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1. Introduction

The de Sitter (dS) spacetime is the maximally symmetrictemuwof the Einstein equations
with a positive cosmological constant. Its importance iavgational physics is motivated by sev-
eral reasons. First, because of the high symmetry, a langgeiof physical problems are exactly
solvable on its background. A better understanding of tfleeénce of the gravitational field on
physical processes on the dS bulk could serve as a way to déainre complicated geometries.
The investigation of physical effects in dS spacetime isdrtgmt for understanding the Universe
at both the early and late stages of its expansion. In mostimrfilary scenarios [1], the dS space-
time is employed to solve a number of problems in standarchotisgy. During an inflationary
epoch, the quantum fluctuations generate seeds for the tiomaf large scale structures in the
Universe. More recently, cosmological observations hadeated that the expansion of the Uni-
verse at the present epoch is accelerating [2] and the pomdsig dynamics are well described
by the model, with a positive cosmological constant as a danti source. For this source, the
standard cosmology would lead to an asymptotic dS univerteeifuture.

In dS spacetime, the interaction of fluctuating quantum dielith the background gravita-
tional field gives rise to vacuum polarization. Another kimfdvacuum polarization is induced by
the presence of boundaries. This effect, known as the Casffact (for reviews see [3]), is among
the most interesting macroscopic manifestations of naatrproperties of the quantum vacuum.
The imposition of boundary conditions on quantum fieldsraltbe spectrum of the zero-point
fluctuations and shifts the vacuum expectation values (JB¥physical quantities, such as the
energy density and stresses. As a consequence, forcea@iiggon constraining boundaries. The
particular features of these forces depend on the natuteafuantum field, the type of spacetime
manifold, the boundary geometry, and the specific boundamngitions imposed on the field.

In the present paper, for the electromagnetic field, we densi problem with both types of
vacuum polarization coming from the background geometd/taundaries. Namely, we evaluate
the vacuum expectation value for the electric field squanedided by a cylindrical shell on the
background of D + 1)-dimensional dS spacetime. The study of the Casimir effacgéometries
involving cylindrical boundaries have attracted consadbée theoretical and experimental interest.
In most studies (see, for example, references given in [ geometry of the background space-
time is Minkowskian. Combined effects of a cylindrical bdany and nontrivial topology induced
by a cosmic string are discussed in [5]. In [6, 7, 4] the Casieinsities for a scalar field are
investigated for planar, spherically and cylindricallyreyetric boundaries in dS spacetime.

The paper is organized as follows. In the next section weeptethe cylindrical modes for
the electromagnetic field in dS spacetime with an arbitramnimer of spatial dimensions in the
presence of a cylindrical shell on which the field obeys mrfenductor boundary conditions. By
using these modes, in sections 3 and 4, we evaluate the VEMedflectric field squared inside
and outside the cylindrical shell. This VEV is among the miogbortant characteristics of the
electromagnetic vacuum. The main results are summarizeekiion 5.

2. Electromagnetic cylindrical modes in dS spacetime

We consider a quantum electromagnetic field in background @ + 1)-dimensional dS
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spacetime, in the presence of a perfectly conducting aytiatishell having the radiua. In ac-
cordance with the problem symmetry, we will write the copasding line element in cylindrical
coordinategr, ¢,z):

ds = dt? — e2/%[dr? 4 r?d¢? + (dz)?], (2.1)

wherez = (23,...,zD). The parameten is related to the cosmological constahtthrough the
expressiora? = D(D — 1)/(2A). In addition to the synchronous time coordingti is convenient
to introduce the conformal timein accordance witli = —ae /%, —o0 < T < 0. In terms of this
coordinate the metric tensor takes a conformally flat fogw:= (a/1)?ni, with ni being the
Minkowskian metric tensor in Cartesian coordinates.

