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We review the properties of a new mechanism for spontaneous supersymmetry breaking which is
built from complex linear superfields. Using superspace higher derivative terms which deform the
auxiliary field potential we find that, in addition to the standard supersymmetric vacuum, there is
a new vacuum where supersymmetry is spontaneously broken and nonlinearly realized. From the
Noether method we identify the chiral superfield X which enters the Ferrara-Zumino supercurrent
equation and show that it becomes nilpotent in the broken vacuum.
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1. Introduction and discussion

If supersymmetry [1] is realized in nature it must be spontaneously broken at some high energy
scale, since no superpartner of the Standard Model particles has been observed until now. It is
yet not known how exactly supersymmetry is broken and how the breaking is mediated to the
supersymmetric Standard Model, even though various mechanisms have been proposed [2]. The
study of the different supersymmetry breaking mechanisms can help understand their common and
also their distinct properties. In this article we focus on a novel mechanism for supersymmetry
breaking which is built from complex linear superfields.

The complex linear multiplet was introduced in [3] and further studied in [4, 5, 6, 7, 8, 9, 10,
11]. In contrast with a chiral superfield, such a multiplet contains a bigger set of auxiliary fields
needed to close the supersymmetry algebra off-shell, including fermion auxiliary fields. It is known
that the chiral and complex linear superfields generically offer an equivalent on-shell description
of the same physics [1]. However the models we study here belong to a class of theories where
this duality is not valid any more. This is known to happen whenever auxiliary fields of the free
theory become propagating due to higher derivative terms [12, 13, 14]. Indeed, as we will see, in
this mechanism the goldstino is a previously auxiliary fermion of the free theory which becomes
propagating in the broken vacuum.

Recent work in 4D, N = 1 supersymmetry [15, 16, 17] has shown that superspace higher
derivative terms containing complex linear superfields can be used to deform the auxiliary field
potential in such a way that they break supersymmetry. The simplest models have the following
form

L =−
ˆ

d4
θ Σ̄Σ+

1
8 f 2

ˆ
d4

θDα
ΣDαΣD̄β̇

Σ̄D̄
β̇

Σ̄ , (1.1)

where

D̄2
Σ = 0 . (1.2)

This mechanism is based on the existence of various different vacua arising as solutions to the
auxiliary field equations of motion. On top of the standard supersymmetry preserving solution
there is a new vacuum where the scalar auxiliary field gets a nonvanishing vev. Moreover, one of
the auxiliary fermions starts propagating in the new supersymmetry breaking vacuum and is the
Goldstone mode of the broken global supersymmetry. One interesting feature of this type of super-
symmetry breaking is that in the broken vacuum supersymmetry is directly non-linearly realized
and there is no superpartner for the goldstino. This is in contrast to supersymmetry breaking from
chiral superfields where one needs to impose a nilpotency condition to get a non-linear realization
of supersymmetry or decouple the massive superpartner of the goldstino [18, 19, 20, 21]. Finally,
since the main purpose of supersymmetry breaking is to generate mass splitting between superpart-
ners, we will see how one can modify the model (1.1) to generate a mass term for the otherwise
massless scalar of the complex linear multiplet [15, 17]. For models with chiral superfields see
[22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37] and for modified complex linear
superfields see [38].
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By following the Noether method we also study the supercurrent [39, 40, 41, 42, 43] of the
model (1.1). We have found that one can consistently write the supercurrent equation in the form

D̄α̇Jαα̇ = DαX , (1.3)

and identify both the Ferrara-Zumino multiplet (Jαα̇ ) and the chiral superfield X . This shows that
one can consistently couple the Lagrangian (1.1) to old-minimal supergravity. In addition, we
show that the X superfield in (1.3) becomes indeed a nilpotent chiral goldstino superfield as was
advocated in [21] to hold for every supersymmetry breaking theory in the low energy limit.

2. Chiral goldstino superfield

In this section we review supersymmetry breaking by a chiral superfield, and we see how
the decoupling of the sgoldstino leads to a non-linear realization of supersymmetry. For a chiral
superfield Φ, which satisfies D̄α̇Φ = 0, the component fields are defined as

Φ|= z , DαΦ|= ρα , D2
Φ|= N . (2.1)

The simplest model that breaks supersymmetry is

L =

ˆ
d4

θ Φ̄Φ−
{

c
ˆ

d2
θ Φ+ c.c.

}
= (2.2)

=
1
2

z∂
αα̇

∂αα̇ z̄+NN̄− cN− cN̄− iρα∂
αβ̇

ρ̄
β̇
.

