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1. Introduction

In 2012, the Higgs boson [1, 2, 3, 4] of the Standard Model (SM) was at last discovered by the
ATLAS [5] and CMS [6] detectors of the Large Hadron Collider (LHC) at CERN. With its primary
goal achieved, LHC could now focus its searches to beyond the Standard Model (BSM) physics.
Unfortunately, the first run of LHC ended with no new breakthroughs. Nevertheless, Run II is now
underway and is full of promise for unexpected surprises.

Despite its enormous success for over 40 years, the SM is inadequate for explaining some
phenomena and it also has a few shortcomings of its own. Some problems of theoretical nature are
the hierarchy problem and the vacuum stability problem. Problems of phenomenological nature are
the observed non-zero masses of the SM neutrinos and the existence of dark matter (DM) in the
Universe. In this talk we will present possible solutions to these problems.

In the SM, the only dimensionful parameter is the µ2
SM mass parameter in the Higgs potential,

responsible for the electroweak symmetry breaking. Most BSM models posit the existence of large
new physics scales ΛNP, associated with new heavy particles. These particles give huge quadratic
corrections (∆M2

h ) to the renormalized Higgs mass (M2
h ). As a result, the bare Higgs mass (M2

0 )
has to be extremely fine-tuned in order to obtain the measured value Mh = 125.09±0.24 GeV [7].
This is called the hierarchy or naturalness problem. If one sets µSM = 0, then the resulting theory
is manifestly classically scale-invariant (CSI) and free from quadratic sensitivity [8]. Symmetry
breaking can then be realized via the Coleman-Weinberg mechanism (CWM) [9]. For the CWM to
be successful, though, new bosonic degrees of freedom have to be added to the SM particle content.

The other parameter entering the Higgs potential is the Higgs field self-coupling λh. Studies
of its renormalization group evolution have shown [10] that it becomes negative above energies of
O(1010 GeV), thus rendering the vacuum metastable. This situation can be remedied if we add
scalar fields to the SM and couple them to the Higgs field, since the new portal couplings would
contribute positively to the renormalization group equation (RGE) of λh.

Another motivation for adding new degrees of freedom to the SM stems from the strong ob-
servational evidence for oscillations between the SM neutrinos, implying non-zero masses and
mixings. In a CSI framework one can generate neutrino masses at tree-level by introducing singlet
right-handed neutrinos and coupling them to a new singlet scalar that obtains a vacuum expectation
value (vev). The product of the right-handed neutrino Yukawa coupling(s) with the singlet vev re-
sults in a mass term for the right-handed neutrinos, while the SM neutrinos can obtain their masses
through a type-I seesaw mechanism.

Nowadays, dark matter (DM) is believed to constitute nearly 27% of the energy content of the
Universe. Its measured relic abundance implies cold DM with annihilation cross section around the
electroweak scale. This is the well-known weakly interacting massive particle (WIMP) miracle. A
DM particle needs to be stable so that it cannot decay to SM particles. This can be achieved by
imposing a discrete symmetry under which the DM particles are charged but the SM ones are not.
A new discrete symmetry is best motivated as resulting from the breaking of a gauge symmetry.

In this talk, we will present a model [11] where we considered the CSI SM, extended by a
dark SU(2)X gauge symmetry [12, 13, 14, 15]. We also incorporated three right-handed neutrinos
and a real scalar singlet in order to implement a type-I seesaw mechanism for the neutrino mass
generation. The extra SU(2)X gauge symmetry gets completely broken by a complex scalar doublet
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that obtains a vev by means of the CWM. The three new vector bosons obtain equal masses and
are stable due to a remnant Z2×Z′2 symmetry; therefore they can play the role of WIMP DM. The
additional scalar singlet and the Higgs field also get a vev and obtain mass terms through their
portal interactions with the dark scalar doublet, in a cascading symmetry breaking effect.

2. The model

We start by presenting the model and studying its properties.

2.1 The tree-level scalar potential

The scalar sector consists of the Higgs doublet H, the dark SU(2)X doublet Φ and the real
singlet σ . The most general renormalizable CSI tree-level scalar potential involving these three
fields has the form

V0 = λh(H†H)2+λφ (Φ
†
Φ)2+

λσ

4
σ

4−λhφ (H†H)(Φ†
Φ)−

λφσ

2
(Φ†

Φ)σ2+
λhσ

2
(H†H)σ2. (2.1)

We chose negative signs for the portal couplings λhφ and λφσ so that H and σ can obtain mass
terms through the vev of Φ.