Here we are interested in the changes of the VEVs for therelaegnetic field induced by
the cylindrical boundary. For a free electromagnetic fiblkel Maxwell equations have the form

b
Vldl

whereg is the determinant of the metric tensor &fg is the electromagnetic field tenséi,, =
duA, — dyA,. We assume that on the surface athe field obeys the boundary condition

2, (VIgF*") =0, (2.2)

nHE*

HV1---Vp-_1

=0, (2.3)

wheren is the normal to the boundar¥,;,,...,, , is the dual of the field tensd¥,,. ForD =3

the condition (2.3) reduces to the boundary condition onstiéace of a perfect conductor. The
VEV for a physical quantity- {AH,AV}, bilinear in the field operator, can be evaluated by using
the mode-sum formula

(OIF {Au, AV} [0) = %F{A(IB)WAEKB)V}’ (2.4)

where {A(B)uvAfp)v} is a complete set of solutions of the classical field equatiobeying the
boundary conditions of the problem. HeBestands for a set of quantum numbers specifying the
modes. Hence, for the evaluation of the VEVSs, in this schengeneeds to know the corresponding
mode functions.

In what follows we will work in the coordinateér,r, @,z). In the Coulomb gauge one has

=0, d|(\/@A') =0,1=1,...,D. For the geometry under consideration, the latter equagion

reduced tad (rA') = 0 which is the same as that in the Minkowski spacetime. If wes@nt the
solution in the factorized formé\g); = T(7)S)i(X ), then it can be shown that the parts of the
mode functions corresponding fpﬁ), (x') can be found in a way similar to the for the Minkowski
bulk, whereas for the functioi (1) one getsT () = n®/2-1Zy ,_1(wn) (for the definition ofc
see below), wherg = || andZ,(x) is a cylinder function of the order. It can be taken as a linear
combination of the Hankel functioriﬂél’z)(x). The relative coefficient in the linear combination
depends on the vacuum state under consideration. We asbainthé field is prepared in the
Bunch-Davies vacuum for which, (X) = H\(,l)(x).

As a result, for the modes realizing the Bunch-Davies vacstate in the region inside the
cylindrical shell,r < a, one has the expressions

A =Can® > HS), o ( n)( 10,0, .., 0)Jm(yr)dm? k7, (2.5)
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for the polarizatioro = 1, and

i | D .
A = wCpn>> My, () (ga T w? 23@9) In(yr) @Mz, (2.6)
|=

for the polarizationsr = 2,...,D — 1. Here Ay = (Ag)1,-- -, Ap)p), M= 0,£1,£2,..., In(X) is
the Bessel functiork = (ks, ...,kp), k= [k|, 0= (9,, 09, 04, ...,0% ), and

w? = P+ K2 (2.7)

For the polarization vectors, = (0,0,&3,...,e2), 0 =2,...,D — 1, one has the relations

(wzéé - knk') £01€y = — Y000, (2.8)

3

TM o

|7
and

D-1
> outy = (kuk” - Vo) [, (2.9)
0=2

The eigenvalues for the quantum numlyesire determined by the boundary condition (2.3).
For the modes = 1 the allowed values foy are roots of the equatiadj,(ya) = 0. For the modes
o =2,...,D—1, the radial derivative enters in the expression for the pmmentA; only. For
these modes the boundary condition is reducegi,{ga) = 0. In what follows we will denote the
eigenmodes bya = y,(n)‘% n=12.. whereA =1forc=1andA =0forc=23,...,.D—1
and, hence,

I () =0, (2.10)

d

wheref(©(x) = f(x) and f(Y(x) = f(x). Consequently, in the interior region for the set of quan-
tum numbers specifying the modes one Bas (n,m, o,k).

The normalization coefficientSg in (2.5) and (2.6) are determined from the orthonormaliza-
tion condition for the vector potential:

/ d®xv/19][A gy () T°Alg) () — TOAg:), (AT (X)] = 4iT0pp:, (2.11)

where the integration over the radial coordinate goes dweerdgion inside the cylinder. By using
the relation (2.8) it can be seen that the modes (2.6) aregutial. From (2.11) one finds

Tm(ya)

2
S LN A 2.12
foroc=1,...,D—1, where we have introduced the notation
Ti(X) = X pCIZ(X) + (& — ) ()] . (2.13)
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3. VEV of the electric field squared inside the shell

As a local characteristic of the vacuum state we consideYE¥é of the electric field squared.
This VEV is obtained by making use of the mode-sum formula

(O1E2(3)|0) = (E2(x)) = —g°%g* 5 GoAApi (X)doA3, (). (3.1)
B

The expression in the right-hand side is divergent and reguai regularization with the subsequent
renormalization. The regularization can be done by intcotly a cutoff function or by the point
splitting. The consideration below does not depend on tleeip regularization scheme. Sub-
stituting the eigenfunctions (2.5) and (2.6) into the msdes, for the VEV inside the shell we
find