The equation of motion for the auxiliary field N reads

δ N̄ : N = c , (2.3)

and the Goldstone fermion can be identified as the fermion with the supersymmetry transformation

δρα = εα c+ . . . (2.4)

while the vacuum energy of the theory is positive: 〈V 〉= c2. Both the existence of a goldstino and
the positive vacuum energy implies broken global supersymmetry.

Now we want to study a more general class of models in which the sgoldstino becomes mas-
sive. These models are described by the Lagrangian

L =

ˆ
d4

θ Φ̄Φ− r
ˆ

d4
θ Φ̄

2
Φ

2−
{

c
ˆ

d2
θ Φ+ c.c.

}
, (2.5)

which in components becomes

L =
1
2

z∂
αα̇

∂αα̇ z̄+NN̄− cN− cN̄− iρα∂
αβ̇

ρ̄
β̇

(2.6)

− r
{

zz̄
(
− 1

2
∂

αα̇z∂αα̇ z̄− i
2
(ρα∂

αβ̇
ρ̄

β̇
+ ρ̄

β̇
∂

αβ̇
ρα)+NN̄

)
+

z
2

(
Nρ̄

α̇
ρ̄α̇ − iρα ρ̄

β̇
∂

αβ̇ z̄
)
+

z̄
2

(
N̄ρ

α
ρα + iρα ρ̄

β̇
∂

αβ̇ z
)
+

1
4

ρ
α

ρα ρ̄
α̇

ρ̄α̇

}
.
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We will see that once we decouple the massive complex scalar z from the spectrum of the theory, we
get the Lagrangian (2.2) with nonlinearly realized supersymmetry [18, 19, 20, 21]. The equation
of motion for N̄ is

δ N̄ : N =
c

1− r zz̄
, (2.7)

which shows that supersymmetry is broken for small z fluctuations around the vacuum z0 = 0.
Expanding around the vacuum one finds the mass eigenvalues for the sgoldstino

m2
∝ r . (2.8)

Therefore, if we formally send the curvature r to infinity, we decouple the massive z degrees of
freedom from the theory. This will make the r-dependent parts to dominate the equations of motion,
therefore they have to be solved independently as if they were constraints. Let us see how this
happens. Varying the divergent part of the Lagrangian we find that

δ z :
1
4

z∂
αα̇

∂αα̇ z̄2 + z̄
(
− i

2
(ρα∂

αβ̇
ρ̄

β̇
+ ρ̄

β̇
∂

αβ̇
ρα)+NN̄

)
(2.9)

+
1
2

(
Nρ̄

α̇
ρ̄α̇ − iρα ρ̄

β̇
∂

αβ̇ z̄
)
= 0 .

A non-dynamical solution to the above equation, which removes z, is

z̄ =− ρ̄ α̇ ρ̄α̇

2N̄
, (2.10)

which gives the superspace constraint

Φ
2 = 0 . (2.11)

To get a formulation in superspace and impose the nilpotency constraint directly on the gold-
stino superfield, we modify (2.2) in the following way

L =

ˆ
d4

θXNLX̄NL +

{ˆ
d2

θ
(
−cXNL +C X2

NL
)
+ c.c.

}
, (2.12)

where XNL is the chiral goldstino superfield and C is a chiral Lagrange multiplier. Variation of the
Lagrangian leads to a set of equations

δC : X2
NL = 0 , (2.13)

δ X̄NL : D̄2X̄NL− c+2C XNL = 0 . (2.14)

As we have seen, using the condition (2.13) we can express XNL only in terms of the goldstino ρα

and the scalar field N.

3. Supersymmetry breaking and complex linear superfield

Let us start with a free theory for the complex linear superfield

L = −
ˆ

d4
θ Σ̄Σ = (3.1)
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=
1
2

A∂
αα̇

∂αα̇ Ā−FF̄ +Pαα̇ P̄αα̇ − iψα∂
αβ̇

ψ̄
β̇
+χ

α
λα + χ̄

α̇
λ̄α̇ ,

where the component definitions are

Σ|= A , D2
Σ|= F , D̄α̇DαΣ|= Pαα̇ ,

D̄α̇Σ|= ψ̄α̇ , DαΣ|= λα ,
1
2

DγD̄α̇DγΣ|= χ̄α̇ . (3.2)

From the structure of the free theory we can see that χ,λ ,P,F are auxiliary fields. Now we would
like to explore the properties of the theory given by (1.1). To probe vacuum structure we look at
the bosonic part of the theory

LB =
1
2

A∂
αα̇

∂αα̇ Ā−FF̄ +Pαα̇ P̄αα̇ +
1

2 f 2 F2F̄2 +
1

2 f 2 FF̄Pαα̇ P̄αα̇ (3.3)

+
1

8 f 2 Pαα̇Pαα̇ P̄ββ̇ P̄
ββ̇

.