Apart from the scalar potential, we also introduce the following Yukawa terms for the three
right-handed neutrinos:

−LN = Y i j
ν L̄i iσ2H∗N j +H.c.+Y i j

σ N̄c
i N jσ , (2.2)

where Y i j
σ denotes the right-handed Majorana neutrino Yukawa matrix which couples the singlet

scalar σ with the singlet neutrinos and is assumed diagonal and real. Y i j
ν is the Dirac neutrino

Yukawa matrix which couples the SM Higgs doublet H with the left-handed lepton doublet Li and
the right-handed neutrinos N j.

In the unitary gauge, the scalar fields obtain the form

H =
1√
2

(
0
h

)
, Φ =

1√
2

(
0
φ

)
, σ = σ , (2.3)

and the tree-level potential is now given by

V0(h,φ ,σ) =
λh

4
h4 +

λφ

4
φ

4 +
λσ

4
σ

4−
λhφ

4
h2

φ
2−

λφσ

4
φ

2
σ

2 +
λhσ

4
h2

σ
2. (2.4)

The tree-level potential is bounded from below if the following conditions [16] are satisfied for all
energies up to the Planck scale:

λh ≥ 0, λφ ≥ 0, λσ ≥ 0, (2.5)

λhφ

2
√

λhλφ

≤ 1,
λφσ

2
√

λφ λσ

≤ 1
−λhσ

2
√

λhλσ

≤ 1, (2.6)

4λhλφ λσ −
(
λ

2
hφ λσ +λ

2
φσ λh +λ

2
hσ λφ

)
+λhφ λφσ λhσ ≥ 0. (2.7)
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Following the Gildener-Weinberg (GW) approach [17], we may parametrize the scalar fields as

h = ϕN1, φ = ϕN2, σ = ϕN3, (2.8)

where Ni is a unit vector in the three-dimensional field space. Along a particular flat direction
Ni = ni the conditions for an extremum are [17]

∂V0

∂Ni

∣∣∣∣
n
= V0(n) = 0 (2.9)

and result in three tadpole equations and one flatness equation

2λhn2
1 = λhφ n2

2−λhσ n2
3, (2.10)

2λφ n2
2 = λhφ n2

1 +λφσ n2
3, (2.11)

2λσ n2
3 = λφσ n2

2−λhσ n2
1, (2.12)

λhn4
1 +λφ n4

2 +λσ n4
3−λhφ n2

1n2
2−λφσ n2

2n2
3 +λhσ n2

1n2
3 = 0, (2.13)

with n2
1 +n2

2 +n2
3 = 1.

2.2 The scalar masses

On the flat direction, the shifted scalar fields can be written as

h = (ϕ + v)n1, φ = (ϕ + v)n2, σ = (ϕ + v)n3. (2.14)

Then, in the (h,φ ,σ) basis, the scalar mass matrix at tree level has the form

M 2
0 = v2

 2λhn2
1 −n1n2λhφ +n1n3λhσ

−n1n2λhφ 2λφ n2
2 −n2n3λφσ

+n1n3λhσ −n2n3λφσ 2λσ n2
3

 (2.15)

The above mass matrix can be diagonalized by means of an orthogonal rotation matrix,

M 2
d = R M 2

0 R−1, (2.16)

where

R−1 =

 cosα cosβ sinα cosα sinβ

−cosβ cosγ sinα + sinβ sinγ cosα cosγ −cosγ sinα sinβ − cosβ sinγ

−cosγ sinβ − cosβ sinα sinγ cosα sinγ cosβ cosγ− sinα sinβ sinγ

 . (2.17)