AN Lr ® s s v T )
(E?) = 220N~ / dkie- ()
abtiat rTZO 0 )\:zo,lnzl
Xy [k (Yt /) Lo 2 a(cn), (3.2)
where the prime on the sign of the sum means that the tarm 0 should be taken with the
coefficient 2,

1
= 3.3
A0 = amPrr(D2=1) (33)
and we have used the notation
Ly (%) = Ky (xe 2K, (xd™?), (3.4)

Here, instead of the Hankel functions we have introducedMbedonald functiorK, (x). The
(A)

functionFny ' [k, f(X)] is defined by the relations
) (K2r2/x2) [£2(x) + mPf2(x) /x?] 4 [(D — 3) (1+K?r2/x?) + 1] f2(x), A =0,
Fm ' [k, f(x)] = 2,02 /\2\ [ 72 2 2
(1+K2r2/x2) [£72(x) + mP £2(x) /x?] | A=1
(3.5)
The eigenvalue#}ffr), are given implicitly, as roots of the equation (2.10), arelréfpresentation
(3.2) is not convenient for the further investigation of ¥EV. In order to evaluate the mode-sum
in (3.2), we apply to the series ovethe generalized Abel-Plana summation formula [8]

- . )
) ANy 1 s Ym' (2)
3 Tl () =5 | axt(x)+ JResof @) pars
1/ KT(T{\) (X) —mri i11/2 T —i71/2
_Zr/o dxlw(x) et (xé2) et (xe72)] (3.6)

whereYy, (z) is the Neumann function arg (x) is the modified Bessel function of the first kind. In
(3.6) it is assumed that the functidr{z) is analytic in the right half plane of the complex variable
z For the series in (3.2), as the functibrz) we take

f(2) = PLpja 2(N\/22/82 + KR)FY [k, Im(2r/a)] . (3.7)
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After the application of the summation formula, the VEV oétélectric field squared is de-
composed as
(E?) = (E®)o+ (E%)p. (3.8)

Here, the first term in the right-hand side comes from the ifitsgral in (3.6) and is the VEV in
dS spacetime in the absence of boundaries:

25A D+2 00 0
(%), =200~ S/ /0 dkio-3 /0 AXRF ok Im (X)]Lp 2 2(1 VI +32),  (3.9)
m:O

aD+l

where
Fomlk f(x)] = <1+2$) [f’z(x)+gf2(x)}
+ [(D—3) <1+ %) +1] f2(x). (3.10)

The part of the VEV<E2>b is the contribution of the last integral of (3.6). This parinduced by
the presence of the cylindrical boundary and is given by Xpeession

25A Km xa/n)
E?), = D d )P”
()= 233 R Ty
></0 dss(l—sz)D/Z_2 (A)[s,lm (xr/n)] fo2-2(xs), (3.11)

with the notations
fu(X) =Ky (X) [I-y (X) + 1y (X)], (3.12)

and

B 7] 2 2 o 2 _
G%\)[S’f(x)]:{(l Q) [f (Xizr[f;(gz);;;([;z/(;},s)ﬂ]f (x),gztl)j (3.1

The representation (3.11) is valid for all even value®aind forD < 7 in the case of od®.

As is seen from (3.9) and (3.11), in the new representatiadgheo¥EV the explicit knowledge
of the eigenvalues/r(,{‘% is not required. Another advantage is that we have expliséparated
the part corresponding to the boundary-free dS spacetinie pfesence of the boundary does
not change the local geometry for points outside of the sfiglls means that at those points the
divergences are the same in both problems, in the absencim dimel presence of the boundary.
From here it follows that the divergences in (3.8) are comtdiin the partE?)o only, whereas the
boundary-induced contributio{‘EZ>b is finite for points away from the boundary and the regular-
ization, implicitly assumed in the discussion above, casdfely removed. Hence, the renormal-
ization is required for the boundary-free part only. Notattthe expression for the latter can be
further simplified after the summation overby using the standard result for the series involving
the square of the Bessel function.

