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1. Introduction

Understanding the complicated field dynamics taking place in a heavy ion collision is a great
challenge to theorists. Comparing data from experiments at RHIC and the LHC to hydrodynamical
simulations revealed that the produced state of matter behaves as a strongly coupled liquid with
a very low shear viscosity over entropy ratio and extremal fast thermalization times. The non-
perturbative nature of the expanding plasma calls for alternative methods to perturbation theory
and lattice gauge theory. By now the gauge gravity duality has established itself as a valuable ad-
ditional framework to study the dynamics of strongly coupled gauge theories. This duality maps a
strongly coupled gauge theory in the limit of infinite colors to a supergravity theory in one dimen-
sion higher. In the context of heavy ion collisions usually the original form of the duality is used
where asymptotically anti de Sitter space is mapped to N = 4 supersymmetric Yang-Mills (SYM)
theory. Using SYM to gain insights into QCD can be justified by the fact that in the deconfined
phase they share certain features such as a finite correlation length, no supersymmetry and the Wil-
son loop shows area law behavior. The thermalization process in the dual description is given in
terms of gravitational collapse and black hole formation in asymptotically AdS spacetimes.

A crude gravitational dual of a heavy ion collision was first mimicked by the collision of two
delta like gravitational shock waves [1]. Subsequently, the models were further refined by intro-
ducing anisotropy [2] and inhomogeneity [3]. By now the numerical algorithms have evolved to
a point where simulations of off-central collisions of two localized lumps of matter, mimicking
nucleus-nucleus and proton-nucleus collisions, are possible [4, 5]. Due to the computational com-
plexity in the aforementioned studies the canonical observables to monitor the evolution are the
components of the local stress energy tensor.

The duality also offers a description to fairly easy obtain nonlocal quantities such as two-point
functions, Wilson loops and entanglement entropy (EE) which on the gravity side permit a descrip-
tion in terms of invariant geometric objects such as geodesics, extremal surfaces and volumes [6].
These observables were first analyzed in collapsing shell models where a spherically symmetric
shell made out of null dust collapses and forms a black hole [7, 8].

It turns out that the time evolution of the entanglement entropy in these models shows universal
behavior and can be divided into three stages. The early quadratic initial growth is followed by a
long linear growth and finally saturates. The quadratic and linear growth are independent from the
entangling region, the dimension of the spacetime [9], the equation of state [10, 11] and even for
spacetimes with Lifshitz scaling and hyper scaling violation [12].

However, by changing the symmetries of the system the entanglement entropy can show dif-
ferent behavior and in this article we show the behavior of equal-time two point functions and
entanglement entropy for geometries used to mimic heavy ion collisions, namely the homogeneous
anisotropic case [13] and case of two colliding shockwaves [3].

2. Theoretical setup

In this section we summarize the theoretical foundations needed in rest of this article by intro-
ducing the geometry and concepts of how to compute equal time two-point functions and entangle-
ment entropy holographically.
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2.1 The geometry

In the following we will study two cases imposing different symmetry assumptions. One
where the spacetime is homogeneous but with an anisotropy present between the longitudinal and
transverse coordinates with an O(2) symmetry in the transverse plane and one which is also inho-
mogeneous in the longitudinal direction, corresponding to the shock wave geometry. The ansatz for
the line element that accounts for all these symmetries can be written conveniently in Eddington-
Finkelstein coordinates

ds2 =−Adv2 +S2
(

e−2B dy2 + eB d~x2
)
+2dv(dr+F dy) , (2.1)

where the functions A, S, B and F depend on the holographic coordinate r, (advanced) time v
and longitudinal coordinate y. In the homogeneous case the function F = 0 and the other metric
functions do not depend on y.

In order to obtain the geometry Einsteins equations have to be solved numerically for appro-
priate initial and boundary conditions.

2.2 Two-point functions

The equal time two-point functions for operators of large conformal weight ∆ can be obtained
from the length of space like geodesics via the formula

〈O(t,~x)O(t,~x′)〉 ≈ ∑
geodesics

e−∆Lg ≈ e−∆L, (2.2)

where to leading order in the geodesic approximation the sum over all geodesics is given by the
one with the smallest length.

