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1. Introduction: It was established in recent years that non-geometric closed string back-
grounds exhibit non-commutativity/non-associativity among their coordinates. The prime example
is provided by the so called R-flux model obtained by a sequence of T-dualities along the coordi-
nates of a torus T 3 with constant 3-form flux. In that case, the commutation relations among the
coordinates and momenta assume the following form,

[xi, x j] = iRε
i jk pk, [xi, p j] = iδ

i j, [pi, p j] = 0 , (1)

where R is a constant provided by the 3-form flux in appropriate units. As a result, the Jacobiator
of the string coordinates does not vanish,

[x1, x2, x3] = [[x1, x2], x3]+ cyclic permutations =−3R , (2)

giving rise to non-associativity. There are more examples of non-geometric closed strings exhibit-
ing non-commutative/non-associative structures, but they are more complicated lying beyond the
scope of the present exposition.

There is a parallel story in Dirac’s generalization of Maxwell theory in the presence of mag-
netic sources. One often considers a point particle in the field of a single monopole but it is also
legitimate consider the motion of the particle in the field of a continuous distribution of magnetic
charge. In that case, non-commutativity/non-associativity arises in momentum space, hereby pos-
ing a problem in the quantization of the system (under the assumption that magnetic monopoles
are for real).

In the following, we focus on the magnetic field analogue of the R-flux string model which
serves as example to discuss the emergence of non-commutativity/non-associativity together with
its cohomological interpretation and the use of star product as alternative to quantization. The
presentation is based on the material contained in our earlier work on the subject: I. Bakas and D.
Lüst, “3-cocycles, non-associative star products and the magnetic paradigm of R-flux string vacua",
JHEP 1401 (2014) 171, arXiv:1309.3172 [hep-th] and references therein.

2. Non-associativity in the presence of magnetic sources: A spinless point particle with
electric charge e and mass m placed in the magnetic field background ~B(~x) has the following com-
mutation relations among its coordinates and momenta (in units h̄ = 1),

[xi, p j] = iδ
i j, [xi, x j] = 0, [pi, p j] = ieε

i jkBk(~x), (3)

leading to non-commutativity in momentum space in the context of Maxwell theory. In Dirac’s
generalization of Maxwell theory, we have ~∇ ·~B 6= 0 in the presence of magnetic sources, and, thus,
associativity is also lost in momentum space, since

[pi, p j, pk] = [[pi, p j], pk]+ cyclic permutations =−e ε
i jk~∇ ·~B 6= 0. (4)

This provides a simple model for non-commutativity/non-associativity though it arises in momen-
tum rather than configuration space.

We consider a continuous spherically symmetric distribution of magnetic charge in space,
ρ(x), to study some of the implications of non-commutativity/non-associativity in classical and
quantum theory. Setting x2 =~x ·~x, we have

~∇ ·~B = ρ(x). (5)
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The particular solution of the inhomogeneous equation is expressed as

~B(~x) =
~x

f (x)
, ρ(x) =

3 f (x)− x f ′(x)
f 2(x)

. (6)

It is a consistent solution of Dirac’s generalization of Maxwell theory in the limit of static sources,
since ~∇×~B = 0.

Using the Hamiltonian H = ~p ·~p/2m, the Lorentz force acting on the point particle in the
magnetic field background is

d~p
dt

= i [H, ~p ] =
e

2m
(~p×~B−~B×~p ), (7)

which for ~B(~x) =~x/ f (x) takes the special form

m
d2~x
dt2 =− e

f (x)

(
~x× d~x

dt

)
. (8)

The Lorentz force is proportional to angular momentum and does no work. However, the equations
are not integrable because the angular momentum of the point particle is not conserved, in general,

d
dt

(
m~x× d~x

dt

)
=

e x3

f (x)
dx̂
dt

. (9)

We conclude that non-associativity accounts for the breakdown of angular symmetry.
The only exception to the general rule is the Dirac monopole with magnetic charge g, having

f (x) = x3/g, so that ρ(x) = 4πg δ (x). In this case, the celebrated Poincaré vector

~J = m~x× d~x
dt
− eg x̂ (10)

provides the improved angular momentum of the particle that is conserved. Also, the apparent vio-
lation of non-associativity in a Dirac monopole field is localized to a point and it can be eliminated
by imposing the boundary condition Ψ(0) = 0 on the wave-functions of the system. Finite trans-
lations in space also associate when Dirac’s quantization condition eg = n ∈ Z (×h̄/2) is satisfied.
In all other cases, non-associativity is for real, obstructing canonical quantization.

