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1. Introduction

The part of fundamental physics that does have applications to high-energy physics is good
old perturbative quantum field theory (QFT) - just as it used to be with QED nearly 70 years ago.
With the fast growing number and complexity of higher order Feynman graphs and with the advent
of modern computers one could imagine a rather dull future for aspiring mathematical physicists
in this field. Indeed, I witnessed a brave young Italian telling theorists at a CERN seminar to just
fill the entries of his perfect computer program rather than polluting the field with their confused
ideas. Happily, things developed differently.

A remarkable prologue to the recent development is provided by the analytic calculations of
the anomalous magnetic moment of the electron. It involves prominently the multiple zeta values
(MZVs) or rather their close relatives, the Euler alternating (phi-) series – see Sect. 2 below.

These numbers appear as values of the hyperlogarithms

Lin1,...,nd (z1, ...,zd) = ∑
1≤k1<...<kd

zk1
1 ...zkd

d
kn1

1 ...knd
d

(1.1)

at algebraic arguments (so far, at roots of unity). An integral representation for the first non-
elementary function of this family, the dilogarithm Li2(z), was introduced in a letter of Leibniz
(to Johann Bernoulli) in 1696 and was studied by Euler and many others (see [Z] for a beautiful
modern review and more historical references). The resurgence of polylogarithms in pure mathe-
matics, anticipated by 19 century work of Kummer and Poincaré and a 20 century contribution by
Lappo-Danilevsky, was prepared by the work of Chen [C, B09] on iterated path integrals. David
Broadhurst was a pioneer in the systematic study of MZV in QFT (his influential papers with Dirk
Kreimer [BK] contain earlier references; see also [B10, B16]). In the work on position space
renormalization, initiated by the late Raymond Stora, [NST], they appear as residues of regular-
ized primitively divergent Feynman integrals. More generally, it was demonstrated in [BW] that
the values of Feynman amplitudes for rational ratios of dimensionful arguments are periods in the
sense of [KZ]. The notes [Zh] of one of the many conferences dedicated to this topic, entitled
Polylogarithms as a Bridge between Number Theory and Particle Physics, contain a bibliography
of some 394 entries.

This is an active field for both physicists and mathematicians. Rather than using ready tools/formulas
from "classical mathematics" we are working separately and together on (different sides of) the
same problems.

After introducing in Sects. 3, 4 the algebras of hyperlogarithms and MZVs we briefly sketch
(in Sect. 5) the status of one such problem: the result of [B1, B2] describing the weight spaces of
(motivic) MZVs.

For a more comprehensive (33 pages long) exposition, including sections on residues of prim-
itively divergent amplitudes, on single-valued hyperlogarithms and a historical survey - see [T1].

2. From Euler’s alternating series to the electron magnetic moment

The idle curiosity of mathematicians in the late 17th and a good part of 18th centuries and the
development of renormalization theory in quantum electrodynamics (QED) (triggered by precision
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measurements in the wake of World War II) started happily coming together during the second half
of XX century.

Euler’s interest in the zeta function and its alternating companion φ(s),

ζ (s) =
∞

∑
n=1

1
ns , φ(s) =

∞

∑
n=1

(−1)n−1

ns

(
= (1−21−s)ζ (s) for ℜ(s)> 1

)
(2.1)

was triggered by the Basel problem [W] (posed by Pietro Mengoli in mid 17 century): to find a
closed form expression for ζ (2). Euler discovered the non-trivial answer, ζ (2) = π2

6 , in 1734 and
ten years later found an expression for all ζ (2n), n = 1,2, . . ., as a rational multiple of π2n - see
(4.6) below. Euler tried to extend the result to odd zeta values but it did not work [D12]. (We still
have no proof that ζ (3)

π3 is irrational.) Trying to find polynomial relations among zeta and phi values
Euler was led by the stuffle product