Let us consider the properties of the boundary-inducedritaion in the VEV of the field
squared. First of all, by taking into account that e 3 one has\y [s, f(x)] >0, G [s, f(X)] <
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0, and the functiorfp »,_»(x) is positive for the values db for which the representation (3.11) is
valid, from (3.11) it follows that{E?), is always positive. The VEV of the electric field squared
inside a cylindrical shell in Minkowski spacetime is ob&ihthe limiting transitionrr — oo for a
fixed value oft. In this limit one has) ~ a —t and, hencer is large. Passing to a new integration
variabley = x/n, we see that) appears in the argument of the functiésy,_, (ysn). By taking
into account that for large arguments one figs_, (u) ~ 1/u, after the integration oves, one

gets limy ., (E?), = <E2>(M)b, where

4(4m(-D)/z 2 / dx )PKﬁ,ﬁ‘)(ax) (A)

(Sl = F(D 7072, 20,0 P g im0
with
(D—2) [f2(q) + (m?/x*+2)f2(x)] , A =0,
GE:/l))m[f (X)] - { % (X)+m2f2( )/XZ] : ] A = 1, (3-15)

is the VEV of the electric field squared inside a cylindridaél in the Minkowski bulk.
In the special case of 4-dimensional dS spacetime on®has andf_;,(u) = 1/u. After
the integration ovesin (3.11), we find

(E%)p = (n/a)*(E?) )p- (3.16)

where<E2>(M)b is given by (3.14) withD = 3. In this case, the VEV of the field squared is re-
lated to the corresponding result in Minkowski spacetimestandard conformal transformation
with the conformal factofn /a)?. This is a direct consequence of the conformal invariandbeof
electromagnetic field iD = 3 spatial dimensions and of the conformal flatness of thedrackd
geometry. Note that the Casimir energy of an infinite pelfestinducting cylindrical shell in back-
ground of 4-dimensional Minkowski spacetime has been avetlin [9] on the base of a Green’s
function technique with an ultraviolet regulator. Latee ttorresponding result was rederived by
the zeta function technique [10, 11] and by using the modeibge summation technique [12].
The VEV of the energy-momentum tensor inside and outsidaethell has been investigated in
[13].

On the axis of the shell, = 0, the only nonzero contribution to the boundary-inducedvWE
comes from the terms in (3.11) with= 0, 1:

<E2>b,r:0 ngﬁDl D+2/ dX)PH/ dss(1- 52)D/ZZfD/z 2(xsn/a)
Ko() oK) oKi(X)
[(SZ(D 3)+1)I ) +(1-9) () sZH(X) . (3.17)

The shell-induced VEV diverges on the boundary. For poie@r the boundary the contribution
of the modes with small wavelengths dominate and at distafroen the shell smaller than the
curvature radius of the dS spacetime the influence of thatgtenal field is small. The leading
term in the expansion with respect to the distance coincidésthat for the shell in Minkowski
bulk.
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4. Field squared in the exterior region

In the region outside the shell, the eigenfunctions for thetar potential, obeying the bound-
ary condition (2.3), are given by the formulae (2.5) and)#ih the replacement

() ﬁ,f‘)(ya). 4.1)

In(yr) = g’ (va 1) = Jn(yr) Ve
Now, in the normalization condition (2.11) the integratiover the radial coordinate goes over
the regiona < r < o and in the right-hand side the delta symbol is understooti@®trac delta
functiond(y—y'). As the normalization integral diverges fgr= y, the main contribution into the
integral comes from large values of By making use of the asymptotic formulas for the Bessel
and Neumann functions for large arguments, one gets

(va) —Ym(yr)

35 %(va) + Yo *(va) |t

= 4.2

Cal 4(2ma)P3y (4-2)
For the VEV of the field squared one finds
25AD D+2
€7 = =91 — z/ dki®- 3/ dy
EM Kk g?)
,Gm - (ya, yr

a5 m oon DRyl ). @3)

1 %1307 (va) + Y 2 (va)

Similar to the case of the interior region, we assume thatesmgularization scheme is used for
the right-hand side of (4.3). In order to extract the boupdege contribution, given by (3.9), we
use the relation

E) ® (y

(

- [K,9m (z//\a)jzyr)] ZFr% ) 1K, Jm(ya)] -5 % ’J“)
Jn “(ya) +Ym “(ya) 1H
This allows to present the VEV of the field squared in the dgmasad form (3.8) with the shell-
induced part

