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1. Motivation and goals

The use of an effective field theory (EFT) approach to the study of beyond the Standard Model
(BSM) physics and its searches is well motivated given that the new physics scale Λ seems to
be heavier than the EW scale (as we learn from negative LHC searches), Λ > O(TeV ) > MEW .
Besides the usual good properties of EFTs (see [1] for reviews), the use of EFTs has three other
advantages in the present context: 1) it offers a model-independent approach (complementary to
the study of particular BSM scenarios well motivated for whatever reason), 2) it is very useful to
guide us in what interactions to look for by telling us if a given operator is expected to be more
or less suppressed (we will refine our power counting below) and also if it is already constrained
by existing data or relatively unconstrained (in which case, it might well be the place to look for a
relatively large departure from the SM) and 3) it allows to probe (although indirectly) mass scales
above the direct reach of the LHC. This latter point could be crucial (if a deviation is found!) e.g.
to decide which next-generation collider to build. With the Higgs discovery and all data LHC has
accumulated so far, we are now in the position to look at the complete Lagrangian of dimension-6
operators, Ld=6, and (making use of data from previous experiments, in particular LEP I and II
and Tevatron) perform a global anaysis to determine which are the most promising deviations from
the SM we can expect. As is well known, the Higgs plays a central role in any BSM model that
addresses the hierarchy problem. Such BSM physics should talk to the Higgs and, therefore, we
focus mostly on Higgs physics as a promising ground for deviations.

2. h̄-Power Counting

As is well known, d = 6 operators that violate baryon (B) or lepton (Li) numbers require a very
large suppresion scale while we are interested rather in new physics expected to appear not far from
the TeV scale (if naturalness is a good guide). We therefore consider only the d = 6 operators that
respect B and Li. Concerning their flavor structure, for the same reason we will assume minimal
flavor violation (MFV) holds, up to possible violations for the top quark. Under these assumptions
we expect that d = 6 operators will be suppressed by 1/Λ2 with Λ∼ a few TeV.

Here we want to be more precise and include also an estimate for the effect of couplings in
these irrelevant operators. The low-energy impact of a given operator Oi will be very different
depending on such effects. Consider e.g. the difference between

1
Λ2 g2

i Oi , vs.
1

Λ2 g4
i Oi , vs.

1
Λ2

g2
i

16π2 Oi , (with gi� 1) . (2.1)

Such coupling factors depend of course on the particular UV physics that generales the operators
but one can make rather generic estimates that are useful to guess the relative importance of differ-
ent operators in whole classes of BSM theories (e.g. if they are perturbative or if some particular
sector couples strongly to the new physics, etc.). First we have to agree on a good notation for
couplings (e.g., a quartic coupling |H|2S2 of the Higgs to some heavy scalar S, we could call g2

H , or
g4

H , or λH making the task of determining the coupling factors of irrelevant operators ill-defined).
The sensible way to do this is the following.

In Quantum Field Theory, the perturbative expansion in powers of interaction couplings is also
a loop expansion in powers of h̄ and it is then natural to define couplings in a way that keeps track
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of h̄ powers. As the simplest example take a scalar field φ with Lagrangian

L =
1
2
(∂µφ)2− 1

2
m2

φ
2− 1

4
g2

φ
4 . (2.2)

The quantity that appears in the path-integral formulation and controls the perturbative/loop expan-
sion is the exponential of the action (in units of h̄):

i
h̄

S =
i
h̄

∫
d4x L . (2.3)

By a field redefinition φ =
√

h̄φ̂ , the above ratio reads

i
h̄

S = i
∫

d4x
[

1
2
(∂µ φ̂)2− 1

2
m2

φ̂
2− 1

4
(g2h̄)φ̂ 4

]
, (2.4)

which explicitly shows that the perturbative expansion is an expansion in powers of g2h̄. This
procedure can be generalized to any number of fields and interaction couplings gi. In fact, it is
convenient to define all the couplings gi such that g2

i h̄ are the perturbative expansion parameters.
Using the same field-rescaling as in the previous example for a generic Lagrangian term

i
h̄

gn−2
φ1...φn → i(g2h̄)n/2−1

φ̂1...φ̂n , (2.5)

where g stands for a generic coupling and it is understood that several different couplings might
appear, it is immediate to derive the following rule:

(n−2) Rule:
an operator in a generic L containing n fields (irrespective of their spin) should
carry n−2 powers of couplings.