ζ (m)ζ (n) = ζ (m,n)+ζ (n,m)+ζ (n+m); φ(m)φ(n) = φ(m,n)+φ(n,m)+ζ (m+n), (2.2)

to the concept of double zeta and double phi values

ζ (m,n) = ∑
0<k<`

1
km`n , φ(m,n) = ∑

0<k<`

(−1)k+`

km`n . (2.3)

The alternating series φ(s) (2.1) (alias the Dirichlet eta function) provide faster convergence in a
larger domain. While ζ (s) has a pole for s = 1, we have

φ(1) = ln2. (2.4)

At this point we skip a century and turn to physics. The electron magnetic dipole moment µ

is expressed in terms of its charge e, mass m, and spin s by

µ = g
e

2m
s, s =

h̄
2

(2.5)

where the Dirac equation gives for the g-factor (or gyromagnetic ratio) g= 2. A 1947 measurement
(using Zeeman splitting in Ga atoms) showed that g is slightly (by a quantity of order 10−3) big-
ger than 2. This motivated Schwinger to apply the recently developed (by Tomonaga and himself)
method of renoramlization to calculate the first QED correction (of order α = e2

4π h̄c ) - in accord with
experiment. In the language of Feynman graphs, developed around the same time, Schwinger’s cal-
culation corresponds to computing a single triangular diagram. The Feynman(-Dyson) rules pro-
vide a significant simplification which opens the way to higher order calculations: to each Feynman
propagator - i.e., to each internal line correspond two terms in the original Tomonaga-Schwinger
formalism (thus giving 2L terms for a graph with L lines). Nevertheless, it took nine years after
the 1948 Schwinger’s calculation of the order α term in the anomalous magnetic moment of the
electron1, ae, before the α2 term was computed analytically by Peterman (and independently by
Sommerfield) - correcting the computer aided calculation of Karplus and Kroll of 1950. It is given

1A firsthand account of the saga of g− 2 is given in [K] where the reader will also find a comprehensive list of
relevant references; for an entertaining lighter discussion - see [H].
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by a sum of seven two loop graphs (colorfully depicted in [H]), expressed as a rational linear com-
bination of the Euler phi function. The first two terms in the expansion of ae in powers of the fine
structure constant α read (cf. [Sch]):

ae =
g−2

2
= ∑

n≥1
An

(
α

π

)n
=

1
2

α

π
+(φ(3)−6φ(1)φ(2)+

197
2432 )

(
α

π

)2
(+...). (2.6)

The same weight three combination, φ(3)− 6φ(1)φ(2), appears in the second order of the Lamb
shift calculation, [LPR]. Increasing the accuracy with a couple of decimal points is a career con-
suming enterprise for both experimenters and theorists. Hans Dehmelt and his group at the Univer-
sity of Washington started their work on the penning trap involving isolated electrons (with given
names, like family pets ... [H]) in 1958 and only completed it by 1987. The next, third order cal-
culation of the anomalous magnetic moment had to wait for almost forty years after the work of
Peterman and Sommerfield. Two competing - and helping each other - theoretical assaults on the
problem began in 1969. Toichiro Kinoshita2 started a computation, developing by 1974 a method of
numerical renormalization, adaptable to automation – completed by 1995. Ettore Remiddi, joined
at the final stretch by Stefano Laporta, calculated analytically the seventy two three-loop graphs
(also depicted in [H]), finishing a year later, [LR]. Their result can be again expressed as a linear
combination of (multiple) phi values - of overall weight upto five - with rational coefficients:(

α

π

)3
: A3 =

2
32 (83φ(2)φ(3)−43φ(5))− 50

3
φ(1,3)+

13
5

φ(2)2 (2.7)

278
3

(
φ(3)
32 −12φ (1)φ(2)

)
+

34202
33 5

φ(2)+
28259
25 34 .