If we parametrize the individual vevs with respect to the total vev v according to

vh = vsinα = vn1,

vφ = vcosα cosγ = vn2,

vσ = vcosα sinγ = vn3,

(2.18)

then the remaining angle β has to be given by the relation

tan2β =
vhvφ vσ v

(
λhσ +λhφ

)(
λφ +λσ +λφσ

)
v2

φ
v2

σ −λhv2
hv2

(2.19)
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in order for M 2
d to be diagonal. For small mixing among the scalars the vevs are hierarchically

structured (vφ > vσ > vh) and the mass eigenvalues have the form

M2
h1

= 2λhv2
h cos2

α cos2
β +λhφ vhvφ cos2

β cosγ sin2α−λhσ vhvσ cosα cosγ sin2β + . . . ,(2.20)

M2
h2

= 0, (2.21)

M2
h3

= 2λσ v2
σ cos2

β cos2
γ +λφσ vφ vσ cos2

β sin2γ +λhσ vhvσ cosα cosγ sin2β + . . . . (2.22)

One of these masses (Mh2) is exactly zero at tree level due to the GW conditions (2.9) and our
particular parametrization of the vevs (2.18). Nevertheless, as we will see later on, this pseudo-
Goldstone boson of broken scale invariance which we call “darkon", will receive large corrections
at the one loop level. Finally, we will identify the first eigenvalue with the Higgs mass central value
Mh1 = 125.09 GeV.

2.3 Neutrinos

After symmetry breaking, the Yukawa terms in (2.2) relevant for the neutrinos masses are

Y i j
ν√
2

vhνi iσ2N j +H.c.+Y i j
σ vσ N̄ c

i N j . (2.23)

and result in the eigenvalues

MN ≈ Yσ vσ , mν ≈
v2

h
4vσ

Y 2
ν

Yσ

, (2.24)

where we omitted the indices of the Yukawa matrices. Assuming the right-handed neutrino Yukawa
coupling Yσ to be O(0.1), the vev of the singlet scalar vσ to be O(1 TeV) and the left-handed
neutrino Yukawa coupling Yν to be O(10−6 eV) we obtain MN ∼O(100 GeV) and mν ∼O(0.1 eV).

2.4 The one-loop potential

The one-loop potential becomes dominant along the minimum flat direction at a renormaliza-
tion scale Λ where the scalar couplings satisfy the equality in (2.7). It has the form

V1(nϕ) = Aϕ
4 +Bϕ

4 log
ϕ2

Λ2 , (2.25)

where, in the MS scheme, the coefficients A and B are given by

A =
1

64π2υ4

[
∑

i=1,3
M4

hi

(
−3

2
+ log

M2
i

υ2

)
+6M4

W

(
−5

6
+ log

M2
W

υ2

)
+3M4

Z

(
−5

6
+ log

M2
Z

υ2

)

+9M4
X

(
−5

6
+ log

M2
X

υ2

)
−12M4

t

(
−1+ log

M2
t

υ2

)
−2

3

∑
i=1

M4
Ni

(
−1+ log

M2
Ni

υ2

)]
,

(2.26)

B =
1

64π2υ4

(
∑

i=1,3
M4

hi
+6M4

W +3M4
Z +9M4

X −12M4
t −2

3

∑
i=1

M4
Ni

)
. (2.27)

5



P
o
S
(
C
O
R
F
U
2
0
1
5
)
0
7
3

Dark matter and neutrino masses from a classically scale-invariant multi-Higgs portal Alexandros Karam

Minimizing the one-loop effective potential we obtain

V1(nϕ) = Bϕ
4
[

log
ϕ2

υ2 −
1
2

]
. (2.28)

The one-loop potential is bounded from below if B > 0. Then, the darkon mass is no longer zero
but is given by

M2
h2
=

1
8π2υ2

(
M4

h1
+M4

h3
+6M4

W +3M4
Z +9M4

X −12M4
t −6M4

N
)
. (2.29)

3. Phenomenological analysis

Next, we will impose theoretical and experimental constraints on the model and examine its
phenomenological viability.

