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1. Motivation and Introduction

The utmost importance of symmetry is modern theoretical physics is hard to overemphasize.
The gauge principle, being the cornerstone of our theories describing fundamental interactions, has
brought local symmetries to the forefront of attention since long ago. Conventionally, speaking of
local symmetries what comes to mind is a Lie algebra and a set of Lie algebra-valued 1-forms called
gauge fields that are introduced in the theory through minimal coupling. One question that comes
to mind then is whether this is the most general setting, namely whether every local symmetry is
associated to such a scenario. It is known that this is not the case (see for example the inspiring
exposition in Ref. [3]). Given the unquestionable success of Lie-algebra-based gauge symmetries
it is certainly worth studying such more general scenarios, based for example on the notion of a
Lie algebroid. Moreover, a second part of this question refers to minimal coupling and whether it
is always enough to guarantee the existence of a gauge theory. The investigation of these questions
in the context of two-dimensional sigma models is the first motivation for the work presented here.

Another important notion related to symmetry is duality. Dualities are everywhere in physics
(see for example the exposition in Ref. [4]) and this is certainly the case in string theory, where
they are very profound properties that teach us several conceptual lessons about the theory. One of
the prime examples is T-duality which identifies string backgrounds associated to different target
spaces. Conventionally, speaking of T-duality what comes to mind is a target space with one or
more isometric directions.1 This is however extremely restrictive. Certainly a randomly chosen
string background has no isometries whatsoever. The immediate question is then whether this is
the best we can do. Recall that one approach to T-duality goes through an "intermediate" gauge
theory which on-shell reduces to one or a dual background [7, 8]. Here we will study such gauge
theories even when no isometries are available. The relation among gauged sigma models and
T-duality is therefore our second general motivation.

Finally, there is a third motivation that is worth mentioning although it is not going to be
addressed in this work. It regards the so-called non-geometric string backgrounds, which often
originate from T-dualities and their precise understanding is still a programme under way. One
certain lesson of recent studies on this topic is that their description, be it from the target space
viewpoint or the world sheet one, requires generalized geometric concepts. Here we are going to
study gauged sigma models whose target space is essentially some generalized tangent bundle.

It is remarkable that there is a common mathematical theme underlying all three motivations
above: the theory of groupoids and algebroids. Indeed, (i) behind every local symmetry there is a
groupoid or an algebroid [3], (ii) T-duality is mathematically described, under certain restrictions
of course, as an isomorphism of (Courant) algebroids [9, 10], and (iii) generalized geometry is
partially yet crucially based on algebroid theory [11].

Based on the above motivations, we discuss a threefold generalization of the traditional pic-
ture of Lie algebra-based, minimally coupled 2D gauge theories with background fields satisfying
strong invariance conditions. In particular, the first fold of the generalization is to replace the Lie
algebra g by a Lie algebroid2 over the target space M. A Lie algebroid is an interesting mathe-
matical structure that merges two very important notions for physics, namely algebras and vector

1An interesting exception is Poisson-Lie T-duality [5, 6].
2A more general case where the algebroid is required to be just almost Lie is discussed elsewhere [2].
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bundles. At first approximation one could think of it as a generalization of an algebra such that the
structure constants are not constant anymore but are instead replaced by structure functions. One
particularly illuminating way to see this is to study the famous Cartan problem, which is also rel-
evant in many physical contexts, ranging from the vierbein formulation of gravity to string theory
reductions. The problem can be stated as follows (see for example the excellent lectures notes [12],
which we follow closely here): given two sets of functions defined locally on Rn, say Ca

bc and ei
a,

where the indices range as a = 1, . . . ,r and i = 1, . . .n, we are asked to determine (i) a manifold M,
(ii) a coframe {ea} on the manifold, namely a basis of its cotangent bundle T ∗M, and (iii) a local
coordinate system X : M→ Rn, such that the following two equations hold:

dea = −1
2Ca

bc(X)eb∧ ec , (1.1)

dX i = ei
a(X)ea . (1.2)

Asking when this problem has solutions, it is immediately observed that there are two necessary
conditions obtained by taking the exterior derivatives of the above two equations,

Ca
e[bCe

cd] = ei
[b∂iCa

cd] , (1.3)