The next round of the "tennis match between theory and experiment" (to quote [H]) involved the
20 years effort of the Harvard group of Gabrielse to increase 15 times the experimental accuracy
(completed in 2008), matched by the numerical work of (the approaching 90 veteran) Kinoshita
and his group who computed the 891 4-loop graphs and estimated the contribution of the 12 672
5-loop ones by 2012. The outcomes agree within one part in a trillion!

Eqs. (2.6) (2.7) provide exact analytic results for the coefficients A2,A3 of the α

π
expansion

- with no theoretical/numerical uncertainty involved - and they are confirmed by experiment with
unprecedented accuracy. One is tempted to place these formulas among what Galileo’s alter ego
Salviati elevates to "those few which the human intellect does understand, I believe that its knowl-
edge equals the Divine in objective certainty" [G].

Developments in the last two decades are raising hope that Feynman amplitudes in the Stan-
dard Model of particle physics can be computed exactly order by order as rational linear combina-
tion in a basis of special functions ("master integrals") and numbers (cf. the TASI lectures [D] and
references therein).

3. Differential graded algebra of hyperlogarithms

The hyperlogarithms are not just a list of useful special functions. They have a rich algebraic
structure and satisfy unipotent differential equations, [B09, B1].

2About the early years of this hero of the ae-calculations - see his own account [K16].
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Let σ0 = 0,σ1, ...,σN be distinct complex numbers corresponding to an alphabet X = {e0, ...,eN}.
Let X∗ be the set of words w in this alphabet including the empty word /0. The hyperlogarithm Lw(z)
is an iterated integral [C, B09] defined recursively in any simply connected open subset U of the
punctured complex plane C\Σ, Σ = {σ0, ...,σN} by the differential equations3

d
dz

Lwσ (z) =
Lw(z)
z−σ

, σ ∈ Σ , (3.1)

and the initial conditions

Lw(0) = 0 for w 6= 0n(= 0 . . .0), L0n(z) =
(lnz)n

n!
, L /0 = 1. (3.2)

There is a correspondence between iterated integrals and multiple power series:

(−1)dL
σ10n1−1...σd0nd−1(z) = Lin1,...,nd (

σ2

σ1
, ...,

σd

σd−1
,

z
σd

) (3.3)

where Lin1,...,nd is given by the d-fold series (1.1). More generally, we have

(−1)dL0n0 σ10n1−1...σd0nd−1(z) =

∑
k0≥0ki≥ni ,1≤i≤d

k0+...+kd=n0+...+nd

(−1)k0+n0
d

∏
i=1

(
ki−1
ni−1

)
L0k0 (z)Lk1−kr(

σ2

σ1
, ...,

σd

σd−1
,

z
σd

). (3.4)

In particular, L01(z) = Li2(z)− lnzLi1(z) = Li2(z) + lnz ln(1− z). The number of letters |w| =
n0 + ...+ nd of a word w defines its weight, while the number d of non zero letters is its depth.
We observe that the product LwLw′ of two hyperlogarithms of weights |w|, |w′| and depths d,d′ can
be expanded in hyperlogarithms of weight |w|+ |w′| and depth d +d′ (as the product of simplices
can be expanded into a sum of higher dimensional simplices). This observation can be formalized
as follows. The set X∗ of words is naturally equipped with a commutative shuffle product wttw′

defined recursively by

/0ttw = w(= wtt /0) , auttbv = a(uttbv)+b(auttv) (3.5)

where u,v,w are (arbitrary) words while a,b are letters (note that the empty word /0 is not a letter).
We denote by

OΣ = C
[
z,
( 1

z−σi

)
i=1,...,N

]
(3.6)

the ring of regular functions on C\Σ. Extending by OΣ linearity the correspondence w→ Lw one
proves that it defines a homomorphism of shuffle algebras OΣ⊗C(X)→LΣ where LΣ is the OΣ

span of Lw,w ∈ X∗. The commutativity of the shuffle product is made obvious by the identity

Luttv = LuLv(= LvLu). (3.7)