The couplings in the Standard Model Lagrangian satisfy this prescription, provided we use the
counting y f ,gα ∼ g and λ ∼ g2, where y f are the Yukawa couplings, gα the gauge couplings and
λ the Higgs quartic coupling.

With this prescription, radiative corrections of L-loop order to a given interaction vertex be-
tween n fields will automatically carry n− 2+ 2L powers of couplings: n− 2 from its tree-level
counting and 2 more from each additional loop, that contributes a g2h̄/(16π2) factor. To see that
this counting works to arbitrary loop order and number of external legs, consider an L-loop diagram
with a number Vi of vertices with i-legs each, I internal lines and E = n external legs. According to
our rule, each Vi vertex introduces (i−2) powers of couplings so that the total power is ∑i(i−2)Vi.
Using the identities ∑i iVi = 2I +E and I−∑iVi = L−1, we get

g∑i(i−2)Vi = gn−2+2L , (2.6)

as anticipated. Notice that, with this convention for couplings, strong coupling corresponds to
g∼ 4π , for which all loop corrections are of the same order.

3. Application to the d = 6 SM effective Lagrangian

Let us apply the n−2 prescription rule discussed in the previous section to the operators of the
d = 6 SM effective Lagrangian, revisiting some power counting analyses in recent literature. Notice
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first that the n−2 rule is in accord with the generic expansion of the low-energy EFT Lagrangian
written as [2, 4]

LEFT =
Λ4

g2
∗
L

(
Dµ

Λ
,
gHH

Λ
,

g f ψ

Λ3/2 ,
gαFµν

Λ2

)
, (3.1)

where Λ represents the scale of BSM new physics (assumed to be significantly higher than the EW
scale for the EFT expansion to be applicable); gH , g f represent generic couplings of the SM Higgs
field and fermions to that BSM sector and gα represent the usual SM gauge couplings with Fµν the
SM gauge field-strengths. Finally, g∗ is a generic coupling that might be different depending on
the particular Lagrangian term considered.

Consider next the d = 6 terms of the effective Lagrangian. After eliminating redundant oper-
ators using equations of motion (EoMs), we can use a basis that consist of the following 8 classes
of operators:

{gαX3,g2
αX2H2,ygαψ

2XH,g4
hH6,g2

dhD2H4,yg2
yψ

2H3,g2
f hψ

2H2D,g2
f ψ

4} , (3.2)

where, following standard practice, X stands for gauge field-strengths and D for covariant deriva-
tives. Although similar bases have been used in the past, the peculiarity of definition (3.2) is the
normalization of each class with a given power of couplings in accordance with the n−2 prescrip-
tion (compare e.g. to [5]).1 In (3.2) we have explicitly used Yukawa couplings in those operators
that involve a chirality flip and have kept a generic gauge coupling g in those operators that involve
X’s. We have kept different couplings for H and ψ fields depending also on the type of operator in-
volved. Our generic choices serve as a useful bookkeeping device. In concrete BSM models the UV
theory determines what couplings appear in each operator and a more precise assignment becomes
possible. Moreover, in many cases different coupling combinations appear within a single opera-
tor class. As an example, paying attention to chirality flips we would write yuyd(Q̄r

LuR)εrs(Q̄s
LdR),

and for this particular 4-fermion operator we have g2
f = yuyd , while a 4-fermion operator like

g2
f (ūRγµuR)(d̄RγµdR) is not expected to carry a Yukawa dependence in g2

f .
This power counting is useful even when some of the couplings become strong. For instance,

if one takes g∗ ∼ gH ∼ g fL,R ∼ 4π , the power counting in (3.1) reproduces the so-called naive-
dimensional-analysis (NDA) counting, usually written in terms of Λ and f ≡ Λ/(4π) , that gives
the following scaling for a generic term of the effective Lagrangian:

δL ∼ f 2
Λ

2
(

φ

Λ

)A(
ψ

f
√

Λ

)B(gFµν

Λ2

)C(Dµ

Λ

)D

. (3.3)

In discussing d = 6 operators we find useful to write them as products of currents [3, 4] (like
in Fermi’s theory) as this makes transparent the connection with potential examples of UV theories
that can generate such operators by the tree-level exchange of some heavy particle (be it a scalar,
a fermion, or a gauge boson). Obviously, the fact that such operators can be generated that way
does not mean they must be, but it is good to know. It is interesting that some operators cannot
be written as the product of two currents, although they can be easily generated via loops. We can
then classify d = 6 operators in these two classes: "current-current" (or "tree-level") operators and

1With this prescription, the 1-loop anomalous dimension matrix that describes operator mixing is automatically of
order g2/(16π2), in contrast with the more complicated coupling dependence in bases that do not follow the n−2 rule.
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Figure 1: Feynman diagrams with examples of the possible origin of the different types of d = 6 operators
discussed in the text: type 1 (left), type 2 (center) and type 3 (right).

"one-loop" operators. Combining this classification with the power counting discussed above, we
find the following three types of d = 6 operators:

• Type 1: “Current-current" with a potential g2
∗ enhancement, δL = g2

∗ciOi/Λ2. As an exam-
ple, consider OH :

g2
H

Λ2
1
2
(∂µ |H|2)2︸ ︷︷ ︸

OH

=− g2
H

2Λ2 |H|
2︸︷︷︸

JH

∂
2 |H|2︸︷︷︸

JH

, (3.4)

which can be generated by the tree-level exchange of a heavy scalar field coupled to the
current JH = |H|2. See left diagram in Fig. 1, with the mass M of the heavy scalar to be
identified with Λ.

• Type 2: “Current-current" without g2
∗ enhancement, δL = ciOi/Λ2. As an example, con-

sider

OB ≡
ig′

2
(H†

↔
DµH)︸ ︷︷ ︸
Jµ

H

∂
νBµν︸ ︷︷ ︸
JBµ

, (3.5)

which can be generated by the tree-level exchange of a heavy vector field leading to the
product of the indicated currents. See middle diagram in Fig. 1.

• Type 3: “one-loop”, δL = g2
∗ciOi/(16π2Λ2), like

OBB ≡ g′2|H|2BµνBµν , (3.6)

which is straightforward to generate, e.g. by a loop of a heavy field with nonzero hypercharge
that also couples to the Higgs. See right diagram in Fig. 1. Obviously, if g∗ is strong, g∗∼ 4π ,
the loop suppresion (expected for weakly coupled theories) will not be present.

3.1 Operator bases

The number of d = 6 operators (that preserve B and Li numbers), first studied systematically
in Ref. [6], is 59 (for a single fermion family) [5]2: 59 ways to deviate from the SM at order

2As some of the Wilson coefficients are complex, the number of real parameters describing these operators is higher
and goes up to 76.
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1/Λ2. Naively one would write more operators but some of them are redundant: they can be
eliminated from the Lagrangian by field redefinitions and have no impact on S-matrix elements.
As an example, take Or ≡ |H|2|DµH|2. It is straightforward to show that the shift H → H −
g2
∗crH|H|2/(2Λ2) removes δL = g2

∗crOr/Λ2, and it is known that such field redefinitions do not
change the physics. An equivalent way of removing redundant operators is by using (d = 4) EoMs
on the d = 6 terms. To see this is allowed, consider a field redefinition ϕ → ϕ +F(ϕ)/Λ2. It
changes the action

S =
∫

d4x
[
Ld≤4 +

1
Λ2 Ld=6 +O

(
1

Λ4

)]
→ δS =

∫
d4x
[

δLd≤4

δϕ

1
Λ2 F(ϕ)+O

(
1

Λ4

)]
, (3.7)

so that the d = 6 Lagrangian shifts as Ld=6→Ld=6 +(δLd≤4/δϕ) F(ϕ) without changing the
physics. Therefore we can drop terms that can be written in the form (δLd≤4/δϕ) F(ϕ) by using
δLd≤4/δϕ = 0 which is nothing but the d = 4 EoM for field ϕ .