2e j
[b∂ jei

c] = Ca
bcei

a , (1.4)

where antisymmetrizations are taken with weight. A very familiar special case (e.g. from the
vielbein formulation of gravity) corresponds to contant functions Ca

bc. Then the condition (1.3)
becomes the usual Jacobi identity for Lie algebras, and the condition (1.4) becomes the closure of
the algebra of the vectors ea dual to the coframe. Then one lands in the Lie algebra case and (1.1)
becomes the Maurer-Cartan equation. However, in general the functions Ca

bc are not constant, in
which case the solution to the Cartan problem is associated to a Lie algebroid. One can reach a
good definition by using the necessary conditions (1.3) and (1.4). The second condition indicates
that we have to replace the Lie algebra g by a vector bundle L, which is equipped with a bracket
such that its sections ea close under it with the structure functions Ca

bc:

[ea,eb]L =Cc
ab(X)ec . (1.5)

In order to associate this to (1.4), an additional ingredient is a map from the vector bundle L to the
tangent bundle T M, i.e. a rule that assigns a vector field to every section of L, ρ : L→ T M. Then
Eq. (1.4) simply says that this map is a homomorphism:

(1.4) ⇔ ρ([ea,eb]L) = [ρ(ea),ρ(eb)] . (1.6)

Moreover, the other necessary condition acquires a simple explanation too:

(1.3) ⇔ [ea, [eb,ec]L]L + (cyclic permutations) = 0 ; (1.7)

in other words it becomes the Jacobi identity for the bracket on L, which is thus a Lie bracket.
The above three ingredients, the vector bundle L with a Lie bracket and a homomorphism ρ to the
tangent bundle of M, define a Lie algebroid. Certainly Lie algebras are included in this definition,
simply by taking M to be just a point. For a list of examples we refer e.g. to [12].
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It should now be fairly obvious what the first generalization amounts to. The idea is to replace
the Lie algebra g by a Lie algebroid L such that the “generalized local symmetry” is generated by
vector fields that close under the Lie bracket with some X-dependent structure functions.

Let us now turn to 2D sigma models and explain what the second and third folds of the gen-
eralization are. Recall that the common bosonic sector of string theory includes the background
fields (g,B,Φ), namely a target space metric, the Kalb-Ramond 2-form and the scalar dilaton. The
theory is described by a non-linear sigma model whose source is a 2D world sheet Σ and its tar-
get a manifold M, and the dynamical fields are the scalar components of the corresponding map
X = (X i) : Σ→M. The corresponding action functional is

S =
∫

Σ

1
2 gi j(X)dX i∧∗dX j +

∫
Σ̂

1
6 Hi jk(X)dX i∧dX j ∧dXk +α

′Sdilaton , (1.8)

where ∗ is the Hodge operator on the world sheet (∗2 =∓1 for Euclidean and Lorentzian signature
respectively) and H is a Wess-Zumino term, only locally exact such that H = dB, living on an open
membrane world volume Σ̂ whose boundary is the world sheet Σ. The dilaton coupling involves the
world sheet curvature scalar and it is of next order in α ′. In this work it will therefore be ignored.

Suppose now that we are given a set of vector fields ρa = ρ i
a(X) ∂

∂X i which generate the fol-
lowing global symmetry

δεX i = ρ
i
a(X)εa , (1.9)

for rigid transformation parameters εa. Then the action (1.8) is invariant under this symmetry
provided that the following two conditions hold:

Lρag = 0 , (1.10)

ιρaH = dθa , (1.11)

for some 1-form θa. Eq. (1.10) means that the vector fields ρa are Killing, namely they generate
isometries for the metric g. Then this global symmetry can be promoted to local one by introducing
Lie algebra-valued 1-forms A = (Aa) (gauge fields), allowing the parameters εa to depend on world
sheet coordinates σ µ and also allowing the gauge fields to transform appropriately under such
gauge transformations, in particular as follows:

δεAa = dε
a +Ca

bcAb
ε

c , (1.12)

with Ca
bc here the structure constants of the Lie algebra. This was studied in detail in [13, 14] and

revisited recently in [15–17]. It can already be invoked from these works that minimal coupling is
not enough to yield the correct gauged action functional. Thus the generalization to non-minimally
coupled gauge fields is already present (and necessary) at this level and will be even more transpar-
ent in the body of this work. Moreover, already in the isometric case there are additional constraints
that have to be satisfied in order for the A-extended action functional to be gauge invariant. This
will also become transparent in the main text.

