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1. Introduction

The de Sitter (dS) spacetime is the maximally symmetric solution of the Einstein equations
with a positive cosmological constant. Its importance in gravitational physics is motivated by sev-
eral reasons. First, because of the high symmetry, a large number of physical problems are exactly
solvable on its background. A better understanding of the influence of the gravitational field on
physical processes on the dS bulk could serve as a way to deal with more complicated geometries.
The investigation of physical effects in dS spacetime is important for understanding the Universe
at both the early and late stages of its expansion. In most inflationary scenarios [1], the dS space-
time is employed to solve a number of problems in standard cosmology. During an inflationary
epoch, the quantum fluctuations generate seeds for the formation of large scale structures in the
Universe. More recently, cosmological observations have indicated that the expansion of the Uni-
verse at the present epoch is accelerating [2] and the corresponding dynamics are well described
by the model, with a positive cosmological constant as a dominant source. For this source, the
standard cosmology would lead to an asymptotic dS universe in the future.

In dS spacetime, the interaction of fluctuating quantum fields with the background gravita-
tional field gives rise to vacuum polarization. Another kindof vacuum polarization is induced by
the presence of boundaries. This effect, known as the Casimir effect (for reviews see [3]), is among
the most interesting macroscopic manifestations of nontrivial properties of the quantum vacuum.
The imposition of boundary conditions on quantum fields alters the spectrum of the zero-point
fluctuations and shifts the vacuum expectation values (VEVs) of physical quantities, such as the
energy density and stresses. As a consequence, forces ariseacting on constraining boundaries. The
particular features of these forces depend on the nature of the quantum field, the type of spacetime
manifold, the boundary geometry, and the specific boundary conditions imposed on the field.

In the present paper, for the electromagnetic field, we consider a problem with both types of
vacuum polarization coming from the background geometry and boundaries. Namely, we evaluate
the vacuum expectation value for the electric field squared induced by a cylindrical shell on the
background of(D+1)-dimensional dS spacetime. The study of the Casimir effect for geometries
involving cylindrical boundaries have attracted considerable theoretical and experimental interest.
In most studies (see, for example, references given in [4]) the geometry of the background space-
time is Minkowskian. Combined effects of a cylindrical boundary and nontrivial topology induced
by a cosmic string are discussed in [5]. In [6, 7, 4] the Casimir densities for a scalar field are
investigated for planar, spherically and cylindrically symmetric boundaries in dS spacetime.

The paper is organized as follows. In the next section we present the cylindrical modes for
the electromagnetic field in dS spacetime with an arbitrary number of spatial dimensions in the
presence of a cylindrical shell on which the field obeys perfect conductor boundary conditions. By
using these modes, in sections 3 and 4, we evaluate the VEV of the electric field squared inside
and outside the cylindrical shell. This VEV is among the mostimportant characteristics of the
electromagnetic vacuum. The main results are summarized insection 5.

2. Electromagnetic cylindrical modes in dS spacetime

We consider a quantum electromagnetic field in background ofa (D + 1)-dimensional dS
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spacetime, in the presence of a perfectly conducting cylindrical shell having the radiusa. In ac-
cordance with the problem symmetry, we will write the corresponding line element in cylindrical
coordinates(r,φ ,z):

ds2 = dt2−e2t/α [dr2+ r2dφ2+(dz)2], (2.1)

wherez=
(

z3, ...,zD
)

. The parameterα is related to the cosmological constantΛ through the
expressionα2 = D(D−1)/(2Λ). In addition to the synchronous time coordinatet, it is convenient
to introduce the conformal timeτ in accordance withτ =−αe−t/α , −∞ < τ < 0. In terms of this
coordinate the metric tensor takes a conformally flat form:gik = (α/τ)2ηik, with ηik being the
Minkowskian metric tensor in Cartesian coordinates.

