied bfa/z)P*1, coincides with the VEV of the current density for a
massless scalar field { + 1)-dimensional Minkowski spacetime compactified along timeation
X to the circle with the length,.
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Near the AdS boundarg,— 0, from the general expression (3.1), to the leading ordegete

4eT(V+D/241) pioyin & . . cog Yz Qini)
o= Somr gt ? - ZNINAN 3 s s (9

Ng-1

which shows that the current density vanishes on the AdSdaryn Near the horizon one has
z— o, and one findgj')o ~ (z/a)P*1(j')m, where(j' )y is the corresponding current density in
Minkowski spacetime for a massless scalar field. The lastelirectly obtained from (3.4) taking
the limitm— 0.

In what follows, the numerical results are presented folxthe4 model with a single compact
dimension with the length. The corresponding value of the phase we will denotébyn figure
1 we have displayed the quanti§n (j')o/e as a function of the phase in the periodicity condition
for ma= 0.5. The numbers near the curves correspond to the values ohtioez/L and the
full/dashed curves are for minimally/conformally coupfeslds.

®n(jye

0.0 0.2 0.4 0.6 0.8 1.0

Figure 1: The quantitya®n; (j') /e as a function ofi for D = 4 AdS space with a single compact dimension.
The numbers near the curves correspond to the values oftibezfa and the full/dashed curves are for
minimally/conformally coupled fields.

For the same model witB = 4, in figure 2 we have plotted the ratio of the current dersitie
in AdS and Minkowski bulks for the same proper lengths of thempact dimensionl. ), as a
function of the proper length measured in units of the AdSa&ture radius. The current density in
Minkowski bulk is given by the right-hand side of (3.4), sified to the special case under consid-
eration. The graphs are plotted f@r= 77/2 and the numbers near the curves are the corresponding
values of the parametena (mass measured in units of the AdS energy scale). As befertuth
and dashed curves correspond to minimally and conformallpled fields. We see the feature
already described before: for a massive field and for largigegeof the proper length the decay of
the current density in the Minkowski bulk is stronger thaattfor AdS background.

4. Vacuum currents induced by a brane

In this section we consider the effects induced by a branallphto the AdS boundary and
located aty = yo. The corresponding value for the conformal coordinategill be denoted by
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Figure 2: The ratio of the current densities in AdS and Minkowski backmnds as a function of the proper
length of the compact dimension. The numbers near the caoresspond to the values nfaand we have
taken& = 1r/2. The full and dashed curves are for minimally and confolyradupled fields.

7o = ae"/2, On the brane we assume a gauge invariant boundary condftitie Robin type:
(1+Bn"Du)¢(x) =0, y=yo, (4.1)

wheref3 is a constant with the dimension of length amitlis the inward pointing normal to the
brane. For the latter one has = 65 in the regiony > yp andn* = —65‘ in the regiony <
Yo. The Robin boundary condition is a generalization of Digtland Neumann conditions and
naturally appears in a number of physical problems, inalgdhose in branworld scenario. In the
presence of the brane, the component of the current densitg ¢helth compact dimension can
be decomposed as

(Y = (N4 (", = p+1,...,.D-1, (4.2)
where(j')o is the corresponding VEV in the absence of the brane and tté jbg, is induced by
the brane. We consider the brane-induced contributiongnBVs of the current density for the
regionsy > yp (R-region) and/ < yp (L-region) separately.

4.1 R-region
In the R-region the brane-induced contribution in (4.2)iN&eg by the expression

. eGP +2 o p-1 1y (20X)
(i = “ iy, nzq K /k<q) dxx(x* — Kfy)) 2 Ko (20%) KS(2X), (4.3)

whereng = (Npy1,...,Np_1), —% < Nj < 00, kz) =52 L (2mm + &)?/L?, 1,(x) is the modified

) (g p+1
Bessel function and
- (p+1)/2

Co=—Fr—=-
P r((p+D/2)
Here and in what follows, for a given functidf(x), the notation with the bar is defined in accor-
dance with

(4.4)

F(x) = (l+ @2—5) F(x) +®ng’(x), (4.5)
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whered, = 1 for the R-region andy, = —1 for the L-region. Similar to the case of the brane-
free part, the brane-induced contribution to the currensig along thdth compact dimension is
an odd periodic function of the phage with the period 2r and an even periodic function of the
remaining phases;, i # |, with the same period. In particular, the VEV of the curreensity is a
periodic function of the magnetic flux with the period equete flux quantum. The brane-induced
contribution to the charge flux through tfi® — 1)-dimensional spatial hypersurfage= const,

n (j')p, depends on the lengths of compact dimensions and on thdioatez in the form of the
ratiosL;/zy andz/z,. The latter is expressed in terms of the proper distance fhenbraney — yp,
asz/zo = e(y*YO)/a_