Most importantly, it should be stressed that the invariance conditions (1.10) and (1.11) are
extremely restrictive. Indeed an arbitrary choice of background fields is unlikely to satisfy them.
Thus it would be important to be able to write down gauged action functionals that still permit
local symmetries of the type (1.9) but without having to satisfy such restrictive conditions. Clearly

4
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this is not possible at the global level; however, starting from the inspiring work [18, 19], it turns
out to be possible at the level of gauge symmetries. In other words, in an inversion of the usual
spirit, we do not start with a global symmetry and then promote it to a local one; instead we search
for local symmetries directly, given a candidate action functional that is likely to realize a desired
symmetry. This is the third and most crucial generalization of the usual approach. We will see that
upon an appropriate choice of gauge transformation for the 1-forms A, the invariance conditions
are replaced by extremely milder ones, certainly such that

Lρag 6= 0 , (1.13)

ιρaH−dθa 6= 0 , (1.14)

which allow for gauge theories without isometry.
It should be stressed that the three above generalizations are to some extent independent. In-

deed, it is possible for example to drop isometry while keeping either minimal coupling or Lie
algebra-valued gauge fields or both.

Returning to the second motivation, that is T-duality, the generalization described above has
direct consequences. One can now view the gauged action functionals as intermediate gauge theo-
ries in a Buscher-like approach to T-duality. In the present case the associated vector fields ρa are
neither required to be Abelian nor Killing. Thus, introducing Lagrange multipliers in the action
functional so as to reduce the additional degrees of freedom introduced by the gauge fields A, it
is possible to determine two different reduced models upon integrating out different fields in the
action. Then these two resulting sigma models are in a sense dual to each other and correspond
to backgrounds with different target space. At least at the classical level one can say that this is a
version of non-Abelian and non-isometric T-duality.

It is natural to worry whether the above possibility can really be realized in non-trivial ex-
amples. We will see that at the classical level this is indeed possible and we will discuss some
particular cases. It is not known whether examples surviving at the quantum level exist, but this is
an interesting open question which we leave for future investigations.

2. Beyond the standard gauging in 2D sigma models

As explained in the Introduction, the starting point is the action functional with target space
metric g and Wess-Zumino term,

S =
∫

Σ

1
2 gi j(X)dX i∧∗dX j +

∫
Σ̂

1
6 Hi jk(X)dX i∧dX j ∧dXk . (2.1)

The difference to the standard case is that we do not assume any global symmetry for S. Our
guiding principle is instead the following: We require the existence of a gauge extension of the
action functional S such that it is invariant under the local symmetry

δεX i = ρ
i
a(X)εa(σ) , (2.2)

without any a priori assumptions on the metric g and the Wess-Zumino term H.

5
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Let us now be more specific. We extend the action S by adding gauge fields taking values in
some Lie algebroid L

L
ρ→ T M

instead of a Lie algebra. This means that if ea is a local basis of sections of L, then

A = Aaea .

This basis satisfies Eq. (1.5) and by the map ρ one gets a set of vector fields ρa = ρ(ea) which
satisfy a similar non-Abelian relation for the Lie bracket with the same structure functions:

[ρa,ρb] =Cc
ab(X)ρc . (2.3)

These gauge fields represent additional would-be dynamical degrees of freedom in the theory. Since
we do not wish to have extra degrees of freedom in the end, we require that their field strength
vanishes. This can be either implemented as an additional constraint (see e.g. [17]) or taken care of
by adding Lagrange multipliers in the action. Here we follow the second approach, which is closer
in spirit to the traditional duality formulations of Buscher [7] and Duff [20]. Moreover, in order to
build on the analogy to these formulations, we call these additional scalar fields X̃a (instead of ηa,
which was the notation used in Ref. [1]). Thus the general form of the candidate gauged action we
propose is

Sgauged =
∫

Σ

1
2 gi jDX i∧∗DX j +

∫
Σ̂

1
6 Hi jkdX i∧dX j ∧dXk−

−
∫

Σ

(θa +dX̃a)∧Aa +
∫

Σ2

1
2(ιρ[aθb]+Cc

ab(X)X̃c)Aa∧Ab−
∫

Σ2

ω
a
biX̃aAb∧DX i . (2.4)

Some comments and clarifications are in order here. First of all, the world sheet covariant derivative
D is defined as