If the shuffle relations are suggested by the expansion of products of iterated integrals, the product
of series expansions of type (1.1) suggests the (also commutative) stuffle product. Rather than

3We use, following [B1, S], concatenation to the right. Other authors, [D], use the opposite convention. This also
concerns the definition of coproduct (5.10) below.
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giving a cumbersome general definition we shall illustrate the rule on the simple example of the
product of depth one and depth two factors (cf. [D]):

Lin1,n2(z1,z2)Lin3(z3) = Lin1,n2,n3(z1,z2,z3)+

Lin1,n3,n2(z1,z3,z2)+Lin3,n1,n2(z3,z1,z2)+

Lin1,n2+n3(z1,z2z3)+Lin1+n3,n2(z1z3,z2). (3.8)

We observe the that the multiple polylogarithms of one variable (with z1 = ... = zd−1 = 1), con-
sidered in [S], span a shuffle but not a stuffle algebra. As seen from the above example the stuffle
product also respects the weight but (in contrast to the shuffle product) only filters the depth: the
depth of each term in the right hand side does not exceed the sum of depths of the factors in the left
hand side (which is three in Eq. (3.8)).

It is convenient to rewrite the definition of hyperlogarithms in terms of a formal series L(z)
with values in the (free) tensor algebra C(X) (the complex vector space generated by all words in
X∗) which satisfies the Knizhnik-Zamoldchikov (KZ) equation:

L(z) := ∑
w

Lw(z)w,
d
dz

L(z) = L(z)
N

∑
i=0

ei

z−σi
. (3.9)

One assigns weight −1 to eσ , so that L(z) carries weight zero. If the index of the hyperlogarithm
Lw is expressed by its (potential) singularities σi the word w which multiplies it in the series (3.9)
should be written in terms of the corresponding (noncommuting) symbols ei (thus justifying the
apparent doubling of notation). In the special case when the alphabet X consists of just two letters
e0,e1 corresponding to σ0 = 0,σ1 = 1, L(z) is the generating function of the classical multipolylog-
arithms while its value at z = 1,Z := L(1) is the generating function of MZVs. In these notations
the monodromy of L around the points 0 and 1 is given by

M0 L(z) = e2πie0 L(z) , M1 L(z) = Z e2πie1 Z−1L(z),

Z = ∑
w

ζww = 1+ζ (2)(e0e1− e1e0)+ ..., (3.10)

so that M0L0n(z) = L0n(z)+2πiL0(n−1)(z), M1Lin(z) = Lin(z)−2πiL0(n−1)(z). (Formal power series
starting with 1 are invertible so that Z−1 is well defined.)

Knowing the action of the monodromy Mσi around each singular point of a hyperlogarithm
one can construct single valued hyperlogarithms in the tensor product of LΣ with its complex
conjugate [B]. A detailed survey of Brown’s 2004 work on the (classical) single-valued multiple
polylogarithms (SVMPs), Pw(z) (with w ∈ X∗, a word in the two-letter alphabet) is provided in [S]
(for a physicist oriented outlook - see [T, T1]). Their generating function PX(z) obeys the same KZ
equation,

∂PX(z) = PX(z)(
e0

z
+

e1

z−1
) , ∂ :=

∂

∂ z
, (∂̄ :=

∂

∂ z̄
) (3.11)

as L (3.9). For small weights (or depth) we also have

∂̄Paw(z) =
Pw(z)
z−a

for |w| ≤ 1orw = 0n. (3.12)

6
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This allows to readily compute all SVMPs of weight two and depth one:

P01 = L10(z̄)+L01(z)+L0(z̄)L1(z) = Li2(z)−Li2(z̄)+ ln z̄z ln(1− z),

P10 = L01(z̄)+L10(z)+L1(z̄)L0(z) = Li2(z̄)−Li2(z)+ ln z̄z ln(1− z̄) . (3.13)