First of all, it can be seen that in the flat spacetime limitresponding ta — o for fixed
values ofy andyp, from (4.3) we obtain the boundary-induced part of the aurensity for
the geometry of a single Robin plate (B + 1)-dimensional Minkowski spacetime with spatial
topology RP*1 x T9 (see [10]). For a conformally coupled massless field the fiemHiBessel
functions in (4.3) are expressed in terms of the elementangtions. In this case the expression
for the total current density takes the form

<j'>=<z/a>D+1[ zpqum [ a0y ngﬁﬁf (4.6)

where

Bz/a
P = 1+(D-1)/(2a) (4.7)

The right-hand side of (4.6), divided by the conformal fact/a)®+1, coincides with the current
density in the corresponding problem on Minkowski bulk wifie plate az = zy on which the field
obeys the Robin boundary condition (4.1) with the replacere— B,

At large distances from the brane compared with the AdS tureaadiusy — yo > @, one has
Z> 7Zp. In addition, assuming that>- L;, we can see that the dominant contribution to the integral
in (4.3) comes from the region near the lower limit and thetigbation of the mode with a given
Nq is suppressed by the fact®r??§a . Under the conditiond;| < 77, assuming that all the lengths
are of the same order, the main contribution comes from tnewdgthn; =0,i = p+1,...,.D—1,
and to the leading order we find

=

(p-1)/27 1.(0)(p—1)/2 (0
D Pk " b@Kg) oy (4.8)
2P+1r(P-1)/2gD+1y | K, (Zok((g)

(o~ —

= =

wherek((q) = z, p+1 G2/L?. This asymptotic corresponds to points near the AdS horitothis
limit, for the boundary-free part one hag)o ~ (z/a)°*1(j')m, where(j' )y is the current den-
sity for a massless scalar field (B + 1)- dlmensmnal Minkowski spacetime with spatial topology
RP*1 x T9 and with the lengths of the compact dimensidns = p+1,...,D — 1. From here we
conclude that near the horizon the boundary-free part dat@snn the total VEV.
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For fixed values of andL;, when the location of the brane tends to the AdS boundary; O,
to the leading order, from (4.3) one finds

(" ~ — 4G22’ a+(D/2+V)B Kk 2v+p+1
T T 22vieur2(vyad iV a+ (D/2— v BZ
></mdxxz"“(xz—1)('0*1 /2K2(zkg)X), (4.9)
1

and the VEV vanishes &g’
Now, let us consider the limit when the length of title dimension is much smaller than the
lengths of the other compact dimensiohs L. In this case, in (4.3) the dominant contribution

to the sum oven;,i=p+1,...,.D—1,i #1, comes from large values ¢fi| and we can replace
the summation by the integration. As a result, to the leadiaigr we get
Y eGp 2" +°° / q 2053 v(zoX)
~ — XXX K{(zX 4.10
<J >b 2D 3aD+1L| K| X( kl) (ZoX) V( )7 ( )

with ki = (2rmy + @) /Ly. The expression in the right-hand side coincides with tleéyinduced

contribution in the model with a single compact dimensiontheflengthL; (=1, p=D —2). If

in addition toL| < Lj one had,| <« 7, the argumentgx of the modified Bessel functions in (4.10)

are large. By using the corresponding asymptotic expressafter the integration overwe find
(1—2%p)e(z/a)P™* = D/2-1

e fl a1, 2 P Koo a(2(z=2) k). (4.11)

Here, for non-Dirichlet boundary conditions we have asglithat||/a>> L, /7. From (4.11) it

follows that the brane-induced contribution is locatedrriba brane within the region— zy < L,

and has opposite signs for Dirichlet and non-Dirichlet tamy conditions. At distances— z5 >

L, it is suppressed by the facter2z 2)a/Li

The VEV of the current density is finite on the brane. For Dilit boundary condition both
the current density and its normal derivative vanish on tia@®. The finiteness of the current den-
sity is in clear contrast to the behavior of the VEVs for thédfguared and the energy-momentum
tensor which suffer surface divergences. In quantum fieddrhthe ultraviolet divergences in the
VEVs of physical observables bilinear in the field are deteeu by the local geometrical charac-
teristics of the bulk and boundary. On the background ofdstethAdS geometry with non-compact
dimensions the VEV of the current density in the problem urmmsideration vanishes by the
symmetry. The compactification of the part of spatial dini@ms tog-dimensional torus does not
change the local bulk and boundary geometries and, constygugoes not add new divergences
to the expectation values compared with the case of trigj@blbgy.