DX i = dX i−ρ
i
a(X)Aa , (2.5)

as usual. This means that at the level of the kinetic sector we have used minimal coupling of the
gauge fields.3 However, as already mentioned, minimal coupling does not work for the Wess-
Zumino term and this is obvious from the above form of the action, where A-dependent terms
appear without the involvement of the covariant derivative. Secondly, θa is an 1-form as in the
Introduction, namely it can be expanded as θa = θai(X)dX i. Finally, the presence of the last term
in Sgauged is certainly puzzling at first sight. The involvement of the Lagrange multipliers in this
term indicates that it is related to the field strength of the gauge fields. Moreover, it involves some
yet undefined parameters ωa

bi. The explanation of these puzzles is one of our main purposes below.
Up to now we have at hand the action Sgauged and the gauge transformation (2.2) of the fields

X i, under which we would like it to be invariant. For this to work we have to determine appropriate
gauge transformations for the gauge fields A as well as for the scalar fields X̃a. Guided by the
corresponding transformation in the standard Lie algebraic and isometric case given by (1.12), we
write the gauge transformation for A as

δεAa = dε
a +Ca

bc(X)Ab
ε

c +ω
a
biε

bDX i . (2.6)

3For a discussion on the generalization to non-minimal kinetic coupling we refer to [2].

6
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Note that the modification is both in the X-dependence of the structure functions Ca
bc as well as

in the presence of an additional term. This does not yet specify the gauge transformation; it just
parametrizes our up to this moment ignorance of the correct transformation such that the action is
gauge invariant. Indeed, the parameters ωa

bi still remain unspecified.4 What remains is the gauge
transformation for X̃a. This can be determined either the hard way, namely using an arbitrary
ansatz, or it can be invoked by extending known results from the standard case (e.g. from [16]) in
a simple way. In any case the result is

δε X̃a =−ιρ(aθb)ε
b− (Cc

ab(X)−2ρ
i
[aω

c
b]i)X̃cε

b . (2.7)

The cautious reader must have already noticed the repeated appearance of the combination

T c
ab =Cc

ab(X)−2ρ
i
[aω

c
b]i (2.8)

and the fact that the transition from the standard case to the non-standard one partially goes through
a substitution

Cc
ab→ T c

ab(X) .

This is certainly not an accident. A similar combination was found already in Ref. [21]. As
explained there, although none of Ca

bc and ωa
bi transform as tensors, the combination T c

ab does.
The geometric meaning of those objects is then the following. The parameters ωa

bi are coefficients
of a connection 1-form ωa

b = ωa
bidX i on the Lie algebroid L, namely there is an connection ∇ on L

such that
∇ea = ω

b
a ⊗ eb . (2.9)

This induces also a connection ∇ρ(·) by means of the map ρ whose torsion T is exactly the one
with components as in (2.8). The curvature 2-form of the connection 1-form ωa

b may be defined
the usual way by the formula

Ra
b = dω

a
b +ω

a
c ∧ω

c
b . (2.10)

These geometric explanations also shed light to a puzzle encountered previously in relation to the
last term of the action Sgauged. Given the extended gauge transformation of the gauge field Aa, its
field strength should be defined as

Fa = dAa + 1
2Ca

bcAb∧Ac−ω
a
biA

b∧DX i . (2.11)

This is necessary so that Fa has a chance to be covariant. We will not discuss further this field
strength here, since we do not wish to add dynamics for the gauge fields. However it should now
be clear that collecting all the terms in Sgauged which contain a Lagrange multiplier, one obtains
X̃aFa, as required. In particular, the last term is absolutely necessary for this to work.5

Let us recapitulate. We have written an action Sgauged which includes the scalar fields X i, the
gauge fields Aa and the extra scalar fields X̃a, and we know their infinitesimal gauge transformations

4In [2] an additional 2D-admissible term proportional to the Hodge dual of DX i was added. Its presence allows for
more freedom on the one hand and also yields the relation to generalized geometry more transparent. However here we
keep the discussion in its simplest possible form.

5It is mentioned once more that this necessity is only valid in the present approach; one could avoid introducing
Lagrange multipliers altogether and use constraints instead.
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in terms of the structure functions Ca
bc(X) and the coefficients ωa

bi of a connection on L. Thus it is
now a straightforward task to examine under which conditions the action is gauge invariant. Before
we do so, let us mention that in the Lie-algebraic and isometric case there are two invariance
conditions that g and H have to satisfy and two additional constraints. We will see that in the
present case the count of conditions and constraints will be the same, with the profit of having
milder conditions.