Fi [k HY (va)). (4.4)

24ADnD+2 o
2\ = 3
(E >b T b+l Z/ dkie- %1)\ 01/ dy
3R '
XWW%FX)[KHr(nj)(Va)]LD/z—z(w’?)- (4.5)

Now, we rotate the contour of integration oveby the anglert/2 for the term withj = 1 and by
the angle—71/2 for j = 2. Introducing the modified Bessel function, the expres§&ob) takes the
form

E2) — 2AD dyo@+1m_&xXn) I (aX/n)
B = aD+1m:0)\ 01/ KW (ax/n)
x /0 dss(1—2)>* 2 G [s, K (x1/1)] fp 22 (X9) (4.6)



Casimir densities in de Sitter spacetime V. F. Manukyan

where the functions{,’ s, f(x)] are defined by the formulae (3.13). Comparing this resulh wit
(3.11), we see that the expressions for the interior andiextegions are related by the interchange
Im = K. The representation (4.5) is valid for even value®aind for odd value® < 7. Similar

to the case of the interior region, for these value®pthe boundary-induced VEV is positive in
the exterior region.

At large proper distances from the shell compared with thecdSature radius, we have
r/n > 1. Introducing in (4.5) a new integration variabfe= xr/n, we expand the functions
1 (ya/r)/Kﬁ,{\) (ya/r) and fp»_» (ysn/r) for small values of the arguments. The leading con-
tribution comes from the term with = 0, m= 0. For everD > 4 one gets

(£, ~ 8(2D+1)(D—2)I3(D/2+1)
b"" D(D —4)I (D +2)riP/2aP+1in(r /a)

(n/r)°*2. (4.7)

In the casd = 4 the leading term is given by

. 12m?3(n/r)®
(E%)p~ 5a5In(r/a)In(r/n)" (4.8)
ForD = 3 andD = 5 we find
L 2n/t L
(E%)p ~ 3matin(r/a)’ ~
(E?), ~ Mg (4.9)

~ 10m2abIn(r/a)’
Note that for a cylindrical shell in Minkowski bulk, at largéstance from the shell, > a, the
leading term in the corresponding asymptotic expansioivengoy

) . (D-1O-2r(D+1/2
(M)~ 7D-1)/2(D — 1) (D + 1)r>+1In(r/a)’

(4.10)

for all dimensions withD > 3. As is seen, the influence of the gravitational field is essleat
distances from the shell larger than the curvature radigiseobackground spacetime.

5. Conclusion

We have investigated the combined effects of the backgrguadtational field and bound-
aries on the characteristics of the electromagnetic vacumnorder to have an exactly solvable
problem we have considered highly symmetric bulk and boryngaometries: cylindrical shell in
background of dS spacetime. On the shell the field operateysothe boundary condition that is
a generalization of the perfect conductor boundary camdifior an arbitrary number of spatial di-
mensions. We have assumed that the field is prepared in thehHDavies vacuum state. The VEVs
of physical observables, bilinear in the field operator,exgressed in the form of the summation
over a complete set of the field modes obeying the boundamjitioms. \We have constructed these
modes for the problem under consideration. For separatgipaiions, the corresponding vector
potentials are given by the expressions (2.5) and (2.6)dndbgion inside the shell and the eigen-
values fory are determined by the equation (2.10). In the exterior retfie eigenvalues of are
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continuous and the mode functions are obtained from theidgntenes by the replacement (4.1) in
the radial functions.

As a physical characteristic of the vacuum state we havesfigated the VEV of the electric
field squared. In the corresponding mode-sum, for the suiomat/er the eigenvalues of we
have used the summation formula (3.6). This allowed us taeixfrom the VEV the boundary-
free part and to present the contribution induced by thd giné¢he form of strongly convergent
integral for points away from the boundary. In this way, teearmalization is reduced to the one
for the boundary-free dS spacetime. The boundary-inducattibutions to the VEV of the electric
field squared in the interior and exterior regions are givemhie expressions (3.11) and (4.6). In
both the regions these contributions are positive. Fortpaiear the boundary, at distances from
the shell smaller than the curvature radius of the dS spaegthe influence of the gravitational
field on the vacuum local characteristics is small. We hawsvstthat the effect of the background
curvature is essential at distances from the shell largar the dS curvature radius.
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