This point is not just a technicality. It is important because it implies there are different ways of
removing redundant operators to arrive at a particular basis of 59 operators. Although physics will
not depend on such basis choice, some bases prove more convenient than others (and the literature
is plagued with errors due to "wrong" choices of basis) depending of course on the physical effect
one is after. The basis I will use appears in the literature under the name "SILH", from Strongly
Interacting Light Higgs, as it was chosen as ideally suited to study scenarios of pseudo-Goldstone
composite Higgses [7]. Needless to say, it is not restricted to such scenarios and it is as good as
any other to parametrize Ld=6.

This basis contains 14 CP-even operators made of bosons only, as shown in Table. 1, with
the different boxes corresponding to the different types of operators described before, plus the
following 6 CP-odd operators (3 for SU(2)L and 3 for SU(3)c):

OFF̃ = g2
α |H|2Fα

µν F̃αµν ,

OHF̃ = igα(DµH)†T α(DνH)F̃α
µν ,

O3F̃ =
1
3

gα fαβγ F̃α ν
µ Fβ

νρFγ ρµ . (3.8)

There are many more operators that involve fermions. I list the 44 of them (for a single family) in
Table 2. The total number of operators in this SILH basis is then 14+6+44 = 64, five more than
the 59 advertised as the number of independent operators. It is at times convenient to live with 5
redundant operators that can be removed from the basis by using EoMs at will, depending on the
physics one is interested in.

There are other bases often used in the literature, the most common being the "Hagiwara basis"
[8] and the "Polish basis" [5]. The first maximizes the number of operators that involve SM bosons
only, without specifying fermion operators. The second tries to minimize the number of operators
containing derivatives: it gets rid of many bosonic operators using their EoMs. A comparison of
the bosonic operators in these three bases is presented in table 3, taken from ref. [9].

Generically there are two aspects to consider in choosing a good basis, according to the
scheme: Theory↔ Basis↔ Experiment. Ideally, the basis should provide a transparent connection
to a theory (or class of theories) so as to minimize the number of operators required to capture the

6
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OH = 1
2(∂

µ |H|2)2

OT = 1
2

(
H†
↔
DµH

)2

O6 = λ |H|6

OW = ig
2

(
H†σa

↔
DµH

)
DνW a

µν

OB = ig′
2

(
H†

↔
DµH

)
∂ νBµν

O2W =−1
2(D

µW a
µν)

2

O2B =−1
2(∂

µBµν)
2

O2G =−1
2(D

µGA
µν)

2

OBB = g′2|H|2BµνBµν

OGG = g2
s |H|2GA

µνGAµν

OHW = ig(DµH)†σa(DνH)W a
µν

OHB = ig′(DµH)†(DνH)Bµν

O3W = 1
3! gεabcW aν

µ W b
νρW cρµ

O3G = 1
3! gs fABCGAν

µ GB
νρGC ρµ

Table 1: 14 CP-even operators made of SM bosons. The operators are grouped in 3 different boxes corre-
sponding to the 3 types of operators discussed in the text (with type 1 at the top, type 2 in the middle and
type 3 at the bottom). Dashed lines separate operators of different structure within a given class. There are,
in addition, the 6 CP-odd operators given in Eq. (3.8).

physical effects. In addition it is convenient to have a direct connection between operators and the
heavy states that produce them and some handle on the size expected for the operators3.

As an example, consider BSM theories in which heavy states only couple to SM bosons (the
so-called universal theories). The leading d = 6 physics effects are most conveniently captured by
operators containing bosons only. These are the 14 operators (respecting CP) listed in Table 1. This
is the number of independent parameters that map the physical effects at d = 6 level of precision.
Now, in some bases several of these operators are removed in favor of other operators using the
gauge boson EoMs, e.g.