Indeed, direct variation of the action Sgauged reveals that gauge invariance is guaranteed pro-
vided that the background fields satisfy

Lρag = ω
b
a ∨ ιρbg , (2.12)

ιρaH = dθa +θb∧ω
b
a − X̃bRb

a , (2.13)

where ∨ is defined as the symmetric product6 dX i∨dX j = dX i⊗dX j +dX j⊗dX i. In component
form, Eq. (2.12) is then written as

(Lρag)i j = ω
b
aiρ

k
bg jk +ω

b
a jρ

k
bgik .

It is already evident that these conditions allow for non-isometric directions. Indeed for non-
vanishing ωa

b the Lie derivative of the metric is not any more zero. Thus we have derived the
explicit expressions for the right hand sides of Eqs. (1.13) and (1.14) advertised in the Introduc-
tion.

As anticipated, the above invariance conditions for the background fields are not the end of the
story as far as gauge invariance is concerned. In direct analogy to the standard case there are two
additional constraints,

Lρ[aθb] =Cd
abθd− ιρd θ[aω

d
b]− ιρ[aω

d
b]θd−Dc

abX̃c , (2.14)
1
3 ιρaιρbιρcH = ιρ[aC

d
bc]θd−2ιρ[aω

d
b ιρc]θd−2D̃d

abcX̃d , (2.15)

where we used the following definitions

De
ab = dCe

ab +Cc
abω

e
c +2Ce

d[aω
d
b]+2ιρd ω

e
[bω

d
a]+2Lρ[bω

e
a]+ ιρ[aRe

b] , (2.16)

D̃e
abc = ιρ[aιρbRe

c] . (2.17)

In this derivation we used the Jacobi identity (1.3) for the Lie algebroid L.
It is useful to cross-check that all above expressions are consistent with previously known

results in the Lie-algebraic and isometric limit. Essentially this is obvious, since in the limits
Ca

bc(X)→Ca
bc and ωa

bi→ 0, the invariance conditions become identical to (1.10) and (1.11), while
the two additional constraints reduce to

(2.14)
ωa

b→0, Ca
bc(X)→Ca

bc−−−−−−−−−−−→ Lρ[aθb] =Cd
abθd , (2.18)

(2.15)
ωa

b→0, Ca
bc(X)→Ca

bc−−−−−−−−−−−→ 1
3 ιρaιρbιρcH = ιρ[aC

d
bc]θd , (2.19)

which are identical to the ones found e.g. in [16]. However, in general the conditions we derived
are much milder and have the potential to yield gauged actions for vastly more initial backgrounds.
We discuss whether this potential can be fulfilled later on.

6In completely analogous way to the familiar antisymmetric (wedge) product dX i∧dX j = dX i⊗dX j−dX j⊗dX i.
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3. Non-Abelian, non-isometric T-duality

One of the most direct applications of the type of 2D gauge theories described in the previous
section is T-duality in string theory. Recall that Buscher’s procedure, which leads to the derivation
of the widely used T-duality rules for background fields, involves a 2D gauge theory with Lagrange
multipliers as an intermedium between two string theories on different target spaces. The two
dual backgrounds are obtained upon integration of different fields in the theory. In particular, the
integration of the Lagrange multipliers leads back to the original background, while the integration
of the gauge fields returns a different background whose target space coordinates are essentially
the Lagrange multipliers in the action. This procedure, be it Abelian [7] or non-Abelian [13, 22],
always assumes isometric directions from the beginning.

The essence of our approach here is that isometries are neither an assumption nor a resulting
requirement for a meaningful, gauge invariant action functional with a local symmetry generated
by the vector fields ρa. Thus it is obvious what the next step in our analysis should be. Starting
with the action Sgauged we should first integrate out the Lagrange multipliers to confirm that the
original action is recovered and then we should integrate the gauge fields and determine the new
action. The calculational details are explained in Ref. [1]; here we emphasize the final results.

In order to integrate the Lagrange multipliers X̃a we vary the action Sgauged with respect to
them and derive the field equation

Fa = dAa + 1
2Ca

bc(X)Ab∧Ac−ω
a
biA

b∧DX i = 0 . (3.1)

This is indeed expected; it means that the non-Abelian gauge fields Aa are pure gauge. We may fix
the gauge on-shell, for example with the simplest choice being just Aa = 0, a common choice in
the literature (cf. [8]). Then the action reduces to (2.1), which is the original action for g and H.