Here we are interested in the changes of the VEVs for the electromagnetic field induced by
the cylindrical boundary. For a free electromagnetic field the Maxwell equations have the form

1
√

|g|
∂ν

(

√

|g|F µν
)

= 0, (2.2)

whereg is the determinant of the metric tensor andFµν is the electromagnetic field tensor,Fµν =

∂µAν −∂νAµ . We assume that on the surfacer = a the field obeys the boundary condition

nµF∗
µν1···νD−1

= 0, (2.3)

wherenµ is the normal to the boundary,F∗
µν1···νD−1

is the dual of the field tensorFµν . For D = 3
the condition (2.3) reduces to the boundary condition on thesurface of a perfect conductor. The
VEV for a physical quantityF

{

Aµ ,Aν
}

, bilinear in the field operator, can be evaluated by using
the mode-sum formula

〈0|F
{

Aµ ,Aν
}

|0〉= ∑
β

F{A(β)µ ,A
∗
(β)ν}, (2.4)

where{A(β)µ ,A
∗
(β)ν} is a complete set of solutions of the classical field equations obeying the

boundary conditions of the problem. Hereβ stands for a set of quantum numbers specifying the
modes. Hence, for the evaluation of the VEVs, in this scheme one needs to know the corresponding
mode functions.

In what follows we will work in the coordinates(τ , r,φ ,z). In the Coulomb gauge one has
A0 = 0, ∂l (

√

|g|Al ) = 0, l = 1, ...,D. For the geometry under consideration, the latter equationis
reduced to∂l (rAl ) = 0 which is the same as that in the Minkowski spacetime. If we present the
solution in the factorized form,A(β)i = T(τ)S(β)i(xl ), then it can be shown that the parts of the
mode functions corresponding toS(β)i(x

l ) can be found in a way similar to the for the Minkowski
bulk, whereas for the functionT(τ) one getsT(τ) = ηD/2−1ZD/2−1(ωη) (for the definition ofω
see below), whereη = |τ | andZν(x) is a cylinder function of the orderν . It can be taken as a linear
combination of the Hankel functionsH(1,2)

ν (x). The relative coefficient in the linear combination
depends on the vacuum state under consideration. We assume that the field is prepared in the
Bunch-Davies vacuum for whichZν(x) = H(1)

ν (x).
As a result, for the modes realizing the Bunch-Davies vacuumstate in the region inside the

cylindrical shell,r < a, one has the expressions

A(β) =Cβ ηD/2−1H(1)
D/2−1(ωη)(

im
r
,−r∂r ,0, . . . ,0)Jm(γr)eimφ+ik·z, (2.5)
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for the polarizationσ = 1, and

A(β) = ωCβ ηD/2−1H(1)
D/2−1(ωη)

(

εσ −
i

ω2

D

∑
l=3

kl ε l
σ ∇

)

Jm(γr)eimφ+ik·z, (2.6)

for the polarizationsσ = 2, . . . ,D−1. Here,A(β) = (A(β)1, . . . ,A(β)D), m= 0,±1,±2, . . ., Jm(x) is
the Bessel function,k = (k3, ...,kD), k= |k|, ∇ = (∂ r , ∂φ , ∂z1, ...,∂zD), and

ω2 = γ2+k2. (2.7)

For the polarization vectorsεσ = (0,0,ε3
σ , . . . ,εD

σ ), σ = 2, . . . ,D−1, one has the relations

D

∑
l ,n=3

(

ω2δ l
n+knkl

)

εσ l εn
σ ′ =−γ2δσσ ′ , (2.8)

and
D−1

∑
σ=2

εσ µεν
σ =

(

kµkν − γ2δ ν
µ
)

/ω2. (2.9)

The eigenvalues for the quantum numberγ are determined by the boundary condition (2.3).
For the modeσ = 1 the allowed values forγ are roots of the equationJ′m(γa) = 0. For the modes
σ = 2, . . . ,D− 1, the radial derivative enters in the expression for the componentA1 only. For
these modes the boundary condition is reduced toJm(γa) = 0. In what follows we will denote the
eigenmodes byγa = γ(λ)m,n, n = 1,2, ..., whereλ = 1 for σ = 1 andλ = 0 for σ = 2,3, . . . ,D− 1
and, hence,

J(λ)m (γ(λ)m,n) = 0, (2.10)

where f (0)(x) = f (x) and f (1)(x) = f ′(x). Consequently, in the interior region for the set of quan-
tum numbers specifying the modes one hasβ = (n,m,σ ,k).