2.3 Holographic entanglement entropy

The holographic entanglement entropy of some region A in the boundary can be computed by
extremizing the area functional

A =
∫

d3
σ

√
det
(

∂X µ

∂σa
∂Xν

∂σb gµν

)
(2.3)

for a surface that extends into the bulk and ends on the boundary of the region A. It is conjectured
that in the dual field theory the EE is given by

SEE =
A

4GN
. (2.4)

In the special case of stripe like regions boundary regions, with the finite directions chosen ap-
propriately, the problem of finding geodesics can be reduced to finding geodesics in an auxiliary
spacetime.
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3. Isotropization

Here we present results for the homogeneous and anisotropic situation where at initial time
t = 0 an anisotropy is introduced by choosing a particular form of the anisotropy function B that
only has support in the bulk

B(r,v0) =
β

r4 exp
[
−
(1

r
− 1

r0

)2
/ω

2
]

(3.1)

with β = 6.6, r0 = 4 and ω = 1 and then solving Einsteins equations numerically. The solution is
summarized in Fig. 1 where on the l.h.s. we show the most important features of the geometry and
on the r.h.s. the evolution of transverse and longitudinal pressure. Note that, in the special case
when the anisotropy function vanishes at the boundary, the energy density is constant. From this
figure one can also see that the apparent horizon approaches the event horizon quickly and they
start to coincide approximately at the same time when the system isotropizes. At late times the
geometry approaches the Schwarzschild AdS geometry with a temperature given by T = 1/π and
the boundary coordinates are plotted in units of the temperature.

In asymptotically AdS spacetimes the length of geodesics diverges and a regularization scheme
must be adopted. In order to make the approach to equilibrium most transparent we renormalize
the geodesic length and EE in the following way

Lren =
L−Lth

Lth
(3.2a)

Sren =
S−Sth

Sth
(3.2b)

where L (S) is the unrenormalized length (EE) and Lth (Sth) is the corresponding thermal value.

Figure 1: Left: anisotropy function B(r,v). Right: transverse and longitudinal pressure.
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3.1 Two point function

We are now ready to present results for the equal time two-point functions but first we discuss
the geometric shape of the geodesics. In collapsing shell models it was observed that in out-of-
equilibrium situations space-like geodesics can actually reach beyond the apparent horizon and are
able to probe regions which are not accessible to other observables and that a large fraction of the
linear scaling originates from geodesics reaching beyond the apparent horizon.

At late times when the geometry is static the geodesics tend to move along the horizon but
never cross it and for large enough boundary separations the EE approaches the thermal entropy
as was shown in [6]. However, at early times when the system is far from equilibrium and the
position of the apparent horizon changes with time the geodesics can reach beyond the horizon as
is displayed in Fig. 2.

Figure 2: The green and black lines indicate the position of the apparent and event horizon, respec-
tively. The blue curve is the Poincaré patch AdS geodesic we use to initialize the simulation; red curves are
geodesics of different separation at late times which do not cross the horizon. The cyan curve in the left part
of each plot is a geodesic which reaches beyond the horizon and probes the non-thermal region.

In Fig. 3 the evolution of the renormalized length for geodesics with boundary separations
along the transverse and longitudinal direction is shown. The transverse and longitudinal compo-
nents oscillate out of phase and this behavior is a manifestation of the pressure anisotropies visible
in the evolution of the components of the stress energy tensor (see Fig. 1). For larger boundary sep-
arations the two-point functions approach their corresponding thermal value at later times, nicely
showing the usual top-down thermalization pattern of strongly coupled theories. In addition the
two-point functions thermalize later than the one-point function.

3.2 Entanglement entropy

For the holographic entanglement entropy the same qualitative features as for the two-point
functions are observed as is shown in Fig. 4. Again, we observe out of phase oscillations for sepa-
rations along the longitudinal and transverse direction. The EE reaches equilibrium later than the
two-point function. The reason for the delay in equilibration can be understood geometrically. In
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Figure 3: Renormalized length of geodesics for different separations in longitudinal and transverse direc-
tions.

order to obtain the EE we were able to reduce the problem of finding minimal surfaces to a prob-
lem of finding geodesics in an auxiliary spacetime. In this auxiliary spacetime the geodesics for
the same boundary separation reach much deeper into the bulk and bend further back in time and
therefore out-of-equilibrium effects influence their shape at later times. It might seem surprising
that the EE can be become negative but this due the special setup we are considering. The en-
ergy momentum tensor is constant and the anisotropies in the line element change the length of
geodesics out of phase. In the next section we will see that this oscillatory behavior can also be
understood from a late time analysis.
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Figure 4: Longitudinal and transverse EE for different separations.

3.3 Late time behavior and quasinormal modes

At late times the geometry relaxes to the Schwarzschild black brane solution and one enters the
linearized regime. As was observed already in [13, 14] the pressure anisotropies exhibit exponential
damping and near equilibrium this damping is described by the lowest quasi normal mode which
characterizes the response of the system to infinitesimal perturbations. To be more precise, the
asymptotic form of the pressure anisotropies takes the form

b4(t)∼ Re
[
c1e−iω1t] (3.3)
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where the lowest QNM obtained from the scalar channel of gravitational fluctuations is given by
[15]

ω1

πT
=±3.119452−2.746676 i . (3.4)

We now demonstrate that at late times the approach to thermal equilibrium of the renormalized
geodesic length and the EE is described by the lowest QNM. By multiplying the two observables
with the imaginary part of the lowest QNM, eIm(ω1t), we observe that after the initial far from
equilibrium epoch the evolution of the observables is accurately described by the lowest QNM
with constant amplitude and frequency. This behavior is shown in Fig. 5
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Figure 5: Left: Renormalized geodesic length for longitudinal (red) and transverse (blue) separation for
lT = 0.32 multiplied by the imaginary part of the lowest QNM. Right: Renormalized EE for the same
parameters as on the left.