Varying the Lagrangian with respect to Pαα̇ we get

P̄αα̇ +
1

2 f 2 FF̄P̄αα̇ +
1

4 f 2 Pαα̇ P̄ββ̇ P̄
ββ̇

= 0 , (3.4)

which has solution

Pαα̇ = 0 . (3.5)

The equation of motion for F simplifies to

F̄− 1
f 2 FF̄2 = 0 ,

which has two solutions

F = 0 , (3.6)

FF̄ = f 2 . (3.7)

The first solution preserves supersymmetry, whereas the second solution gives spontaneous super-
symmetry breaking. Since supersymmetry is broken we have to verify the existence of a goldstone
mode and the positive vacuum energy. Indeed, up to quadratic order to the fields the Lagrangian in
the supersymmetry breaking vacuum is

LQuad. =
1
2

A∂
αα̇

∂αα̇ Ā− iψα∂
αβ̇

ψ̄
β̇
− 1

2
f 2− iλβ ∂

ββ̇
λ̄

β̇
. (3.8)

As before, using the supersymmetry transformation we can identify the Goldstone fermion

δλα = εα f + . . . (3.9)

and verify the positive vacuum energy: 〈V 〉= 1
2 f 2.
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It is possible to solve the equations of motion directly in superspace. Varying the Lagrangian
(1.1) we find

Σ+
1

4 f 2 D̄α̇
(
D̄α̇ Σ̄Dα

ΣDαΣ
)
= Φ̄ , (3.10)

where Φ̄ is the free anti-chiral superfield (D̄2Φ̄ = 0). Apart from the standard supersymmetric
solution Σ = Φ̄ there is also the supersymmetry breaking solution

Σ = Φ̄+XNL , (3.11)

where XNL is the chiral goldstino with c = f .
It is a well known fact that the complex linear superfield can be generically dualized to the chi-

ral superfield. However, this procedure can be non-trivial once there are new propagating degrees
of freedom arising from higher derivative terms. Here we have seen that on top of the free chiral
superfield (which is dual to the free complex linear) there is a goldstino multiplet also propagating
which is verified by formula (3.11).

Now we would like to discuss one possible generalization of (1.1) that mediates mass to the
scalar sector [15, 17]. Let us study the following Lagrangian

L =−
ˆ

d4
θ Σ̄Σ+

1
8

ˆ
d4

θ U(Σ, Σ̄)Dα
ΣDαΣD̄β̇

Σ̄D̄
β̇

Σ̄ , (3.12)

where U(Σ, Σ̄) is a real positive function. The bosonic part has a form

LB =
1
2

A∂
αα̇

∂αα̇ Ā−FF̄ +Pαα̇ P̄αα̇ +
1
2

U(A, Ā)F2F̄2 +
1
2

U(A, Ā)FF̄Pαα̇ P̄αα̇ (3.13)

+
1
8

U(A, Ā)Pαα̇Pαα̇ P̄ββ̇ P̄
ββ̇

,

where U(A, Ā) =U(Σ, Σ̄)|. As before, we find the solution Pαα̇ = 0, and the equation of motion for
F is

F̄−U(A, Ā)FF̄2 = 0 . (3.14)

For the supersymmetry breaking vacuum we have

FF̄ =U(A, Ā)−1 . (3.15)

Plugging this solution into the Lagrangian, for A we get

LB|A =
1
2

A∂
αα̇

∂αα̇ Ā− 1
2U(A, Ā)

. (3.16)

This is a new mechanism for generating scalar potentials for A, and we will illustrate the properties
of these potentials with two examples. For our first example we have

U(A, Ā) =
2

f 2 +m2
AAĀ

, (3.17)

which gives a scalar potential

V = f 2 +m2
AAĀ , (3.18)
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and breaks supersymmetry but also gives a mass to the scalar field A, (which is not the sgoldstino).
The second example is given by

U(A, Ā) =
2

f 2 + λ

4!(AĀ−µ2)2
, (3.19)

which gives rise to the scalar potential

V = f 2 +
λ

4!
(AĀ−µ

2)2 . (3.20)

In the vacuum we have AĀ = µ2 which breaks both supersymmetry and the global U(1) symmetry.