Another notable example is provided by the choice f (x) = 3/ρ so that ρ(x) = ρ is constant
and ~B(~x) = ρ~x/3. As such, it provides the magnetic field analogue of the R-flux string model. It is
a genuinely non-commutative/non-associative model that will occupy the rest of this study. It is the
simplest magnetic background obtained by homogeneous distribution of magnetic charge all over
space.

3. Cohomological characterization of non-associativity: Focusing to the case of constant
magnetic charge density, which is the magnetic field analogue of the R-flux string model, we go on
to characterize the emergence of non-associativity in terms of Lie algebra cohomology. The basic
commutation relations take the following form (in units h̄ = 1),

[pi, p j] = iRε
i jkxk, [xi, p j] = iδ

i j, [xi, x j] = 0 (11)

with parameter R = eρ/3. In this case, the Jacobiator among the momenta does not vanish,

[p1, p2, p3] = [[p1, p2], p3]+ cyclic permutations =−3R, (12)
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signaling the breakdown of associativity all over space and not just at a point.
The obstruction to non-associativity is a 3-cocycle in the cohomology theory of the Abelian

Lie algebra t6 associated to translations in phase space. Letting TI = (xi, pi) be the generators
of t6, we choose a 3-cochain c3(TI,TJ,TK) = 0 with c3(p1, p2, p3) = 1, up to normalization, and
c3(TI,TJ,TK) = 0 for all other choices of generators (i.e., when at least one T is x). We have, in
particular,

[TI, TJ, TK ]∼ c3(TI,TJ,TK) (13)

and, thus, only the Jacobiator [p1, p2, p3] does not vanish. The obstruction satisfies the 3-cocycle
condition dc3(TI,TJ,TK ,TL) = 0, since for any four elements of t6 we have

c3([TI,TJ], TK , TL)− c3([TI,TK ], TJ, TL)+ c3([TI,TL], TJ, TK)+

c3([TJ,TK ], TI, TL)− c3([TJ,TL], TI, TK)+ c3([TK ,TL], TI, TJ) = 0. (14)

Alternatively, we can describe the obstruction to associativity in terms of the Abelian group
of translations in phase space. For this, we exponentiate the action of the position and momentum
generators. The corresponding group elements are

U(~a, ~b) = ei(~a·~x+~b·~p), (15)

satisfying the composition law

U(~a1,~b1)U(~a2,~b2) = e−
i
2 (~a1·~b2−~a2·~b1) e−i R

2 (
~b1×~b2)·~x U(~a1 +~a2, ~b1 +~b2). (16)

Successive composition of any three group elements Ui =U(~ai,~bi) yields

(U1 U2) U3 = e−i R
2 (
~b1×~b2)·~b3 U1 (U2 U3). (17)

If R were zero, a projective representation of the Abelian group of translations would be in
place. The phase factor

ϕ2(~a1,~b1;~a2,~b2) =~a1 ·~b2−~a2 ·~b1 (18)

is a real-valued 2-cocycle in group cohomology, satisfying

dϕ2(~b1,~b2,~b3)≡ ϕ2(~b2,~b3)−ϕ2(~b1 +~b2,~b3)+ϕ2(~b1,~b2 +~b3)−ϕ2(~b1,~b2) = 0 (19)

and, thus, the associator is inert to it, as in ordinary quantum mechanics.
When R 6= 0, as in our case, there is an additional x-dependent factor in the composition law

of the group elements, which gives rise to a phase in the associator of any three group elements,

ϕ3(~b1,~b2,~b2) = (~b1×~b2) ·~b3. (20)

This phase is a real-valued 3-cocycle in the cohomology of the Abelian group of translations in
phase space, satisfying the condition

dϕ3(~b1,~b2,~b3,~b4) ≡ ϕ3(~b2,~b3,~b4)−ϕ3(~b1 +~b2,~b3,~b4)+

ϕ3(~b1,~b2 +~b3,~b4)−ϕ3(~b1,~b2,~b3 +~b4)+ϕ3(~b1,~b2,~b3) = 0 . (21)
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A schematic representation is provided by Mac Lane’s pentagon relating the composition of four
group elements (U1U2)(U3U4) to U1(U2(U3U4)) to ((U1U2)U3)U4 to U1((U2U3)U4) to (U1(U2U3))U4.

