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1. Introduction and motivation

The main motivation to study quantum aspects of space-time is the fact that the classical
concept of space and time must break down at Planck scale (or possibly even larger) distances.
During the past century, two very successful theories have been developed which describe the
fundamental forces in nature to high experimental precision: on microscopic scales Quantum Field
Theory (QFT) and based thereon the Standard Model of Particle Physics, and on macroscopic scales
Einstein’s Theory of General Relativity (GR) describing gravity in terms of space-time curvature.
Unfortunately, these two theories are incompatible with each other for the following reason: GR is
described by the Einstein equations

Rµν −
1
2

Rgµν = 〈T̂µν〉 , (1.1)

whose left hand side is governed by purely geometrical objects, i.e. metric and curvature. On the
right hand side, the “source” of space-time curvature, the energy-momentum tensor T̂µν of matter,
must be a quantum mechanical object, as matter is described by quantum field theory. Consistency
can be achieved by taking the classical approximation of the energy-momentum tensor (denoted by
〈. . .〉 above). Since, gravity is in general a very weak force relevant only at macroscopic distances,
such an approximation is justified in most cases. However, this situation is unsatisfactory not only
from a mathematical point of view, but also considering that there are indeed situations where
quantum effects will play a major role. The most prominent examples are black holes, whose
space-time singularities can be expected to be regularized by such quantum effects. Although the
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exact length scale at which quantum geometric effects start to become important is not yet known,
one can argue that it should be at least of order of the Planck length λp =

√
Gh̄/c3 ' 10−33cm,

as the energy required to resolve that length scale experimentally would create a black hole of the
same size [1].

Hence, in order to unify all forces of nature in a mathematically consistent way, gravity has to
be described by a quantum theory of some sort as well. Here, I consider the non-commutative
geometry approach and concentrate on the construction of quantum field theories on flat non-
commutative spaces, in particular on aspects of renormalization.

Apart from the question of unification at the Planck scale, there is a further reason to study
field theories on non-commutative spaces: Non-commutative geometry can appear effectively in
certain limits of other physical problems. In particular, the Quantum Hall Effect can be described
by effective non-commutative field theories. For details I refer the interested reader to Refs. [2 – 4].

The present work is organized as follows: In Section 2 I introduce the notion of a “quantized
space”, in particular flat Moyal space. I then review the construction of scalar, fermion and gauge
fields and their respective actions on such a space, emphasizing various features and obstacles of
QFTs thereof in Section 3. In Section 4 I introduce some renormalizable field theories on Moyal
space and outline the difficulties in constructing a renormalizable gauge field action before, in
Section 5, I present a renormalization scheme which was recently adapted to gauge fields on non-
commutative spaces. I then close the discussion with a brief outlook.

2. Deformation of spaces

The notion of a “quantized space” is closely tied to the idea that some “minimal length” of
space-time should exist [5], and was historically motivated by the wish to “smear out” point-
like interactions of particles in order to regularize ultraviolet divergences [6] which are typical
for quantum field theories. Due to the success of renormalization procedures, which deal with
these divergences, interest in non-commutative geometry was subdued, and finally renewed in the
1990s [1, 7 – 13]. Today, several extensive reviews exist on this field, see for example [14 – 17]. It
is also worth mentioning that quantum field theories on non-commutative spaces are closely related
to matrix models, where gravity is an emergent force in the semi-classical limit [18 – 20].

Since any geometric space may be represented by a commutative C∗ algebra, a straightfor-
ward generalization to non-commutative spaces is achieved by considering non-commutative C∗

algebras [8, 14]. Thus, in non-commutative quantum field theories (NCQFTs), the coordinates
themselves have to be considered as operators x̂i on some Hilbert space H , satisfying an algebra
defined by commutation relations of the form

[x̂µ , x̂ν ] = iθ µν(x̂) , (2.1)

where θ µν(x̂) might be any function of the generators with θ µν =−θ νµ and satisfying the Jacobi
identity. The commutation relations can be either constant (i.e. the canonical case leading to
a Heisenberg-type algebra and uncertainty relation ∆xµ∆xν ≥ 1

2 |θ
µν | ∼ (λp)

2), linear (the Lie-
algebra case [x̂µ , x̂ν ] = iλ µν

k x̂k leading to fuzzy spaces [21, 7] and κ-deformation [22 – 24]), or
quadratic (i.e. [x̂µ , x̂ν ] = iλ µν

k x̂k corresponding to quantum groups [25, 26]) in the generators.

3
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Independent of the explicit form of θ µν , there is an isomorphism mapping of the non-commu-
tative function algebra ˆA to the commutative one equipped with an additional non-commutative
product ?, {A ,?}, i.e.:

Ŵ : A → ˆA , xi 7→ x̂i , xix j 7→ : x̂ix̂ j : for i < j , (2.2)

where an operator ordering prescription indicated by : : has to be defined (see e.g. the review
article [17] and references therein for details). The according star product is then defined by

Ŵ ( f ?g) := Ŵ ( f ) · Ŵ (g) = f̂ · ĝ , (2.3)

where f ,g ∈ A , f̂ , ĝ ∈ ˆA . If we choose a symmetrically ordered basis, we can use the Weyl-
quantization map for Ŵ :

f̂ = Ŵ [ f ] :=
∫

dDx f (x)∆̂(x) , ∆̂(x) =
∫ dDk

(2π)D eikµ x̂µ

e−ikµ xµ

,

f (x) = Tr
(
Ŵ [ f ]∆̂(x)