The normalization coefficientsCβ in (2.5) and (2.6) are determined from the orthonormaliza-
tion condition for the vector potential:

∫

dDx
√

|g|[A∗
(β ′)ν(x)∇

0Aν
(β)(x)−∇0A∗

(β ′)ν(x)A
ν
(β)(x)] = 4iπδββ ′ , (2.11)

where the integration over the radial coordinate goes over the region inside the cylinder. By using
the relation (2.8) it can be seen that the modes (2.6) are orthogonal. From (2.11) one finds

|Cσ |
2 =

Tm(γa)
2(2πα)D−3aγ

, (2.12)

for σ = 1, . . . ,D−1, where we have introduced the notation

Tm(x) = x
[

x2J′2m(x)+
(

x2−m2)J2
m(x)

]−1
. (2.13)
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3. VEV of the electric field squared inside the shell

As a local characteristic of the vacuum state we consider theVEV of the electric field squared.
This VEV is obtained by making use of the mode-sum formula

〈0|E2(x)|0〉 ≡ 〈E2(x)〉 =−g00gik ∑
β

∂0Aβ i(x)∂0A∗
βk(x). (3.1)

The expression in the right-hand side is divergent and requires a regularization with the subsequent
renormalization. The regularization can be done by introducing a cutoff function or by the point
splitting. The consideration below does not depend on the specific regularization scheme. Sub-
stituting the eigenfunctions (2.5) and (2.6) into the mode-sum, for the VEV inside the shell we
find

〈E2〉 =
26ADηD+2

αD+1a4

∞

∑′

m=0

∫ ∞

0
dkkD−3 ∑

λ=0,1

∞

∑
n=1

Tm(γ
(λ)
m,n)

×γ(λ)3m,n F(λ)
m [k,Jm(γ

(λ)
m,nr/a)]LD/2−2(ωη), (3.2)

where the prime on the sign of the sum means that the termm = 0 should be taken with the
coefficient 1/2,

AD =
1

(4π)D/2Γ(D/2−1)
, (3.3)

and we have used the notation

Lν(x) = Kν(xe−iπ/2)Kν(xeiπ/2), (3.4)

Here, instead of the Hankel functions we have introduced theMacdonald functionKν(x). The
functionF(λ)

m [k, f (x)] is defined by the relations

F(λ)
m [k, f (x)] =

{

(k2r2/x2)
[

f ′2(x)+m2 f 2(x)/x2
]

+
[

(D−3)
(

1+k2r2/x2
)

+1
]

f 2(x), λ = 0,
(1+k2r2/x2)

[

f ′2(x)+m2 f 2(x)/x2
]

, λ = 1.
(3.5)

The eigenvaluesγ(λ)m,n are given implicitly, as roots of the equation (2.10), and the representation
(3.2) is not convenient for the further investigation of theVEV. In order to evaluate the mode-sum
in (3.2), we apply to the series overn the generalized Abel-Plana summation formula [8]

∞

∑
n=1

Tm(γ
(λ)
m,n) f (γ(λ)m,n) =

1
2

∫ ∞

0
dx f (x)+

π
4

Resz=0 f (z)
Y(λ)

m (z)

J(λ)m (z)

−
1

2π

∫ ∞

0
dx

K(λ)
m (x)

I (λ)m (x)

[

e−mπ i f
(

xeiπ/2
)

+emπ i f
(

xe−iπ/2
)]

, (3.6)

whereYm(z) is the Neumann function andIm(x) is the modified Bessel function of the first kind. In
(3.6) it is assumed that the functionf (z) is analytic in the right half plane of the complex variable
z. For the series in (3.2), as the functionf (z) we take

f (z) = z3LD/2−2(η
√

z2/a2+k2)F(λ)
m [k,Jm(zr/a)] . (3.7)

5
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After the application of the summation formula, the VEV of the electric field squared is de-
composed as

〈E2〉= 〈E2〉0+ 〈E2〉b. (3.8)

Here, the first term in the right-hand side comes from the firstintegral in (3.6) and is the VEV in
dS spacetime in the absence of boundaries:

〈

E2〉

0 =
25ADηD+2

αD+1

∞

∑′

m=0

∫ ∞

0
dkkD−3

∫ ∞

0
dxx3F(0)m[k,Jm(xr)]LD/2−2(η

√

k2+x2), (3.9)

where

F(0),m[k, f (x)] =

(

1+2
k2r2

x2

)[

f ′2(x)+
m2

x2 f 2(x)

]

+

[

(D−3)

(

1+
k2r2

x2

)

+1

]

f 2(x). (3.10)

The part of the VEV
〈

E2
〉

b is the contribution of the last integral of (3.6). This part is induced by
the presence of the cylindrical boundary and is given by the expression

〈

E2〉

b =
25AD

αD+1

∞

∑′

m=0
∑

λ=0,1

∫ ∞

0
dxxD+1 K(λ)

m (xa/η)

I (λ)m (xa/η)

×

∫ 1

0
dss
(

1−s2)D/2−2
G(λ)

m [s, Im(xr/η)] fD/2−2(xs) , (3.11)

with the notations
fν(x) = Kν (x) [I−ν (x)+ Iν (x)] , (3.12)

and

G(λ)
m [s, f (x)] =

{

(

1−s2
)[

f ′2(x)+m2 f 2(x)/x2
]

+
[

s2(D−3)+1
]

f 2(x), λ = 0,
−s2

[

f ′2(x)+m2 f 2(x)/x2
]

, λ = 1.
(3.13)

The representation (3.11) is valid for all even values ofD and forD < 7 in the case of oddD.
As is seen from (3.9) and (3.11), in the new representation ofthe VEV the explicit knowledge

of the eigenvaluesγ(λ)m,n is not required. Another advantage is that we have explicitly separated
the part corresponding to the boundary-free dS spacetime. The presence of the boundary does
not change the local geometry for points outside of the shell. This means that at those points the
divergences are the same in both problems, in the absence andin the presence of the boundary.
From here it follows that the divergences in (3.8) are contained in the part〈E2〉0 only, whereas the
boundary-induced contribution

〈

E2
〉

b is finite for points away from the boundary and the regular-
ization, implicitly assumed in the discussion above, can besafely removed. Hence, the renormal-
ization is required for the boundary-free part only. Note that the expression for the latter can be
further simplified after the summation overm by using the standard result for the series involving
the square of the Bessel function.

Let us consider the properties of the boundary-induced contribution in the VEV of the field
squared. First of all, by taking into account that forD > 3 one hasG(0)

m [s, f (x)]> 0, G(1)
m [s, f (x)]<

6
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0, and the functionfD/2−2(x) is positive for the values ofD for which the representation (3.11) is
valid, from (3.11) it follows that

〈

E2
〉

b is always positive. The VEV of the electric field squared
inside a cylindrical shell in Minkowski spacetime is obtained the limiting transitionα → ∞ for a
fixed value oft. In this limit one hasη ≈ α − t and, hence,η is large. Passing to a new integration
variabley= x/η , we see thatη appears in the argument of the functionfD/2−2 (ysη). By taking
into account that for large arguments one hasfD/2−2 (u) ≈ 1/u, after the integration overs, one
gets limα→∞

〈

E2
〉

b =
〈

E2
〉

(M)b, where

〈

E2〉

(M)b =
4(4π)(1−D)/2

Γ((D+1)/2)

∞

∑′

m=0
∑

λ=0,1

∫ ∞

0
dxxD K(λ)

m (ax)

I (λ)m (ax)
G(λ)
(M)m[Im(rx)] , (3.14)

with

G(λ)
(M)m[ f (x)] =

{

(D−2)
[

f ′2(x)+ (m2/x2+2) f 2(x)
]

, λ = 0,
−
[

f ′2(x)+m2 f 2(x)/x2
]

, λ = 1,
(3.15)

is the VEV of the electric field squared inside a cylindrical shell in the Minkowski bulk.