They obey the shuffle relation P01 +P10 = P0P1 = ln(zz̄) ln((1− z)(1− z̄)) so that the only new
weight two function is their difference,

P01−P10 = 2(Li2(z)−Li2(z̄)+ ln z̄z ln
1− z
1− z̄

) = 4iD(z) , (3.14)

proportional to the Bloch-Wigner dilogarithm (see the stimulating survey [Z]), D(z) = ℑ(Li2(z)+
ln(1− z) ln |z|). Remarkably, this function appears in the calculation of a primitively divergent
(euclidean) position space Feynman amplitude G(x1, ...,x4) of the ϕ4 theory with a single internal
vertex:

∏
1≤i< j≤4

x2
i jG(x1, ...,x4) = x2

13x2
24

∫ d4x
π2

4

∏
i=1

1
(x− xi)2 =

P01(z)−P10(z)
z− z̄

, (3.15)

where z, z̄ are determined by the (positive) conformal invariant crossratios

x2
12x2

34

x2
13x2

24
= zz̄ ,

x2
14x2

23

x2
13x2

24
= (1− z)(1− z̄). (3.16)

In fact, any primitively divergent 4-point amplitude in the ϕ4 theory is conformally invariant and
can be expressed in terms of the variables (3.16) (and of SVMPs). They also appear in momentum
space Feynman amplitudes (see [D]).

The weight of consecutive terms in the expansion of L(z) (3.10) is the sum of the weights
of hyperlogarithms and of the zeta factors. It makes therefore sense to proceed by reviewing the
algebra of MZVs.

4. Formal multiple zeta values

We now turn to the alphabet X of two letters e0,e1 corresponding to σ0 = 0,σ1 = 1 and restrict
the multiple polylogarithm (1.1) to a single variable:

Lin1,...,nd (z) = ∑
1≤k1<...<kd

zkd

kn1
1 ...knd

d
.

The MZV ζ (n1, ...,nd) is then defined as its value at 1 whenever the corresponding series converges.
Using also (3.3) we can write:

(−1)d
ζ10n1−1...10nd−1 = ζ (n1, ...,nd) = ∑

1≤k1<...<kd

1
kn1

1 ...knd
d

for nd > 1. (4.1)

The convergent MZVs of a given weight satisfy a number of shuffle and stuffle identities. Looking
for instance at the shuffle (sh) and the stuffle (st) products of two −ζ10 = ζ (2) we find:

sh : ζ
2
10 = 4ζ1100 +2ζ1010(= 4ζ (1,3)+2ζ (2,2)); st : ζ (2)2 = 2ζ (2,2)+ζ (4);

hence ζ (4) = 4ζ (1,3) = ζ (2)2−2ζ (2,2). (4.2)

7
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There are no non-zero convergent words of weight 1 and hence no shuffle or stuffle relations of
weight 3. On the other hand, already Euler has discovered the equality ζ (1,2) = ζ (3). Thus
shuffle and stuffle relations among convergent words do not exhaust all known relations among
MZVs of a given weight. Introducing the divergent zeta values which correspond to nd = 1 we
observe that they cancel in the difference between the shuffle and stuffle products uttv−u ∗ v of
divergent words. For instance, at weight 3 we have

ζ ((1)tt(2)) = 2ζ (1,2)+ζ (2,1); ζ ((1)∗ (2)) = ζ (1,2)+ζ (3)+ζ (2,1). (4.3)

Extending the homomorphism w→ ζ (w) as a homomorphism of both the shuffle and the stuffle
algebras to divergent words, assuming, in particular, that ζ ((1)tt(2)) = ζ ((1)∗(2)) = ζ (1)ζ (2)
and taking the difference of the two equations (4.3), the divergent zeta’s cancel and we recover the
Euler relation. In fact, it suffices to add the difference of products with the divergent word (1),