DνW a
µν =

ig
2

H†
σ

a↔DµH +
g
2 ∑

f
f̄Lσ

a
γµ fL . (3.9)

Clearly, such bases are not the best suited ones to study this kind of scenarios: a single physical
effect captured by one Wilson coefficient, say cW OW/Λ2, in a “good" basis, is spread among many
different operators (including all fermions!) in bases that remove OW by using the EoM above.
Moreover, the physical effects controlled by the single parameter cW will appear in the “bad" bases
through many Wilson coefficients that are correlated in a very precise way. More explicitly, one
has

cW OW →
g2

g2
∗

cW

[
−3

2
OH +2O6 +

1
2
(Oyu +Oyd +Oye +h.c.)+

1
4 ∑

f
O

(3) f
L

]
. (3.10)

3These kind of arguments are called "theory biased" in some quarters. A better name would be “theory informed".
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Oyu = yu|H|2Q̄H̃u Oyd = yd |H|2Q̄Hd Oye = ye|H|2L̄He

Ou
R = (iH†

↔
DµH)(ūγµu) Od

R = (iH†
↔

DµH)(d̄γµd) Oe
R = (iH†

↔
DµH)(ēγµe)

Oq
L = (iH†

↔
DµH)(Q̄γµQ) O l

L = (iH†
↔

DµH)(L̄γµL)

O
(3)q
L = (iH†σa

↔
DµH)(Q̄γµσaQ) O

(3)l
L = (iH†σa

↔
DµH)(L̄γµσaL)

Ou
LR = (Q̄γµQ)(ūγµu) Od

LR = (Q̄γµQ)(d̄γµd) Oe
LR = (L̄γµL)(ēγµe)

O
(8)u
LR = (Q̄γµTAQ)(ūγµTAu) O

(8)d
LR = (Q̄γµTAQ)(d̄γµTAd)

Ou
RR = (ūγµu)(ūγµu) Od

RR = (d̄γµd)(d̄γµd) Oe
RR = (ēγµe)(ēγµe)

Oq
LL = (Q̄γµQ)(Q̄γµQ) O l

LL = (L̄γµL)(L̄γµL)
O

(8)q
LL = (Q̄γµTAQ)(Q̄γµTAQ)

Oql
LL = (Q̄γµQ)(L̄γµL)

O
(3)ql
LL = (Q̄γµσaQ)(L̄γµσaL)

Oqe
LR = (Q̄γµQ)(ēγµe)

O lu
LR = (L̄γµL)(ūγµu) O ld

LR = (L̄γµL)(d̄γµd)
Oud

RR = (ūγµu)(d̄γµd)
O

(8)ud
RR = (ūγµTAu)(d̄γµTAd)

Oue
RR = (ūγµu)(ēγµe) Ode

RR = (d̄γµd)(ēγµe)

Oud
R = y†

uyd(iH̃†
↔

DµH)(ūγµd)
Oyuyd = yuyd(Q̄ru)εrs(Q̄sd)

O
(8)
yuyd = yuyd(Q̄rTAu)εrs(Q̄sTAd)
Oyuye = yuye(Q̄ru)εrs(L̄se)

O ′yuye
= yuye(Q̄r αe)εrs(L̄suα)

Oyeyd = yey†
d(L̄e)(d̄Q)

Ou
DB = yuQ̄σ µνuH̃g′Bµν Od

DB = ydQ̄σ µνd Hg′Bµν Oe
DB = yeL̄σ µνeHg′Bµν

Ou
DW = yuQ̄σ µνuσaH̃gW a

µν Od
DW = ydQ̄σ µνd σaHgW a

µν Oe
DW = yeL̄σ µνeσaHgW a

µν

Ou
DG = yuQ̄σ µνTAuH̃gsGA

µν Od
DG = ydQ̄σ µνTAd HgsGA

µν

Table 2: 44 operators made of one-family of SM fermions. In the first column there are operators made of
the up-type quark and other fermions; in the second column there are operators made only of the down-type
quark and leptons; the third column lists operators made only of leptons. The operators are grouped in 3
different boxes corresponding to the 3 classes of operators defined in the text (same order as in Table 1).
Dashed lines separate operators of different structure within a given class.