3.1 Theoretical constraints

Vacuum stability is guaranteed if the conditions (2.5)-(2.7) and B > 0 are satisfied for all
energies up to the Planck scale. The latter is equivalent to

M4
h3
+9M4

X −6M4
N > (317.26 GeV)4 . (3.1)

We check that the stability conditions (2.5)-(2.7) hold up to the Planck scale by numerically solving
the full two loop RGEs for all the couplings

βg1 =
41
10

g3
1 +

1
(4π)2

1
50

g3
1

(
199g2

1 +135g2
2 +440g2

3−85y2
t

)
(3.2)

βg2 =−
19
6

g3
2 +

1
(4π)2

1
30

g3
2

(
27g2

1 +175g2
2 +360g2

3−45y2
t

)
(3.3)

βg3 =−7g3
3 +

1
(4π)2

1
10

g3
3

(
11g2

1 +45g2
2−260g2

3−20y2
t

)
(3.4)

βgX =−43
6

g3
X −

1
(4π)2

259
6

g5
X (3.5)

βyt = yt

(
9
2

y2
t −

17
20

g2
1−

9
4

g2
2−8g2

3

)
(3.6)

βYσ
= 4Yσ Tr

(
YσY ∗σ

)
+12YσY ∗σYσ (3.7)

βλh =−6y4
t +24λ

2
h +λh

(
12y2

t −
9
5

g2
1−9g2

2

)
+

27
200

g4
1 +

9
20

g2
1g2

2 +
9
8

g4
2 +2λ

2
hφ +

1
2

λ
2
hσ (3.8)

βλφ
=

9
8

g4
X −9g2

X λφ +24λ
2
φ +2λ

2
hφ +

1
2

λ
2
φσ (3.9)

βλσ
=−64Tr

(
YσY ∗σYσY ∗σ

)
+16λσ Tr

(
YσY ∗σ

)
+18λ

2
σ +2λ

2
hσ +2λ

2
φσ (3.10)

βλhφ
= λhφ

(
6y2

t +12λh +12λφ −4λhφ −
9
10

g2
1−

9
2

g2
2−

9
2

g2
X

)
+λhσ λφσ (3.11)

βλφσ
= λφσ

(
8Tr
(

YσY ∗σ
)
+12λφ +6λσ −4λφσ −

9
2

g2
X

)
+4λhσ λhφ (3.12)
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βλhσ
= λhσ

(
6y2

t +8Tr
(

YσY ∗σ
)
+12λh +6λσ +4λhσ −

9
10

g2
1−

9
2

g2
2

)
+4λhφ λφσ , (3.13)

where we defined βκ ≡ (4π)2 dκ

d ln µ
.

We also require perturbativity of the couplings by demanding that

all couplings < 2π. (3.14)

The RGE of the Higgs self-coupling λh (3.8) contains two new contributions from the portal cou-
plings λhφ and λhσ that can help it remain positive up the Planck scale. Furthermore, we can
avoid Landau poles for the right-handed neutrino Yukawa coupling and the dark gauge coupling if
Yσ (MN). 0.31 and gX(MX). 2.51 respectively.

Since there are many free parameters in this model, we fix most of them as in Table 1 in order
to obtain the measured Higgs mass Mh1 = 125.09 GeV. This benchmark point satisfies all the
stability and perturbativity constraints. Then we scan over the plane (gX , Yσ ) and obtain the mass
contours for the darkon mass Mh2 shown in Fig. 1.

vh[ GeV] vφ [ GeV] vσ [ GeV] λh(Λ) λφ (Λ) λσ (Λ) λhφ (Λ) λφσ (Λ) λhσ (Λ) Mh3 [ GeV]

246 2112 770 0.1276 0.004 0.2257 0.0036 0.06 0.001 550.62

Table 1: A benchmark set of values for the parameters involved in the scalar sector that reproduce the
measured Higgs mass Mh1 = 125.09 GeV and satisfy the stability and perturbativity constraints.

500 1000 1500 2000 2500

50

100

150

200

250

MX [GeV]

M
N
[G
eV

]

100

300

500

700

900

M
h 2
M
as
s
[G
eV

]

Figure 1: (color online). Scan on the parameter plane (gX , Yσ ) with the rest of the parameters fixed as in
Table 1. The color coding indicates the resulting mass of the darkon Mh2 . The black band corresponds to the
points that are able to reproduce the observed DM relic density at 3σ .
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3.2 Experimental constraints

The three scalar fields of the model obtain vevs and therefore mix. Thus the couplings of the
Higgs field to the SM fields get suppressed by the factor R11 = cosα cosβ . The disparity of the
state h1 from the SM Higgs may be readily perceived if we construct the signal strength parameter
µh1 , which takes the form [11]

µh1 ' cos2
α cos2

β . (3.15)

Using the combined ATLAS [18] and CMS [19] searches, we can constrain the rotation matrix
element

R11 = cosα cosβ > 0.9. (3.16)

Due to the vev hierarchy vφ > vσ > vh and the small portal couplings considered in the benchmark
point of Table 1 we obtain

R11 = 0.994, (3.17)

which is in accordance with (3.16). Therefore the state h1 and the SM Higgs behave very much
alike.