ζ ((1)ttw− (1)∗w) = 0 for all convergent wordsw, (4.4)

to the shuffle and stuffle relations among convergent words in order to obtain all known relations
among MZVs of a given weight. For w = (n),n≥ 2 (a word of depth 1), Eq. (4.4) gives

ζ ((1)tt(n)− (1)∗ (n)) =
n−1

∑
i=1

ζ (i,n+1− i)−ζ (n+1) = 0 (4.5)

(another relation known to Euler). The discovery (and the proof) that

ζ (2n) =− B2n

2(2n)!
(2πi)2n, B2 =

1
6
,B4 =−

1
30

,B6 =
1
42

, (−1)n−1B2n ∈Q>0, (4.6)

(Bn being the Bernoulli numbers), made Euler famous early on, [W].
We introduce following Leila Schneps [S11] the notion of a Q-algebra FZ of formal MZVs

ζ f which satisfy the relations:

ζ
f (1) = 0, ζ

f (u)ζ f (v) = ζ
f (uttv) = ζ

f (u∗ v), ζ
f ((1)ttw− (1)∗w) = 0. (4.7)

The algebra FZ =
⊕

n FZ n is weight graded and

FZ 0 =Q,FZ 1 = {0},FZ 2 = 〈ζ (2)〉,FZ 3 = 〈ζ (3)〉,FZ 4 = 〈ζ (4)〉,
FZ 5 = 〈ζ (5),ζ (2)ζ (3)〉,FZ 6 = 〈ζ (2)3,ζ (3)2〉,

FZ 7 = 〈ζ (7),ζ (2)ζ (5),ζ (2)2
ζ (3)〉, (4.8)

where < x,y, ... > is the Q vector space spanned by x,y, ... (and we have replaced ζ f by ζ in the
right hand side for short). Clearly, there is a surjection ζ f → ζ of FZ onto Z . The main
conjecture in the theory of MZVs is that this surjection is an isomorphism of graded algebras.
This is a strong conjecture. If true it would imply that there is no linear relation among MZVs
of different weights over the rationals; in particular, it would follow that all ζ (n) are irrational
and linearly independent over the rationals. Actually, a less obvious statement is valid: such an
isomorphism would imply that all MZVs are transcendental. Indeed, if a non-zero multiple zeta
value is algebraic, then expanding out its minimal polynomial according to the shuffle relation

8
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ζ (u)ζ (v) = ζ (uttv) (starting with ζ 2(w)) would give a linear combination of multiple zetas in
different weights equal to zero, contradicting the weight grading. In fact, we only know that there
are infinitely many linearly independent over Q odd zeta values (Ball and Rivoal, 2001) and that
ζ (3) is irrational (Apéry, 1978). From now on, we shall follow the physicists’ practice to treat this
conjecture as true and to omit the f ’s in the notation for (formal) MZVs.

Examples: E1. In order to see that the space Z4 of weight four zeta values is 1-dimensional
we should add to Eqs. (4.2) the relation (4.5) for n = 3 and its depth three counterpart:

ζ ((1)tt(1,2)− (1)∗ (1,2)) = ζ (1,1,2)−ζ (1,3)−ζ (2,2) = 0. (4.9)

This allows to express all zeta values of weight four as (positive) integer multiples of ζ (1,3) (see
Eq. (B.8) of [T]).

E2. The shuffle and the stuffle products corresponding to ζ (2)ζ (3) give two relations which
combined with (4.5) for n = 4 allow to express the three double zeta values of weight five in terms
of simple ones:

ζ (1,4) = 2ζ (5)−ζ (2)ζ (3), ζ (2,3) = 3ζ (2)ζ (3)− 11
2

ζ (5),

ζ (3,2) =
9
2

ζ (5)−2ζ (2)ζ (3). (4.10)

One first needs a double zeta value, say ζ (3,5), in order to write a basis (of four elements) at
weight eight (there being 60 relations among the 26 elements of FZ 8). It is natural to ask what is
the dimension dn of the space FZ n of (formal) MZVs of any given weight n and then to construct
a basis of independent elements. These problems have only been solved for the so called motivic
MZV. Here is a simple-minded version of their abstract construction.