4. Colliding shock waves

Similarly to the previous section we can also obtain the renormalized geodesic length and
EE in the colliding shock wave geometry where two sheets of energy with infinite extend in the
transverse directions and finite extend in the longitudinal direction are used to mimic the collision of
two highly Lorentz contracted nuclei. The two incoming shock waves are described by a Gaussian
of width ω and amplitude µ3

h(t̃± ỹ) =
µ3

√
2πω2

e−
(t̃±ỹ)2

2ω2 . (4.1)

where t̃ and ỹ are the time and longitudinal coordinates in Fefferman-Graham gauge, respectively.
Depending on the thickness of the shocks two distinct scenarios appear. Wide shocks exhibit the so
called full-stopping scenario. After the collision the shocks are slowed down, most of the energy
density is concentrated in the central region and hydrodynamical explosion occurs. On the contrary,
narrow shocks exhibit transparency. They almost pass through each other and although their shape
gets altered they continue to move at the speed of light. In this work we take initial conditions
corresponding to the wide shock scenario with width ω = 0.5. In Fig. 6 we display the evolution
of the field theory energy density and longitudinal pressure in units of the energy density µ for our
initial conditions.
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Figure 6: Energy density and longitudinal pressure as a function of time and longitudinal separation in
units of µ .

4.1 Evolution of non-local observables

We now present the time evolution of the renormalized geodesic length and EE for different
boundary separations. In the case of colliding shock waves the system is also inhomogeneous and
the calculation for the EE can only be reduced to finding geodesics in an auxiliary spacetime for
separations along the longitudinal direction. In addition, at late times the geometry approaches
the boost invariant geometry of perfect fluid dynamics and never relaxes to a static black hole.
Therefore we renormalize the nonlocal observables by subtracting the corresponding pure AdS
values

Lreg =
L−L0

∆
, (4.2a)

Sreg = 4GN

( S
V
− S0

V0

)
, (4.2b)

where the geodesic length is given in units of the conformal scaling dimension Delta and the EE is
divided by the corresponding infinite transversal stripe two-volumes V and V0.

The results are presented in Fig. 7. On the l.h.s. the renormalized length is shown. Keeping
in mind that the two-point-function is minus the exponential of the renormalized length (see equ.
(2.2)) we observe the following. Depending on the separation, one starts with some non-vanishing
initial correlations. For small separation the correlation is almost zero because at small distances
the shocks have not interacted yet. As the shocks collide more and more short range correlations
are destroyed and de-correlation happens in a linear fashion. After the collision correlations are
restored due to new interactions during the collision.

On the r.h.s. of Fig. 7 the evolution of the EE is displayed. Before the collision the EE grows
linearly, consistent with results from the collapsing shell models and reaches a maximum slightly
after the energy density reaches its maximum at µt = 0. At late times the EE shows polynomial
fall off behavior.
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Compared to the isotropization case, for the wide shock geometry we did not find geodesics
that extend beyond the horizon. However, for narrow shocks such geodesics exist and results will
be presented elsewhere [16].
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Figure 7: Left: Evolution of the renormalized geodesic length for different separations in units of µ . Right:
Evolution of the renormalized EE.

5. Conclusions and Outlook

In the paper at hand we showed the time evolution of non-local observables such as equal-time
two point functions and entanglement entropy obtained via the holographic duality in geometries
relevant for heavy ion collisions. Starting with a homogeneous but anisotropic set up we observed
oscillatory behavior of both non-local observables with out of phase oscillations of the longitudinal
and transverse directions. At late times the approach to thermal equilibrium is accurately described
by the lowest lying quasinormal mode. In addition, if the geometry is sufficiently far away from
equilibrium space like geodesics can extend beyond the apparent horizon and therefore we con-
clude that in highly dynamical systems these geodesics can be used to extract valuable information
residing behind the apparent horizon not accessible to other probes. In the case of wide colliding
shocks we found that the geodesics do not extend beyond the apparent horizon. The length of the
geodesics and the EE show similar behavior. Both quantities increase before and decrease after the
collision. The EE reaches the maximum value later and falls off more slowly.

In future work we plan to also study the influence of different initial conditions on the shape
of nonlocal observables. It will be interesting to see if initial conditions leading to the transparency
scenario manifest themselves in the shape of the curves. Another interesting extension of this work
will be to study if the null energy condition is violated in the transparency scenario where the
energy density can become negative in certain regions after the collision. If this is the case it will
be a useful testing ground of the quantum null energy condition [17] and might provide further
insights thereof.
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