In the special case of 4-dimensional dS spacetime one hasD = 3 and f−1/2(u) = 1/u. After
the integration overs in (3.11), we find

〈

E2〉

b = (η/α)4〈E2〉

(M)b , (3.16)

where
〈

E2
〉

(M)b is given by (3.14) withD = 3. In this case, the VEV of the field squared is re-
lated to the corresponding result in Minkowski spacetime bystandard conformal transformation
with the conformal factor(η/α)4. This is a direct consequence of the conformal invariance ofthe
electromagnetic field inD = 3 spatial dimensions and of the conformal flatness of the background
geometry. Note that the Casimir energy of an infinite perfectly conducting cylindrical shell in back-
ground of 4-dimensional Minkowski spacetime has been evaluated in [9] on the base of a Green’s
function technique with an ultraviolet regulator. Later the corresponding result was rederived by
the zeta function technique [10, 11] and by using the mode-by-mode summation technique [12].
The VEV of the energy-momentum tensor inside and outside of the shell has been investigated in
[13].

On the axis of the shell,r = 0, the only nonzero contribution to the boundary-induced VEV
comes from the terms in (3.11) withm= 0,1:

〈

E2〉

b,r=0 =
24AD

αD+1

(η
a

)D+2∫ ∞

0
dxxD+1

∫ 1

0
dss
(

1−s2)D/2−2
fD/2−2 (xsη/a)

×

[

(s2 (D−3)+1)
K0(x)
I0(x)

+ (1−s2)
K1(x)
I1 (x)

−s2K′
1(x)

I ′1(x)

]

. (3.17)

The shell-induced VEV diverges on the boundary. For points near the boundary the contribution
of the modes with small wavelengths dominate and at distances from the shell smaller than the
curvature radius of the dS spacetime the influence of the gravitational field is small. The leading
term in the expansion with respect to the distance coincideswith that for the shell in Minkowski
bulk.

7
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4. Field squared in the exterior region

In the region outside the shell, the eigenfunctions for the vector potential, obeying the bound-
ary condition (2.3), are given by the formulae (2.5) and (2.6) with the replacement

Jm(γr)→ g(λ)m (γa,γr) = Jm(γr)Y(λ)
m (γa)−Ym(γr)J(λ)m (γa). (4.1)

Now, in the normalization condition (2.11) the integrationover the radial coordinate goes over
the regiona6 r < ∞ and in the right-hand side the delta symbol is understood as the Dirac delta
functionδ (γ − γ ′). As the normalization integral diverges forγ ′ = γ , the main contribution into the
integral comes from large values ofr. By making use of the asymptotic formulas for the Bessel
and Neumann functions for large arguments, one gets

|Cσ |
2 =

[J(λ)2m (γa)+Y(λ)2
m (γa)]−1

4(2πα)D−3γ
. (4.2)

For the VEV of the field squared one finds

〈E2〉 =
25ADηD+2

αD+1

∞

∑′

m=0

∫ ∞

0
dkkD−3

∫ ∞

0
dγ

×γ3 ∑
λ=0,1

F(λ)
m [k,g(λ)m (γa,γr)]

J(λ)2m (γa)+Y(λ)2
m (γa)

LD/2−2(ωη). (4.3)

Similar to the case of the interior region, we assume that some regularization scheme is used for
the right-hand side of (4.3). In order to extract the boundary-free contribution, given by (3.9), we
use the relation

F(λ)
m [k,g(λ)m (γa,γr)]

J(λ)2m (γa)+Y(λ)2
m (γa)

= F(λ)
m [k,Jm(γa)]−

1
2 ∑

j=0,1

J(λ)m (γa)

H( j)(λ)
m (γa)

F(λ)
m [k,H( j)

m (γa)]. (4.4)

This allows to present the VEV of the field squared in the decomposed form (3.8) with the shell-
induced part

〈

E2〉

b = −
24ADηD+2

αD+1

∞

∑′

m=0

∫ ∞

0
dkkD−3 ∑

j=0,1
∑

λ=0,1

∫ ∞

0
dγ

×γ3 J(λ)m (γa)

H( j)(λ)
m (γa)

F(λ)
m [k,H( j)

m (γa)]LD/2−2(ωη). (4.5)

Now, we rotate the contour of integration overγ by the angleπ/2 for the term withj = 1 and by
the angle−π/2 for j = 2. Introducing the modified Bessel function, the expression(4.5) takes the
form