5. Hopf algebra of motivic multiple zeta values

After the discovery that, for even n, ζ (n) is a rational multiple of πn Euler calculated ζ (3)
up to ten significant digits and convinced himself that it is not a rational multiple of π3 (with a
small denominator). Computers allow these days to increase the number of digits but not to prove
algebraic (or even Q-linear) independence. So, on the theoretical side, mathematicians proceeded
to moving the problem elsewhere - managing in the last two decades to transform Gorthendieck’s
poetic vision of "motives" into a precise (and working!) mathematical tool.

Consider the concatenation algebra

C =Q〈 f3, f5, ...〉, (5.1)

the free algebra over Q on the countable alphabet { f3, f5, ....} (see Example 21 in [Wa]). If we can
identify the formal zeta values with the algebra

C [ f2] = C ⊗QQ[ f2], (5.2)

which plays an important role in the theory of mixed Tate motives (see Sect. 3 of [B1]), we will
be able to compute the dimension dn of Zn for any n. Indeed, the generating (or Hibert-Poincaré)
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series for the dimensions dC
n of the weight n subspace of C is given by

∑
n≥0

dC
n tn =

1
1− t3− t5− ...

=
1− t2

1− t2− t3 (5.3)

while the corresponding series of the second factor Q[ f2] in (5.2) is (1− t2)−1. Multiplying the
two we obtain - for the "motivic zeta values" - the dimensions dn of the weight subspaces of C [ f2]

conjectured by Don Zagier:

∑
n≥0

dntn =
1

1− t2− t3 , d0 = 1,d1 = 0,d2 = 1,dn+2 = dn +dn−1. (5.4)

Here is a wonderful more detailed conjecture advanced by Broadhurst and Kreimer [BK] in
1997 whose motivic version is still occupying mathematicians.

Let Z r
n be the linear span of ζ (n1, ...,nk), n1 + ...+ nk = n, k ≤ r; we define dn,r as the di-

mension of the quotient space Z r
n /Z

r−1
n . Broadhurst and Kreimer have advanced the following

conjecture for the generating series of dn,r (based on experience with MZVs appearing in Feynman
amplitudes):

D(X ,Y ) =
1+E (X)Y

1−O(X)Y +S (X)Y 2(1−Y 2)
= ∑dn,rXnY r. (5.5)

Here E (X) and O(X) generate series of even and odd powers of X , respectively,

E (X) =
X2

1−X2 = X2 +X4 + ..., O(X) =
X3

1−X2 = X3 +X5 + ..., (5.6)

while S (X) is the generating series for the dimensions of the spaces of cusp modular forms (see
for background the physicists’ oriented survey [Za]):

S (X) =
X12

(1−X4)(1−X6)
. (5.7)

Setting in (5.5) Y = 1 we recover the Zagier conjecture (5.4) (proven for motivic MZVs). The
ansatz (5.5) is presently only derived in the motivic case under additional assumptions (see [CGS]).

The concatenation algebra C , identified with the quotient

C = C [ f2]/Q[ f2], (5.8)

can be equipped with a Hopf algebra structure (with fi as primitive elements) with the deconcate-
nation coproduct ∆ : C → C ⊗C given by

∆( fi1 ... fir) = 1⊗ fi1 ... fir + fi1 ... fir ⊗1+
r−1

∑
k=1

fi1 ... fik ⊗ fik+1 ... fir . (5.9)

This coproduct can be extended to the trivial comodule C [ f2] (5.2) by setting

∆ : C [ f2]→ C ⊗C [ f2], ∆( f2) = 1⊗ f2 (5.10)