On the other hand, integrating the gauge fields Aa is slightly more involved. First the action is
varied with respect to them and the resulting field equation is

∗ρ∗a −ξa = Gab ∗Ab +DabAb , (3.2)

where the following definitions were used:

Gab = ρ
i
agi jρ

j
b , (3.3)

Dab = ιρ[aθb]−T c
abX̃c , (3.4)

and

ξa = θa +dX̃a +ω
b
a X̃b , (3.5)

ρ
∗
a = gi jρ

i
adX j . (3.6)

Now in order to eliminate the gauge fields from the action, it is required to solve the field equation
(3.2) for Aa. Since this equation involves the differentials dX i and dX̃a, as well as their Hodge duals,
we anticipate that in general Aa will contain all four corresponding terms. Thus we are naturally
led to make the following ansatz:

Aa = Mab
ρ
∗
b +Nab

ξb +Pab ∗ρ
∗
b +Qab ∗ξb , (3.7)

9
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where M,N,P and Q are to be determined. This is essentially the same trick one uses to derive
dual models in the standard approaches of Refs. [7, 20]. Inserting this ansatz in the relevant field
equation, one ends up with a linear system of equations which is solved by

Q = −(G−DG−1D)−1 , (3.8)

M = −Q ,

N = −G−1DQ ,

P = G−1DQ ,

where G and D are the matrices corresponding to the definitions (3.3) and (3.4). These expressions
are not surprising if one compares to similar results in Ref. [20].

The last step is to insert the result for Aa in the action Sgauged. This then leads to the dual action
functional

Sdual =
∫

Σ

(
1
2(G−DG−1D)abea∧∗eb− 1

2

(
G−1D(G−DG−1D)−1)abea∧ eb

)
, (3.9)

where we defined the 1-forms

ea = dX̃a +θa− (ωb
aiX̃b +(G−1D)b

aρ
k
bgki)dX i . (3.10)

At the classical level this is the dual action functional from which a new metric and a new Kalb-
Ramond field (or 3-form H) can be read off. It is observed that the coframe defined by ea mixes the
original scalar fields X i with the new ones X̃a.7 Formally this is the case in the standard approach
as well, however there it is clear that at the end of the day the two sets are disentangled. This is not
obvious in the present case, however we will study some particular examples below to investigate
the possibilities and comment accordingly.

4. Some simple cases

As mentioned in the Introduction, at this stage one might worry whether any non-trivial ex-
ample realizing the above results exists. In other words whether non-zero parameters ωa

bi can be
found such that all the invariance conditions and constraints that make Sgauged consistent are satis-
fied. Here we discuss some examples where the procedure indeed works. We already note that they
are just toy models and they do not correspond to true string backgrounds at the quantum level.
Whether new dual string backgrounds exist remains an open question that requires a careful anal-
ysis which will be performed elsewhere. However, certain toy models are useful and often provide
valuable hints.

Abelian⊕Non-isometric. First we discuss a simple example where the vector fields ρa are Abelian,
thus there are no structure functions (or, for that matter, even constants) involved; however not all
of them generate isometries for the metric.

7This can be related to the embedding of the string world sheet in a higher-dimensional geometry. It is useful to note
that such embeddings also appear for example in [23, 24] from a different perspective but still in the context of sigma
models.
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Let us be more specific. Consider the metric

ds2 = (dx1)2 +(dx2− x1dx3)2 +(dx3)2. (4.1)

This is the metric of the well-known 3D Heisenberg nilmanifold. This is obtained as the quotient of
the real 3D Heisenberg group H(3;R) by its integer counterpart H(3;Z). In more geometric terms
it gives rise to a non-trivial 2-torus fibration over a base circle, as it can be easily seen by taking the
basis of 1-forms

e1 = dx1 , e2 = dx2− x1dx3 , e3 = dx3 , (4.2)

and asking it to be globally well-defined. This leads to the identifications

(x1,x2,x3)∼ (x1,x2 +2πR,x3)∼ (x1,x2,x3 +2πR)∼ (x1 +2πR,x2 +2πRx3,x3) , (4.3)

where for simplicity we assumed equal radii for the three circles. It is observed that a torus T 2
(x2,x3)

is fibered over the circle S1
(x1)