〈

E2〉

b =
25AD

αD+1

∞

∑′

m=0
∑

λ=0,1

∫ ∞

0
dxxD+1 I (λ)m (ax/η)

K(λ)
m (ax/η)

×
∫ 1

0
dss
(

1−s2)D/2−2
G(λ)

m [s,Km(xr/η)] fD/2−2(xs) , (4.6)

8
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where the functionsG(λ)
m [s, f (x)] are defined by the formulae (3.13). Comparing this result with

(3.11), we see that the expressions for the interior and exterior regions are related by the interchange
Im ⇆ Km. The representation (4.5) is valid for even values ofD and for odd valuesD < 7. Similar
to the case of the interior region, for these values ofD, the boundary-induced VEV is positive in
the exterior region.

At large proper distances from the shell compared with the dScurvature radius, we have
r/η ≫ 1. Introducing in (4.5) a new integration variabley = xr/η , we expand the functions
I (λ)m (ya/r)/K(λ)

m (ya/r) and fD/2−2 (ysη/r) for small values of the arguments. The leading con-
tribution comes from the term withλ = 0, m= 0. For evenD > 4 one gets

〈

E2〉

b ≈
8(2D+1)(D−2)Γ3(D/2+1)

D(D−4)Γ(D+2)πD/2αD+1 ln(r/a)
(η/r)D+2. (4.7)

In the caseD = 4 the leading term is given by

〈

E2〉

b ≈
12π−2(η/r)6

5α5 ln(r/a) ln(r/η)
. (4.8)

For D = 3 andD = 5 we find

〈

E2〉

b ≈
2(η/r)4

3πα4 ln(r/a)
, D = 3,

〈

E2〉

b ≈
7(η/r)6

10π2α6 ln(r/a)
, D = 5. (4.9)

Note that for a cylindrical shell in Minkowski bulk, at largedistance from the shell,r ≫ a, the
leading term in the corresponding asymptotic expansion is given by

〈

E2〉

(M)b ≈
(3D−1)(D−2)Γ3((D+1)/2)

π(D−1)/2(D−1)Γ(D+1)rD+1 ln(r/a)
, (4.10)

for all dimensions withD > 3. As is seen, the influence of the gravitational field is essential at
distances from the shell larger than the curvature radius ofthe background spacetime.

5. Conclusion

We have investigated the combined effects of the backgroundgravitational field and bound-
aries on the characteristics of the electromagnetic vacuum. In order to have an exactly solvable
problem we have considered highly symmetric bulk and boundary geometries: cylindrical shell in
background of dS spacetime. On the shell the field operator obeys the boundary condition that is
a generalization of the perfect conductor boundary condition for an arbitrary number of spatial di-
mensions. We have assumed that the field is prepared in the Bunch-Davies vacuum state. The VEVs
of physical observables, bilinear in the field operator, areexpressed in the form of the summation
over a complete set of the field modes obeying the boundary conditions. We have constructed these
modes for the problem under consideration. For separate polarizations, the corresponding vector
potentials are given by the expressions (2.5) and (2.6) in the region inside the shell and the eigen-
values forγ are determined by the equation (2.10). In the exterior region the eigenvalues ofγ are
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continuous and the mode functions are obtained from the interior ones by the replacement (4.1) in
the radial functions.

As a physical characteristic of the vacuum state we have investigated the VEV of the electric
field squared. In the corresponding mode-sum, for the summation over the eigenvalues ofγ we
have used the summation formula (3.6). This allowed us to extract from the VEV the boundary-
free part and to present the contribution induced by the shell in the form of strongly convergent
integral for points away from the boundary. In this way, the renormalization is reduced to the one
for the boundary-free dS spacetime. The boundary-induced contributions to the VEV of the electric
field squared in the interior and exterior regions are given by the expressions (3.11) and (4.6). In
both the regions these contributions are positive. For points near the boundary, at distances from
the shell smaller than the curvature radius of the dS spacetime, the influence of the gravitational
field on the vacuum local characteristics is small. We have shown that the effect of the background
curvature is essential at distances from the shell larger than the dS curvature radius.
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