Such potential correlations can be rather misleading on the other front that determines the good
properties of a particular basis: its connection to experimental data. In any case, one can easily
switch from basis to basis, and tools have been developed to assist in such basis translations, see
Ref. [10].

3.2 Experimental Constraints

A good basis should have a clean connection between operators and observables, ideally in
a one-to-one correspondence, which is however not possible in practice: a given experimental
constraint generically involves some linear combination of Wilson coefficients. Extracting model-
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Polish basis Hagiwara basis SILH basis
OW = ε IJKW Iν

µ W Jρ

ν W Kµ

ρ OWWW = Tr[ŴµνŴ νρŴ µ

ρ ] O3W = 1
3! gεabcW aν

µ W b
νρW cρµ

OϕW = ϕ†ϕW I
µνW Iµν OWW = Φ†ŴµνŴ µνΦ —

OϕB = ϕ†ϕBµνBµν OBB = Φ†B̂µν B̂µνΦ OBB = g′2|H|2BµνBµν

OϕWB = ϕ†σ IϕW I
µνBµν OBW = Φ†B̂µνŴ µνΦ —

— OW = (DµΦ)†Ŵ µν(DνΦ) OHW = ig(DµH)†σa(DνH)W a
µν

— OB = (DµΦ)†B̂µν(DνΦ) OHB = ig′(DµH)†(DνH)Bµν

— ODW = Tr
(
[Dµ ,Ŵνρ ][Dµ ,Ŵ νρ ]

)
O2W =−1

2

(
DµW a

µν

)2

— ODB =−g′2
2 (∂µBνρ)(∂

µBνρ) O2B =−1
2

(
∂ µBµν

)2

— — OW = ig
2

(
H†σa←→D µH

)
DνW a

µν

— — OB = ig′
2

(
H†←→D µH

)
∂ νBµν

OϕD =
(
ϕ†Dµϕ

)∗ (
ϕ†Dµϕ

)
OΦ,1 = (DµΦ)†ΦΦ†(DµΦ) OT = 1

2

(
H†←→D µH

)2

Oϕ� = (ϕ†ϕ)�(ϕ†ϕ) OΦ,2 =
1
2 ∂µ(Φ

†Φ)∂ µ(Φ†Φ) OH = 1
2(∂

µ |H|2)2

Oϕ = (ϕ†ϕ)3 OΦ,3 =
1
3

(
Φ†Φ

)3
O6 = λ |H|6

— OΦ,4 = (DµΦ)†(DµΦ)(Φ†Φ) —

Table 3: Comparison of CP-even bosonic operators between three popular bases. (Taken from [9].)

independent bounds on the Wilson coefficients of d = 6 operators requires using a complete ba-
sis and paying special attention to possible hidden correlations. The common practice of setting
bounds on a single coefficient at a time ignores correlations (that can be due to theory or simply to
a basis choice!), overestimates the experimental constraints and should be avoided. On the other
hand, concrete BSM scenarios predict particular patterns of correlations between Wilson coeffi-
cients, allowing for more stringent experimental constraints on them. Finally, it is clear that in
order to set constraints from experiment on the ci’s, one does not care about their possible enhance-
ment (by g2

∗) or suppression [by g2
∗/(16π2)] which only plays a role on the theory ↔ operators

connection.

One could proceed by making a global complete fit of all data for the 59 Wilson coefficients,
or the relevant subset for Higgs physics, which is the sector where significant deviations are well
motivated. Alternatively [4, 11], one can save effort by noticing the hierarchical pattern of exper-
imental constraints (on cim2

W/Λ2) that range from the very precise per-mille level (e.g. from EW
precision data) to percent level [e.g. from Triple Gauge Coupling (TGC) data] to loose constraints
of order 10% or less (e.g. for some Higgs couplings). We can imagine pictorially such bounds
as an ellipsoid in the space of Wilson coefficients with a hierarchy in the size of its axes. A good
basis should be well aligned with such ellipsoid so that a well defined subset of operators can be
constrained at the per-mille level (and therefore can be dropped safely from the discussion of the
constraints on lesser constrained operators) and so on towards less constrained operators, until one
can determine the most promising ones to expect possible large deviations.
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OH = 1
2(∂