In figure 3, for theD = 4 model with a single compact dimension of the lengftwe have
depicted the current density for a minimally coupled fieldaasinction of the phasé for fixed
values of the parameters/L = 1, z/zy = 1.2. The graphs are plotted for Dirichlet (D), Neumann
(N) and for Robin (with3/a = —1, the number near the curve) boundary conditions. The dashe
curve presents the current density in the same model whémaine is absent. As is seen, depend-
ing on the boundary condition, the presence of the branesleathe increase or decrease of the
current density.

(i
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10a°n;<j' >le

-1.0 -0.5 0.0 0.5 1.0
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Figure 3: The VEV of the current density as a function of the phase irptréodicity condition forD = 4
AdS space with a single compact dimension and for DirictNetymann and Robin3(/a = —1) boundary
conditions. The graphs are plotted fgyL = 1,z/zy = 1.2.

Figure 4 presents the ratip(j')/(j')m as a function of/z in the case of Robin boundary
condition for several values @/a (numbers near the curves). Here,

2el ((D+1)/2) sin( orn

(1w = SBvaaL 0 2 z (4.12)

is the current density for a massless scalar fieldnr- 1)-dimensional Minkowski spacetime with
topologyRP~! x S' and with the length of the compact dimensiiy/z. Note that the latter is the
proper length of the compact dimension in AdS spacetime uneddy an observer with a given
The graphs are plotted fér = 11/2 andz/L = 1.

ny <j’>/<j’>M
= N N
&) o &
: : :

=
(=}
T

S
&)
T

S}
S
:

Figure 4: The dependence of the quantityj')/(j')m onz/z, for Robin boundary conditions. The graphs
are plotted forr = 11/2, z5/L = 1 and the numbers near the curves correspond to the valygsof

From the results in this section we can obtain the currersiteim Z,-symmetric braneworld
models of the Randall-Sundrum type with a single brane. énattiginal Randall-Sundrum 1-
brane model [2] the universe is realized a&aymmetric positive tension brane in 5-dimensional

10



Vacuum currents in braneworlds A. A. Saharian

AdS spacetime. However, most scenarios motivated fromgsthieories predict the presence of
small compact dimensions originating from 10D string baokgds. In a generalize(D + 1)-
dimensional version of the Randall-Sundrum 1-brane mddelibe element is given by (2.1) with
the warp factoeY-Yl/@ whereyy is the location of the brane. The background geometry camtai
two patchesy > yp of the AdS glued by the brane and related by aesymmetry identification
Y—VYo <— Yo—Y. The expressions for the VEV of the current density in theegalized Randall-
Sundrum 1-brane model with compact dimensions are obtdnoed those given above with an
additional factor 12 and with the Robin coefficier@ = —1/(c+ 2D¢ /a) for untwisted fields and
with B = 0O for twisted fields. Here is the so-called brane mass term for a scalar field.

4.2 L-region
Now we turn to the current density in the L-region. It is depa®ed as (4.2) with the brane-
induced part

. eszD+2 p_K_ (Zo )
(o= - 2p 1Dy, zkl/ dxx(x° —kz 2 m

Note that the expressions in the R- and L-regions are relayetie replacements, = K,,. For
large values of the AdS curvature radasve can see the limiting transition to the corresponding
formula for a plate in Minkowski bulk.

For a conformally coupled massless field, the expressioheofdtal current density takes the
form

2(zx). (4.13)

0 = @ { g 3k [
x(xz_kz)y’zl[ezzu“m—m”)”, (4.14)

(q 1-Byx
!

with B, defined by (4.7). Here, the first term in the figure braces aadént with the first term
in the square brackets come frofjl)o. The expression on the right of (4.14), divided by the
conformal factor(z/a)®+1, coincides with the current density in the region betweea plates
on Minkowski bulk with Dirichlet boundary condition on theft plate and Robin condition (4.1),
with B — B, on the right one (see [10] for the problem with Robin bougdeonditions on
both the plates). The fact that the problem with a single dranAdS bulk in the L-region is
conformaly related to the problem with two plates in Minké&wbulk is a consequence of the
boundary condition we have imposed on the AdS boundary.