10



P
o
S
(
C
O
R
F
U
2
0
1
5
)
0
8
6

Number theoretic tools Ivan Todorov

(and assuming that f2 commutes with fodd). Remarkably, there appear to be a one-to-one (albeit
non-canonical) correspondence between the bases of the weight spaces Zn and C [ f2]n as displayed
in the following list ([B1], 3.4)

〈ζ (2)〉 ↔ 〈 f2〉;〈ζ (3)〉 ↔ 〈 f3〉;〈ζ (2)2〉 ↔ 〈 f 2
2 〉;

〈ζ (5),ζ (2)ζ (3)〉 ↔ 〈 f5, f2 f3(= f3 f2)〉;〈ζ (2)3,ζ (3)2〉 ↔ 〈 f 3
2 , f3tt f3〉;

〈ζ (7),ζ (2)ζ (5),ζ (2)2
ζ (3)〉 ↔ 〈 f7, f2 f5, f 2

2 f3〉;
〈ζ (2)4,ζ (2)ζ (3)2,ζ (3)ζ (5),ζ (3,5)〉 ↔ 〈 f 4

2 , f3tt f3 f2, f3tt f5, f5 f3〉. (5.11)

There is a counterpart of Proposition 4.1 defining motivic iterated integrals whose Hopf algebra4,
[Gon], is non-canonically isomorphic to C [ f2]. It allows to define a surjective period map C [ f2]→
Z onto the algebra of real MZVs ([B1] Theorem 3.5). Since, on the other hand, C [ f2] satisfies
the defining relations of the formal zeta values we have the surjections FZ → C [ f2]→Z . Our
main conjecture would then mean that the two (surjective) maps are also injective and thus define
isomorphisms of graded algebras. If true it would imply that the (infinite sequence of) numbers
π,ζ (3),ζ (5), ... are transcendental algebraically independent over the rationals (cf. [Wa]). It would
also fix the dimension of the weight spaces Zn to be equal to dn (5.4). Presently, we only know
that this is true for n = 0,1,2,3,4; in general, the above cited results prove that

dimZn ≤ dn , dimZn = dn for n≤ 4 . (5.12)

The validity of the above sharpened conjecture would imply, in particular, that ζ (2n+1) are
primitive elements of the Hopf algebra of MZVs:

∆(ζ (2n+1)) = ζ (2n+1)⊗1+1⊗ζ (2n+1). (5.13)

Eq. (4.6) precludes the possibility of extending this property to even zeta values. Indeed, it implies
the relation ζ (2n) = bnζ (2)n,bn =

(24)n|B2n|
2(2n)! which is only compatible with ∆ζ (2) = 1⊗ζ (2).

If for weights n≤ 7 one can express all MZVs in terms of (products of) simple zeta values (of
depth one) the last equation (5.11) shows that for n≥ 8 this is no longer possible. Brown [B2] has
established that the Hoffman elements ζ (n1, ...,nd) with ni ∈ {2,3} form a basis of motivic zeta
values for all n (see also [D12, Wa]).

* * *
The interplay between algebraic geometry, number theory and perturbative QFT is a young and

vigorous subject and our survey is far from complete. We have not touched upon the application
of cluster algebras to multileg on-shell Feynman amplitudes - see [GGSVV] for a remarkable first
step in this direction. As hyperlogarithms and associated numbers do not suffice for expressing
massive and higher order Feynman amplitudes, mathematicians and mathematical physicists are
exploring their generalizations (including elliptic hyperlogarithms and modular forms) - for recent
work and references see [ABW, BKV].

4Brown’s definition which we follow differs from Goncharov’s (adopted in [CGS]) in that the motivic ζ m(2) is
non-zero.
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After this talk was presented a vigorous attempt has been made by Francis Brown [B15] (in-
spired by an ongoing study of ϕ4 periods [PS]) to reveal structures common to all Feynman ampli-
tudes - introducing the notion of a cosmic Galois group of motivic periods - a work opening a new
chapter in the subject.
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