µ |H|2)2

OT = 1
2

(
H†
↔
DµH

)2

O6 = λ |H|6

OW = ig
2

(
H†σa

↔
DµH

)
DνW a

µν

OB = ig′
2

(
H†

↔
DµH

)
∂ νBµν

OBB = g′2|H|2BµνBµν

OGG = g2
s |H|2GA

µνGAµν

OHW = ig(DµH)†σa(DνH)W a
µν

OHB = ig′(DµH)†(DνH)Bµν

O3W = 1
3! gεabcW aν

µ W b
νρW cρµ

Oyu = yu|H|2Q̄H̃u Oyd = yd |H|2Q̄Hd Oye = ye|H|2L̄He

Ou
R = (iH†

↔
DµH)(ūγµu) Od

R = (iH†
↔

DµH)(d̄γµd) Oe
R = (iH†

↔
DµH)(ēγµe)

Oq
L = (iH†

↔
DµH)(Q̄γµQ)

O
(3)q
L = (iH†σa

↔
DµH)(Q̄γµσaQ)

O
(3)ql
LL = (Q̄γµσaQ)(L̄γµσaL) O

(3) l
LL = (L̄γµσaL)(L̄γµσaL)

Table 4: The 20 d = 6 operators of our basis relevant for Higgs physics. O
(3)l
LL has an indirect effect through

its modification of Fermi’s constant GF . O
(3)ql
LL is important for combined experimental constraints (through

Gq
F , Fermi’s constant measured with quarks).

3.3 Higgs Physics

Such program has been carried through, with a focus on Higgs physics, in refs. [11, 12]
(where you can find a detailed discussion). Here I will sketch the procedure and main points.
The starting point (under the assumptions of MFV) is the subset of 20 operators in Table 4 below,
which are the only ones directly relevant to Higgs physics. If these operators are present, they
will modify the couplings of the Higgs with respect to its SM values, offering potential windows
to new physics. I have indicated above several such effects, some of which have already started
to be probed (for the first time!) by the LHC, while others will be in the future. Which ones can
still show some large deviation from the SM? First, one should realize that many of these operators
have an impact on other sectors of the theory not involving explicitly Higgses being produced, that
is, with H → (0,v/

√
2)T . A famous example is OT , which changes the mW ↔ mZ relationship.

Other operators modify the couplings of fermions to gauge bosons [e.g. O f
R = (iH†

↔
DµH)( f̄ γµ f )]

and others triple gauge-boson couplings, like OHB = ig′(DµH)†(DνH)Bµν . One can then use
experimental data from LEP + Tevatron to set constraints in many of these operators even before
looking at Higgs data.

As we mentioned already, working at orden 1/Λ2, the expected deviations in observables
of interest will be some linear combinations of Wilson coefficients of the d = 6 operators in the
Table 4. We can now be more explicit about what it means in practice to have an operator basis
well aligned with experimental observables. The linear system relating observables qi and Wilson
coeficientes ci in the SILH (sub)basis above takes the schematic form:

10
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 ql
i

qq
i

qT GC
i

=

 T1 0 0
X12 T2 0
X13 X23 T3

 ·
 ca

i
cb

i
cc

i

 . (3.11)

The observables ql
i are the very precise Z-pole observables measurad at LEP-I (the leptonic Z

widths into νν , lLlL, lRlR) and the W mass (from Tevatron). Deviations in these 4 observables de-
pend, through the matrix T1, on just 4 Wilson coefficients, the ca

i ’s: (cr,ce
R,c

(3)l
LL and cW +cB) which

can then be bounded at per-mille level. This makes X12 and X13 irrelevant for the analysis of less
constrained observables. Next come quark observables qq

i (δΓhad
Z ,Rb,Ac,Ab) also well measured

by LEP plus Gq
F/Gl

F (from KLOE and β decays) which depend, through T2, on just 5 additional
coefficients, the cb

i ’s: (cq
L,c

(3)q
L ,cu

R,c
d
R,c

(3)q
LL ) which can in turn be bound at a similar level of preci-

sion [cim2
W/Λ2 <∼ O(10−3)] and make X23 irrelevant for what follows. Finally, LEP-II data on TGCs

give information on the 3 parameters gZ
1 ,κγ ,λγ and this, through T3, can be used to bound the cc

I ’s:
(κ3W , and two linear combinations of cW ,κHW and κHB) at the per-cent level.