4. Dark matter analysis

After the dark SU(2)X gauge symmetry gets completely broken the three dark vector bosons
Xa acquire equal masses MX = 1

2 gX vφ . Their stability is ensured by a remnant Z2×Z′2 symmetry
which can be generalized to a global SO(3) symmetry. We can thus consider them as WIMP DM
candidates.

4.1 Boltzmann equation and relic density

The novel thing about SU(2)X vector DM is that apart from annihilations, the DM particles
can also semiannihilate [20] (see Figs. 2-4 for the relevant Feynman diagrams).

Figure 2: DM annihilations to SM particles and right-handed neutrinos.

Figure 3: DM annihilations to scalars.
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Figure 4: DM semiannihilations.

In order to calculate the DM relic abundance we need to solve the Boltzmann equation de-
scribing the evolution of the number density n of the DM particles species,

dn
dt

+3H n =−
〈σv〉a

3
(
n2−n2

eq
)
− 2〈σv〉s

3
n(n−neq) , (4.1)

where 〈σv〉a (〈σv〉s) is the thermally averaged annihilation (semiannihilation) cross section of the
DM particles times their relative velocity, H is the Hubble expansion parameter and neq is the
equilibrium number density. It is useful to express (4.1) in terms of the comoving volume Y = n/s,
with s being the entropy density, as

dY
dx

=− Za

3x2

(
Y 2−Y 2

eq
)
− 2Zs

3x2

(
Y 2−Y Yeq

)
, Za,s ≡

s(x = 1)
H (x = 1)

〈σv〉a,s , (4.2)

where H =
√

4π3g∗
45

M2
X

MP
, s = 2π2g∗

45
M3

X
x3 , x = MX/T and g∗ = 86.25 is the relativistic degrees of

freedom during the freeze-out (x = x f ). We find the freeze-out point to have values between
x f ≈ 25−26. Finally, solving (4.2) we obtain the relic density of the vector boson particles

ΩX h2 = 3× 1.07×109 GeV−1

√
g∗MP J(x f )

, J(x f ) =
∫

∞

x f

dx
〈σv〉a +2〈σv〉s

x2 . (4.3)

In Fig. 1, the black band corresponds to the DM masses that saturate the observed DM relic density
at 3σ . For the benchmark point in Table 1 we find DM masses between MX ∼ 710−740 GeV.

4.2 Dark matter direct detection

The dark vector bosons Xa can in principle interact with nucleons by exchanging scalar bosons
hi (c.f. Fig. 5).

Figure 5: Feynman diagram for DM-nucleon elastic scattering.
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The cross section for this process has the form

σSI =
µ2

red

πv2
hv2

φ

∣∣∣∣∣ fN MX mN ∑
i

Ri2R1i

M2
hi

∣∣∣∣∣
2

, (4.4)

where µred = MX mN /(MX +mN ) is the reduced mass of the DM particles and the nucleons,
mN = 0.939 GeV is the average nucleon mass and fN = 0.303 is the nucleon form factor.

In Fig. 6 we plot the DM masses MX versus the spin-independent cross section in (4.4). We
find that dark vector boson masses above circa 700 GeV evade the bounds set by LUX (2013) but
can nevertheless be detected by the currently operating XENON 1T experiment.

LUX (2013)

XENON 1T

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10-47

10-46

10-45

10-44

10-43

MX [GeV]

σ
S
I[
cm

2
]

Figure 6: (color online). We show the DM-nucleon spin-independent cross section as a function of the dark
vector boson mass (magenta band) with varying MN masses and the rest of the parameters fixed as in Table
1. The purple line signifies the limits set by LUX (2013) while the black line corresponds to the expected
limits of XENON 1T.