. For this reason, this manifold is sometimes called twisted torus in
the physics literature. The 1-forms (4.2) satisfy the Maurer-Cartan equation

de2 =−C2
13e1∧ e3 , C2

13 = 1 . (4.4)

The non-vanishing C2
13 is often referred to as geometric flux in the context of string compactifica-

tions.
In this example we would like to determine the gauge theory Sgauged and the dual sigma model

in the case of vanishing Wess-Zumino term, namely H = 0, and for the choice of vector fields
ρa = (∂1,∂2), which obviously commute. In other words, we would simply like to dualize along
the directions x1 and x2. Is that possible? First we ask whether the chosen vector fields are Killing.
The second one, ρ2, indeed is. In fact, choosing to dualize along only this vector field produces a
dual sigma model with constant Wess-Zumino term H123 and target space a 3-torus. However the
first vector field is not Killing; it satisfies

Lρ1g =−dx2⊗dx3−dx3⊗dx2 +2x1dx3⊗dx3 . (4.5)

This already indicates what ωa
bi should be in order to compensate for the non-vanishing right hand

side of the Lie derivative. The invariance condition (2.12) is solved with

ω
2
13 =−1 . (4.6)

Note that all the rest of ωa
bi are vanishing, and there is no property among indices that relates any

other to the single non-vanishing component. It is clear that for this solution it holds that Ra
b = 0 and

thus the second invariance condition (2.13) may be simply solved with the choice θa = 0. Simple
inspection of the constraints (2.14) and (2.15) shows that they are satisfied. This means that we
indeed have a consistent gauged sigma model with two gauge fields A1 and A2 and two Lagrange
multipliers X̃1 and X̃2. Integrating out the latter and gauge fixing we obtain the sigma model

S =
∫

Σ

1
2 δabea∧∗eb , (4.7)

11
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which is precisely the purely geometric sigma model with target the Heisenberg nilmanifold. How-
ever, integrating out the gauge fields through their field equations,

A1 = dX1 +∗(dX̃1− X̃2dX3) ,

A2 = dX2−X1dX3 +∗dX̃2 ,

we are led to the following dual model:

Sdual =
∫

Σ

(
1
2(dX̃1− X̃2dX3)∧∗(dX̃1− X̃2dX3)+ 1

2 dX̃2∧∗dX̃2 +
1
2 dX3∧∗dX3

)
, (4.8)

up to total derivatives. This comprises a coframe

e1 = dX̃1− X̃2dX3 , e2 = dX̃2 , e3 = dX3 , (4.9)

which satisfies
de1 =−C2

13e2∧ e3 .

The result has a flavour of self-duality. This is expected though, in view of the fact that if one first
T-dualizes with respect to ρ2, thus reaching the case of the 3-torus with H flux, ρ1 in this inter-
mediate situation is now a Killing vector. Then the T-duality along ρ1 leads again to a Heisenberg
nilmanifold. At the level of the B field, a gauge transformation is needed in this intermediate step.
This may be summarized as follows

H123

δB

��

Tiso
∂1��

C2
13

Tiso
∂2

77

Tnon-iso
(∂1 ,∂2) // C1

23

(4.10)

with the diagram being commutative. Thus this example represents a case where the non-isometric
approach acts as a short-cut in reproducing an otherwise known isometric duality chain.

Non-Abelian⊕Non-isometric. A more involved example, discussed already in Ref. [1], starts
with the same manifold M as above, but this time with a choice of non-Abelian vector fields ρa.
The most obvious option for such a set are the vector fields dual to the 1-forms ea. These are given
by

ρa = (∂1,∂2,∂3 + x1
∂2) .

Note that the first two are the same as before, but the added one is such that [ρ1,ρ3] =C2
13ρ2, thus

they satisfy the 3D Heisenberg algebra. As before, ρ2 is Killing but ρ1 and ρ3 are not; ρ3 satisfies

Lρ3g = dx1⊗dx2 +dx2⊗dx1− x1dx1⊗dx3− x1dx3⊗dx1 . (4.11)

Once more there is no Wess-Zumino term and θa are taken to be zero. Now there are three gauge
fields A1,A2 and A3 and three associated Lagrange multipliers. The non-vanishing ωa

bi coefficients
that guarantee that all the invariance conditions and constraints are solved now are 8

ω
2
31 =−ω

2
13 = 1 . (4.12)