One concludes that previous data closes 4+ 5+ 3 = 12 of the 20 possible windows for new
physics from which we started. Let us focus then on the 8 operators that remain. They are

OH =
1
2
(∂µ |H|2)2 , O6 = λ |H|6 , Oy f = y f |H|2 f̄LH fR , (3.12)

OBB = g′2|H|2BµνBµν , OGG = g2
S|H|2GA

µνGA µν , (3.13)

and a linear combination of OW ,OB,OHW and OHB that can be written as

OWW = g2|H|2W a
µνW a µν , (3.14)

(an operator not in the basis we used). Using the previous bounds on the ci’s, it turns out that the
unconstrained combination associated with this operator is κHW −κHB.

What these 8 operators have in common is that they involve |H|2, in such a way that replacing
H→ 〈H〉 just gives operators already in Ld=4 and their impact is not observable. This means that
only Higgs data can constrain these operators. More precisely,

• OH modifies the Higgs propagator and therefore changes in a universal way all Higgs cou-
plings (leaving then all Higgs BRs the same).

• O6 will impact h∗→ hh, not accesible in the near future.

• Oyb,, Oyτ
affect BR(h→ bb̄) and BR(h→ ττ̄), respectively.

• Oyt impacts BR(h→ γγ) by changing the SM top-loop contribution. In addition, it changes
the rate of htt̄ associated-production.

• OBB modifies directly BR(h→ Zγ).

• OGG changes σ(GG→ h), the main Higgs production mechanism.

• κHW −κHB affects BR(h→ γγ).

11
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Performing a global fit to all Higgs data from ATLAS and CMS the only significant bounds apply
to the Wilson coefficients that contribute directly to SM loop-suppressed processes. At 95% C.L.
one gets [11]

m2
W

Λ2 κGG ∈ (−0.8,0.8)×10−3 , (3.15)

m2
W

Λ2 κBB ∈ (−1.3,1.8)×10−3 , (3.16)

m2
W

Λ2 κZγ ∈ (−0.6,1.2)×10−2 , (3.17)

where κZγ = −(κHW −κHB)/4− 2s2
W κBB. Notice that the last bound is possible even though the

decay h→ Zγ has not been seen yet: the experimental limit on its rate is about 10×σSM.
The analysis reviewed above is useful to bound possible deviations from new physics in all

sorts of Higgs measurements. As an example, consider the test of custodial symmetry based on
measuring

λ
2
WZ−1 =

Γ(h→WW )

ΓSM(h→WW )

ΓSM(h→ ZZ)
Γ(h→ ZZ)

−1 , (3.18)

which is constrained experimentally to the range λWZ − 1 ∈ (−0.5,0.1) at 95% C.L. Using the
d = 6 EFT approach one gets

λ
2
WZ−1 ' s2

W (0.9cW −2.6cB +3κHW −3.9κHB)
m2

W

Λ2

' (0.6δgZ
1 −0.5δκγ −1.6κZγ)

m2
W

Λ2 , (3.19)

and using the bounds on these deviations from TGC and h→ Zγ data, one gets the stronger bound

λ
2
WZ−1 ∈ (−6,8)×10−2 . (3.20)

4. Conclusions

The close scrutiny of Higgs properties is of the utmost importance as they provide well moti-
vated windows to probe BSM physics indirectly. I have described in this lecture how the model-
independent EFT approach through d = 6 operators can be very powerful for this task4. Although
there is still room for some deviations, we have seen that the number of “open windows” is smaller
than naively thought. Be it through indirect signals of BSM or by direct production of new particles
(as hinted by the recent diphoton excess in ATLAS and CMS [14]) we expect that the second LHC
will be a very productive one!
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