5. Summary and conclusions

In conclusion, we constructed a classically scale-invariant extension of the Standard Model
where the dark matter, neutrino and electroweak scales were dynamically generated and the hier-
archy problem was naturally solved. We incorporated three singlet right-handed neutrinos and a
singlet scalar field in order to implement a type-I seesaw mechanism. The dark matter consisted
of three vector bosons of an extra SU(2)X gauge symmetry which was broken by a doublet scalar
field by means of the Coleman-Weinberg mechanism. Then, through the portal interactions in the
scalar potential, a mass scale was communicated to the neutrino sector and the electroweak sector.
We examined the tree-level and one-loop scalar potential and saw that the vacuum could be easily
stabilized. Employing the Gildener-Weinberg formalism we obtained three massive scalar bosons,
one of which was identified with the recently discovered Higgs boson. We proceeded by imposing
theoretical and experimental constraints on the parameters of the model and saw that the scalar
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state identified with the Higgs boson differs only by a very small common suppression factor from
it. Finally, we calculated the dark matter relic abundance and the dark matter elastic scattering off a
nucleon cross section. Then, using experimental bounds we concluded that the dark matter masses
have to lie in the TeV range.

Acknowledgments

This research has been cofinanced by the European Union (European Social Fund - ESF)
and Greek national funds through the Operational Program Education and Lifelong Learning of
the National Strategic Reference Framework (NSRF) - Research Funding Program: ARISTEIA -
Investing in the society of knowledge through the European Social Fund. K.T. would like to thank I.
Antoniadis and K. Papadodimas for discussions and hospitality at the CERN Theory Division. A.K.
would like to thank Gunnar Ro and Dimitrios Karamitros for useful discussions and correspondence
and also the organizers of the “Summer School and Workshop on the Standard Model and Beyond",
Corfu 2015, for the hospitality during his stay and for giving him the opportunity to present this
work.

References

[1] F. Englert and R. Brout, “Broken Symmetry and the Mass of Gauge Vector Mesons,” Phys.Rev.Lett.
13 (1964) 321–323.

[2] P. W. Higgs, “Broken symmetries, massless particles and gauge fields,” Phys.Lett. 12 (1964) 132–133.

[3] P. W. Higgs, “Broken Symmetries and the Masses of Gauge Bosons,” Phys.Rev.Lett. 13 (1964)
508–509.

[4] G. Guralnik, C. Hagen, and T. Kibble, “Global Conservation Laws and Massless Particles,”
Phys.Rev.Lett. 13 (1964) 585–587.

[5] ATLAS Collaboration, G. Aad et al., “Observation of a new particle in the search for the Standard
Model Higgs boson with the ATLAS detector at the LHC,” Phys.Lett. B716 (2012) 1–29,
arXiv:1207.7214 [hep-ex].

[6] CMS Collaboration, S. Chatrchyan et al., “Observation of a new boson at a mass of 125 GeV with the
CMS experiment at the LHC,” Phys.Lett. B716 (2012) 30–61, arXiv:1207.7235 [hep-ex].

[7] ATLAS, CMS Collaboration, G. Aad et al., “Combined Measurement of the Higgs Boson Mass in pp
Collisions at

√
s = 7 and 8 TeV with the ATLAS and CMS Experiments,” Phys.Rev.Lett. 114 (2015)

191803, arXiv:1503.07589 [hep-ex].

[8] W. A. Bardeen, FERMILAB-CONF-95-391-T, C95-08-27.3.

[9] S. R. Coleman and E. J. Weinberg, “Radiative Corrections as the Origin of Spontaneous Symmetry
Breaking,” Phys.Rev. D7 (1973) 1888–1910.

[10] D. Buttazzo, G. Degrassi, P. P. Giardino, G. F. Giudice, F. Sala, et al., “Investigating the
near-criticality of the Higgs boson,” JHEP 1312 (2013) 089, arXiv:1307.3536 [hep-ph].

[11] A. Karam and K. Tamvakis, “Dark matter and neutrino masses from a scale-invariant multi-Higgs
portal,” Phys.Rev. D92 (2015) 075010, arXiv:1508.03031 [hep-ph].