8A numerical mistake in Ref. [1], which propagated in the ensuing Eqs. (4.13) and (4.14) is corrected here. This
led to a somewhat obscure interpretation of the dual action in [1], which is now fully clarified.
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Integrating out the Lagrange multipliers one arrives again at the action (4.7), while the integration
of the gauge fields leads first to the field equations

A1 = dX1− X̃2
1+(X̃2)2 dX̃3− 1

1+(X̃2)2 ∗dX̃1 ,

A2 = dX2−X1dX3−∗dX̃2 ,

A3 = dX3 + X̃2
1+(X̃2)2 dX̃1− 1

1+(X̃2)2 ∗dX̃3 , (4.13)

and upon substitution in Sgauged to the dual action

Sdual =
1
2

∫
Σ

(
dX̃2∧∗dX̃2 +

1

1+(X̃2)2
(dX̃1∧∗dX̃1 +dX̃3∧∗dX̃3)+

2X̃2

1+(X̃2)2
dX̃1∧dX̃3

)
,

(4.14)

up to total derivatives. This action exhibits a structure identical to that of a T-fold [25,26], namely a
non-geometric Q flux background. In fact, although in a less expected fashion than in the previous
example, we encounter again a commutative diagram:

H123

δB

�� Tiso
∂1 // C1

23

Tiso
∂3
��

C2
13

Tiso
∂2

OO

Tnon-iso
ρa // Q13

2

(4.15)

The commutativity of this diagram is less expected because the Killing vector fields for the iso-
metric route are not all the same with the ones in the non-isometric route—in particular the third
one is ∂3 and ρ3 = ∂3 + x1∂2 respectively. Thus in this example we encounter a less obvious non-
isometric short cut for an isometric duality chain. Of course the real challenge would be to perform
a T-duality for a case that is completely out of the realm of standard methods. We mention such a
possibility through the following example.

A note on isometries broken only by the Wess-Zumino term. Let us briefly refer to another
interesting option arising in the context of non-isometric T-duality. Suppose we have a set of
Abelian vector fields ρa, thus Ca

bc = 0, a metric for which these vector fields are all Killing, and a
non-vanishing Wess-Zumino term given by H. We encounter now the possibility that although the
vector fields generate would-be isometries, these isometries are broken by the Wess-Zumino term.
Thus, in case ωa

bi = 0 we face a serious obstacle: although the invariance conditions (2.12) and
(2.13) are satisfied (at least for some choice of θa), the constraint (2.15), reduced now to (2.19),
cannot be satisfied. This was also noticed in Ref. [16] and it is related to the problem of finding
a triple T-dual of the torus with H flux. Although we are not going to solve this problem here,
we now indicate a possible direction for its potential solution. Although the Lie derivative of the
metric is zero, (2.12) does not mean that ωa

bi has to vanish. Instead it just means that

ρ
k
bω

b
a(ig j)k = 0 ,

13
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which is much milder. For example, for the simple case of ρa = δ i
a∂i and gi j = δi j, it reduces to

ωa(i j) = 0 ,

which is solved by any set of coefficients antisymmetric in the indices involved in the above sym-
metrization. The point is that the previously lethal constraint now reads as in Eq. (2.15) and its right
hand side is not any more necessarily zero. This allows for the possibility of solving the constraints
for such cases too, previously impossible. We plan to report on this issue in a future publication.

5. Take-home messages

The main messages of this work may be summarized as follows

• Given background fields g and B, there exist classically consistent gauged 2D sigma models
of maps X = (X i) : Σ→M whose gauge symmetry is generated by vector fields that do not
necessarily generate isometries.

• These gauged sigma models can act as intermediate gauge theories to study candidate T-dual
string backgrounds beyond the realm of isometry.

• Non-trivial toy models that realize such non-Abelian and non-isometric T-duality do exist.

Although these results are certainly encouraging it is equally useful to keep in mind the limita-
tions of the approach presented here. Some of these are the following: (α) The analysis is limited
to the classical level. It is not yet clear whether our results survive quantization, (β ) in relation
to the above, we were only able at this stage to verify that the approach works non-trivially in toy
models and not in true, conformal string backgrounds, (γ) the dilaton was simply ignored, (δ ) the
fully worked-out examples where our approach indeed works are so far just short cuts for results
that can be obtained by the standard method. A merit test for our approach would be, for instance,
the proper derivation of the triple T-dual of a torus threaded by H flux. Further work is required in
order to answer questions posed by these remarks.
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