4. Supercurrents

In principle, the supercurrent conservation equation (which holds only on-shell) has the generic
form [40, 39, 41, 42, 43]

D̄α̇Jαα̇ = Yα +Xα , (4.1)

where the supercurrent Jαα̇ is a real superfield, and the superfields Yα and Xα satisfy

D̄α̇Xα = 0 , D̄2Yα = 0 , (4.2)

DαXα − D̄α̇X̄α̇ = 0 , DαYβ +Dβ Yα = 0 . (4.3)

For the Ferrara-Zumino supercurrent we have that

Yα = DαX , Xα = 0 . (4.4)

It has been advocated in [21] that the X in (4.4) flows to the nilpotent chiral superfield XNL, in the
low energy limit of supersymmetry breaking theories. In this section we find the supercurrent of
the model (1.1) by using the superspace Noether procedure [40]. Then we will show that also in
these models the X superfield that enters the Ferrara-Zumino supercurrent equation becomes the
nilpotent chiral goldstino superfield XNL.

We start from the superspace Noether procedure. An infinitesimal superdiffeomorphism (D̄2δΣ=

0) for the complex linear superfield can be expressed in terms of unconstraint superfields Lα ,Lβ̇ α̇

as

δΣ = [i∆,Σ] =−D̄2LαDαΣ+ iD̄α̇Lα
∂αα̇Σ+ iD̄

β̇
Lβ̇ α̇ D̄α̇Σ . (4.5)

An infinitesimal variation of the Lagrangian

δL =−
ˆ

d4
θ

(
D̄α̇LαJαα̇ + D̄

β̇
Lβ̇ α̇Jα̇

)
+ c.c. , (4.6)

directly gives conserved complex currents with conservation equations

D̄α̇Jαα̇ = 0 , D̄
β̇
Jα̇ = 0 . (4.7)
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Shifts Type A Type B Type C Type D

Jαα̇ → Jαα̇ +[Dα , D̄α̇ ]U Jαα̇ + i∂αα̇U Jαα̇ + D̄α̇DαU Jαα̇ +DαD̄α̇U
Xα → Xα −3D̄2DαU Xα + D̄2DαU Xα +2D̄2DαU Xα − D̄2DαU
Yα → Yα −DαD̄2U Yα −DαD̄2U Yα Yα −DαD̄2U

Table 1: The table presents various shifts which can be used to bring the current to the desired
form.

Note that Jαα̇ is not necessarily real, therefore

DαJαα̇ 6= 0 . (4.8)

We may now use improvement terms to bring Jαα̇ , Xα and Yα to the desired form (4.1). These
improvement terms can be found in Table 1. After making the current Jαα̇ real we find

Jαα̇ =−1
2

iΣ∂αα̇ Z̄ +
1
2

iΣ̄∂αα̇Z +
1
2

Dβ (i∂αα̇ΣTβ )−
1
2

D̄β̇ (i∂αα̇ Σ̄ T̄
β̇
) ,

Xα =
1
2

D̄2Dα(ΣΣ̄−3T −ZΣ̄− Z̄Σ) ,

Yα =
1
2

DαD̄2(ΣΣ̄−T −ZΣ̄− Z̄Σ) ,

(4.9)

where

T =
1

2 f 2 (DΣ)2(D̄Σ̄)2, Tβ =
1

2 f 2 Dβ Σ(D̄Σ̄)2, T̄
β̇
=

1
2 f 2 D̄

β̇
Σ̄(DΣ)2 , (4.10)

Z = Σ+
1

4 f 2 D̄α̇
(
D̄α̇ Σ̄Dα

ΣDαΣ
)
. (4.11)

Moreover, with additional shifts we can still bring the currents into the form of the FZ-multiplet
(Xα = 0) or the R-multiplet (Yα = 0) which means that the theory may be consistently coupled to
old-minimal or new-minimal supergravity.

Now let us briefly discuss the FZ-multiplet. The supercurrent conservation becomes

D̄α̇Jαα̇ = DαX , (4.12)

where X is a chiral superfield. Applying the type A shift with

U =
1
6
(ΣΣ̄−3T −ZΣ̄− Z̄Σ) (4.13)

on (4.9), we get a system with a real Jαα̇ and

Xα = 0 ,

Yα =
2
3

DαD̄2T .
(4.14)
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From (4.14) we find that

X =
2
3

D̄2T . (4.15)

By solving the superspace equation of motion (3.10) have found that Σ = XNL + Φ̄, therefore we
can insert this in the expression for X (4.15) to find

X =
1

3 f 2 D̄2 [(DXNL)
2(D̄X̄NL)

2] , (4.16)

which gives

X =
1
3

f XNL . (4.17)

We see that X for the supersymmetry breaking vacuum is proportional to XNL, and this will also
hold in the IR. Therefore we confirm that X flows to XNL in the IR as was advocated in [21].

To summarize, we have seen that superspace higher derivative terms with complex linear su-
perfields give new possibilities for supersymmetry breaking, with distinct properties, as for exam-
ple the fact that we get directly a non-linear realization of supersymmetry in the broken vacuum.
Future research directions are the coupling of these models to matter superfields and their coupling
to supergravity.
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