Near the AdS boundarg,— 0, to the leading order, we get

21-2v— peCpZD+2v+2

Ay 2v4p+1
(e~ = DTV 2(v+1) Zk'k
/ dx)gv-‘rl )(p 1)/2KV(Zok(Q)X) (4.15)
lv (20Ki%) * '

and the brane-induced contribution vanisheg’ag"+2. Recall that near the AdS boundary the part
(j"o in the VEV of the current density behaves in a similar way drehce, on the AdS boundary
the ratio of the brane-induced and boundary-free contdbattend to a finite limiting value.
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In the limit when the brane tends to the AdS horizan— «, the dominant contribution to the
integral in (4.13) comes from the region near the lower liid the leading order one has

1 (1-28g)ea e K o0, 0

(o~ - (p+1)/2 k(Q) IV(ZI{Q))' (4.16)
2Pm(P-1)/2aD+1V, L, z

This shows that, for a fixed value af when the brane location tends to the AdS horizon, the

brane-induced contribution is exponentially suppressed.

If the length of theth dimension is much smaller than the lengths of the remginampact
dimensionsl| < Lj, to the leading order, the brane-induced contribution adis with the corre-
sponding quantity in the model with a single compact dimamsif the lengthL;. The expression
for the latter is obtained from the right-hand side of (4.b9)the replacements, = K,. If in
additionL| < z, the corresponding asymptotic expression is given by titg-tiand side of (4.11)
with zg — z instead ofz— 7y, and the brane-induced contribution is concentrated meabitane in
the regionzg — z < L. Similar to the VEV in the R-region, the current density istéron the brane
and vanishes on the brane for Dirichlet boundary condition.

Figure 5 displays the vacuum current density in the L-regmnDirichlet, Neumann and
Robin (with 3/a = —1/2) boundary conditions as a function of the phase in the pa&sdicity
condition along the compact dimensions. The graphs aréedldor zo/L = 1, z/zo = 0.8. The
dashed curve corresponds to the current density in the edsdthe brane.

30
[ N o=
2: 4 ‘\\
¥ /I -1/2 \\
r QA
o 1f 2
A L
o [
v [
s 0
Q L
N(u r
S
A
[ \\ ,I,
-2} N /
[ \\\~ " Y
-3t ]
-1.0 -0.5 0.0 0.5 1.0

Figure 5: The current density in the L-region as a functiondofor Dirichlet, Neumann and Robin (with
B/a= —1/2) boundary conditions. The graphs are plotted#piL = 1, z/zy = 0.8. The dashed curve
corresponds to the current density in the geometry withoeibrane.

In figure 6, ford = 11/2, we show the dependence of the raij¢j')/(j')m on z/zy in the
case of Robin boundary condition for several value3g& (numbers near the curves). As it
follows from the asymptotic (4.15), near the AdS boundagydharge flux density, (j') behaves
asZP+2*+1 For the Minkowskian VEV with the length of the compact dirsiem aL/z, equal to
the proper length on the AdS bulk, one hg9y O 2+1. Hence, the ratio plotted in figuire 6
vanishes on the AdS boundary Z¥.
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Figure 6: The ration (j')/(j')m versusz/z in the case of Robin boundary condition. The numbers near
the curves correspond to the valueg3gfn. For the phase we have takén= 11/2 andz,/L = 1.

5. Conclusion

We have discussed combined effects of the gravitationa &etl topology on the VEV of the
current density for a charged scalar field. In order to havexactly solvable problem we have
taken highly symmetric background geometry correspontting slice of AdS spacetime with a
toroidally compactified subspace. Currently, the AdS simeeis among the most popular back-
grounds in gravitational physics and appears in a numbeorkgts. The vacuum charge density
and the components of the current along uncompactified difmes vanish and the current den-
sity alonglth compact dimension is an odd periodic function of the pltasend an even periodic
function of the phaseg;, i # |. In particular, the current density is a periodic functidrihe mag-
netic fluxes with the period equal to the flux quantum. The appece of the vacuum currents is
an Aharonov-Bohm type effect and is closely related to th&nmaal topology of the background
spacetime. In the presence of the brane, in both the R- aredib+rs the VEV of the current density
is decomposed into the boundary-free and brane-induceilmations. Both these contributions
vanish on the AdS boundary. Near the horizon, the leading tethe asymptotic expansion of the
current density is conformally related to the correspogdjoantity on the Minkowski bulk with
compact dimensions. From the results in the R-region we b#airothe vacuum currents in the
generalized Randall-Sundrum 1-brane model with additioompact dimensions. We have shown
that, depending on the value of the Robin coefficient, theqiee of the brane can either increase
or decrease the current density. In particular, in the exesngonsidered, the modulus of the cur-
rent density takes its minimal value for Dirichlet boundaondition. Note that the current density
discussed above is a source of magnetic fields in the uncdifp@subspace. In particular, they
induce magnetic fields on the visible brane in braneworld etedf the Randall-Sundrum type.
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