11

http://dx.doi.org/10.1103/PhysRevLett.13.321
http://dx.doi.org/10.1103/PhysRevLett.13.321
http://dx.doi.org/10.1016/0031-9163(64)91136-9
http://dx.doi.org/10.1103/PhysRevLett.13.508
http://dx.doi.org/10.1103/PhysRevLett.13.508
http://dx.doi.org/10.1103/PhysRevLett.13.585
http://dx.doi.org/10.1016/j.physletb.2012.08.020
http://arxiv.org/abs/1207.7214
http://dx.doi.org/10.1016/j.physletb.2012.08.021
http://arxiv.org/abs/1207.7235
http://dx.doi.org/10.1103/PhysRevLett.114.191803
http://dx.doi.org/10.1103/PhysRevLett.114.191803
http://arxiv.org/abs/1503.07589
http://dx.doi.org/10.1103/PhysRevD.7.1888
http://dx.doi.org/10.1007/JHEP12(2013)089
http://arxiv.org/abs/1307.3536
http://dx.doi.org/10.1103/PhysRevD.92.075010
http://arxiv.org/abs/1508.03031


P
o
S
(
C
O
R
F
U
2
0
1
5
)
0
7
3

Dark matter and neutrino masses from a classically scale-invariant multi-Higgs portal Alexandros Karam

[12] T. Hambye and A. Strumia, “Dynamical generation of the weak and Dark Matter scale,” Phys.Rev.
D88 (2013) 055022, arXiv:1306.2329 [hep-ph].

[13] C. D. Carone and R. Ramos, “Classical scale-invariance, the electroweak scale and vector dark
matter,” Phys.Rev. D88 (2013) 055020, arXiv:1307.8428 [hep-ph].

[14] V. V. Khoze, C. McCabe, and G. Ro, “Higgs vacuum stability from the dark matter portal,” JHEP
1408 (2014) 026, arXiv:1403.4953 [hep-ph].

[15] G. M. Pelaggi, “Predictions of a model of weak scale from dynamical breaking of scale invariance,”
Nucl.Phys. B893 (2015) 443–458, arXiv:1406.4104 [hep-ph].

[16] K. Kannike, “Vacuum Stability Conditions From Copositivity Criteria,” Eur.Phys.J. C72 (2012) 2093,
arXiv:1205.3781 [hep-ph].

[17] E. Gildener and S. Weinberg, “Symmetry Breaking and Scalar Bosons,” Phys.Rev. D13 (1976) 3333.

[18] ATLAS Collaboration, G. Aad et al., “Measurements of Higgs boson production and couplings in the
four-lepton channel in pp collisions at center-of-mass energies of 7 and 8 TeV with the ATLAS
detector,” Phys. Rev. D91 no.~1, (2015) 012006, arXiv:1408.5191 [hep-ex].

[19] CMS Collaboration, V. Khachatryan et al., “Precise determination of the mass of the Higgs boson and
tests of compatibility of its couplings with the standard model predictions using proton collisions at 7
and 8 TeV,” Eur. Phys. J. C75 no.~5, (2015) 212, arXiv:1412.8662 [hep-ex].

[20] F. D’Eramo and J. Thaler, “Semi-annihilation of Dark Matter,” JHEP 1006 (2010) 109,
arXiv:1003.5912 [hep-ph].

12

http://dx.doi.org/10.1103/PhysRevD.88.055022
http://dx.doi.org/10.1103/PhysRevD.88.055022
http://arxiv.org/abs/1306.2329
http://dx.doi.org/10.1103/PhysRevD.88.055020
http://arxiv.org/abs/1307.8428
http://dx.doi.org/10.1007/JHEP08(2014)026
http://dx.doi.org/10.1007/JHEP08(2014)026
http://arxiv.org/abs/1403.4953
http://dx.doi.org/10.1016/j.nuclphysb.2015.01.025
http://arxiv.org/abs/1406.4104
http://dx.doi.org/10.1140/epjc/s10052-012-2093-z
http://arxiv.org/abs/1205.3781
http://dx.doi.org/10.1103/PhysRevD.13.3333
http://dx.doi.org/10.1103/PhysRevD.91.012006
http://arxiv.org/abs/1408.5191
http://dx.doi.org/10.1140/epjc/s10052-015-3351-7
http://arxiv.org/abs/1412.8662
http://dx.doi.org/10.1007/JHEP06(2010)109
http://arxiv.org/abs/1003.5912