4. Star product as alternative to quantization: When R= 0, all classical observables f (x, p)
on phase space are assigned to operators F̂(x̂, p̂) acting on Hilbert space H . Their product is non-
commutative but associative. An equivalent description is provided by Moyal star-product in phase
space. We Fourier analyze

f (~x,~p) =
1

(2π)3

∫
d3ad3b f̃ (~a,~b)ei(~a·~x+~b·~p) (22)

and apply Weyl’s correspondence rule to assign self-adjoint operators

F̂(~̂x,~̂p) =
1

(2π)3

∫
d3ad3b f̃ (~a,~b)Û(~a,~b), (23)

where
Û(~a, ~b) = ei(~a·~̂x+~b·~̂p). (24)

The product of any two operators takes the following form,

F̂1 · F̂2 =
1

(2π)6

∫
d3a1d3b1d3a2d3b2 f̃1(~a1,~b1) f̃2(~a2,~b2)Û(~a1, ~b1)Û(~a2, ~b2), (25)

which can be subsequently worked out using the group product composition law

Û(~a1, ~b1)Û(~a2, ~b2) = e−
i
2 (~a1·~b2−~a2·~b1)Û(~a1 +~a2, ~b1 +~b2). (26)

The 2-cocycle of the translation group ϕ2(~a1,~b1;~a1,~b1) =~a1 ·~b2−~a2 ·~b1 makes the product of the
corresponding phase space functions non-commutative but associative. The result turns out to be

( f1 ? f2)(~x,~p) = e
i
2(~∇x1 ·~∇p2−~∇x2 ·~∇p1) f1(~x1,~p1) f2(~x2,~p2)|~x1=~x2=~x; ~p1=~p2=~p , (27)

giving rise to the series expansion

( f1 ? f2)(~x,~p) = ( f1 · f2)(~x,~p)+
i
2
{ f1, f2}+ · · · . (28)

The usual product of functions is deformed by derivative terms, already seen in the first cor-
rection provided by the Poisson bracket, leading to non-commutative geometry in phase space as
the notion of the point becomes fuzzy. The deformation parameter is Planck’s constant h̄ which
is not seen here as it is normalized to 1. Then, in this context, quantum dynamics is equivalently
described by the Moyal bracket

{{ f1, f2}} ≡ −i( f1 ? f2− f2 ? f1) = { f1, f2}+higher derivatives (29)

that deforms the Poisson bracket by higher derivative terms and it acts as derivation

{{ f1, f2 ? f3}}= f2 ?{{ f1, f3}}+{{ f1, f2}}? f3. (30)

When R 6= 0, the rules of canonical quantization do not apply, but it is still possible to define
a non-commutative/non-associative star-product. We follow the same line of thought as before,
assigning to f (~x,~p)

F(~x,~p) =
1

(2π)3

∫
d3ad3b f̃ (~a,~b)U(~a,~b) (31)
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and using the generalized composition law

U(~a1,~b1)U(~a2,~b2) = e−
i
2 (~a1·~b2−~a2·~b1) e−i R

2 (
~b1×~b2)·~x U(~a1 +~a2, ~b1 +~b2). (32)

The result is the non-commutative/non-associative x-dependent star-product

( f1 ?x f2)(~x,~p) = ei R
2 ~x·(~∇p1×~∇p2 )e

i
2(~∇x1 ·~∇p2−~∇x2 ·~∇p1)

f1(~x1,~p1) f2(~x2,~p2)|~x1=~x2=~x; ~p1=~p2=~p . (33)

In this case, there are no operators assigned to the classical observables f (~x,~p), since the
association to F(~x,~p) is only formal. The point of view we adopt here is that the star product is
still a viable operation that substitutes the notion of quantization. Then, in this context, quantum
dynamics is formulated solely in terms of the bracket

{{ f1, f2}}x ≡−i( f1 ?x f2− f2 ?x f1), (34)

providing a non-associative generalization of the Moyal bracket. It does not act as derivation, since

{{ f1, f2 ?x f3}}x 6= f2 ?x {{ f1, f3}}x +{{ f1, f2}}x ?x f3 (35)

and the Jacobiator does not vanish. We have, in particular,

{{ f1(p), f2(p), f3(p)}}x 6= 0. (36)

When R∼ eρ is not constant, the construction of the star product is technically more involved
and it will not be discussed. We only note here that the group product law U(~a1,~b1)U(~a2,~b2) can
not be found in closed form for general ρ(x).

5. Conclusions and discussion: Motivated by the emergence of non-commutative and non-
associative structures in non-geometric closed sting models, we presented the paradigm of magnetic
field backgrounds in Maxwell-Dirac theory that exhibit similar structures. We focused mostly to
the case of constant magnetic charge density, which is the analogue of the R-flux string model,
and discussed the cohomological interpretation of the obstructions to associativity in terms of 3-
cocycles and the use of the star product as a viable alternative to ordinary quantization of a spinless
electrically charged point particle.

In view of possible generalizations to other backgrounds, it is interesting to establish a dictio-
nary between non-geometric string vacua and distributions of magnetic charge in Maxwell-Dirac
theory. The simplest problem is to find the string analogue of the Dirac monopole, and, then,
develop the dictionary to find the string analogue of distributing magnetic charge all over space.
According to our discussion, non-associativity is distributed and not localized in either case.
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