)
, TrŴ [ f ] =

∫
dDx f (x) , (2.4)

where D denotes the dimension of space-time. Derivations are defined via [∂̂µ , x̂ν ] = δ ν
µ leading to

the property [∂̂µ ,Ŵ [ f ]] = Ŵ [∂µ f ], i.e. the derivative operator [∂̂µ , ·] acing on a Weyl symbol Ŵ [ f ]
equals the Weyl symbol of the usual derivative of function f . The exponential eikµ x̂µ

appearing in ∆̂

is defined via its Taylor expansion and thus accounts for the symmetrical operator ordering. Using
Eqn. (2.3) we thus get

Ŵ ( f ?g) =
∫ dDk

(2π)D dDpeikix̂i
eip j x̂ j

f̃ (k)g̃(p) , (2.5)

where f̃ (k) =
∫

dDxe−ik jx j
f (x) is the Fourier transform of f . Because of the non-commutativity of

the coordinate operators x̂i, we have to apply the Baker-Campbell-Hausdorff (BCH) formula

eAeB = eA+B+ 1
2 [A,B]+

1
12 [[A,B],B]−

1
12 [[A,B],A]+... . (2.6)

For example, considering the canonical case where θ is constant, all higher order terms in the BCH
formula vanish, leading to

Ŵ ( f ?g) =
1

(2π)D

∫
dDk dDpei(k+p)x̂− i

2 kµ θ µν pν f̃ (k)g̃(p) , (2.7)

and hence the Groenewold-Moyal star product [27, 28] f ?g may formally be written as

( f ?g)(x) = e
i
2 θ µν ∂ x

µ ∂
y
ν f (x)g(y)

∣∣∣
x=y
6= (g? f )(x) . (2.8)

The generalization to multiple fields is straightforward:

( f1 ? · · ·? fm)(x) =
∫∫∫ dDk1

(2π)D · · ·
dDkm

(2π)D e
i

m
∑

i=1
kix

f̃1(k1) · · · f̃m(km)e
− i

2

m
∑

i< j
kiθk j

. (2.9)
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This is the (associative but non-commutative) star product which will be mainly considered in the
following. It is defined for any Schwartz space functions, which is all we will need for field theory
(where asymptotic boundary conditions are assumed). Apart from the above Fourier representation,
other forms of the Moyal product can be derived as well [16], such as

( f ?g)(x) =
∫ dDk

(2π)D

∫
dDz f (x+ 1

2 θk)g(x+ z)eikµ zµ

=
1

πD|detθ |

∫∫
dDydDz f (x+ y)g(x+ z)e−2iyµ θ−1

µν zν

, (2.10)

where the second line is only true if θ µν is invertible. The last version of the star product enables
us to compute the star product of two Dirac delta functions:

δ
D(x)?δ

D(x) =
1

πD|detθ |
, (2.11)

i.e. the star product of two point sources becomes infinitely non-local. This means that very high
energy processes can have important long-distance consequences.

Since integrations of star products correspond to traces on the operator side, cf. (2.4), invari-
ance under cyclic permutations is inherited, i.e.∫

dDx ( f ?g?h)(x) =
∫

dDx (h? f ?g)(x) . (2.12)

Finally, we will also need functional variations in order to define quantum field theories:

δ

δ f1(y)

∫
dDx( f1 ? f2 ? · · ·? fm)(x) = ( f2 ? · · ·? fm)(y) . (2.13)

3. Quantum field theory on non-commutative spaces

3.1 Scalars

Let us illustrate some basic properties of quantum field theories on Euclidean Moyal space by
means of a scalar φ 4 theory1. The straightforward (or naive as will see shortly) generalization is
achieved by replacing all fields φ by operators φ̂ = Ŵ [φ ] and subsequently employing the Weyl
quantization introduced above:

S = Tr
(

1
2
[∂̂µ ,Ŵ [φ ]]2 +

m2

2
Ŵ [φ ]2 +

λ

4!
Ŵ [φ ]4

)
=
∫

d4x
(

1
2

∂µφ ?∂
µ

φ +
m2

2
φ ?φ +

λ

4!
φ ?φ ?φ ?φ

)
. (3.1)

Cyclic invariance of the star product under the integral implies that
∫

d4x( f ?g)(x) =
∫

d4x f (x)g(x),
see (2.12). Thus, bilinears of any QFT action are unaffected by the star product, and so are the
propagators iff Euclidean spaces are considered. Vertices on the other hand pick up additional

1We will not discuss the transition from Euclidean to Minkowskian signature (or vice versa) and time-ordering. For
references on this open and very interesting question, see e.g. [29, 30] and references therein.
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phase factors. These phases act as regulators in Feynman diagrams, leading to finite results where
in commutative space ultraviolet divergences would have been expected. For example, the self
energy of our scalar field at one loop order has two contributions,

∫
d4k(k2 +m2)−1 exhibiting the

usual quadratic ultraviolet divergence known from its commutative counterpart, and

1
4

∫
d4k

eikµ θ µν pν

k2 +m2 =

√
m2

p̃2 K1

(√
m2 p̃2

)
, p̃µ := θ

µν pν , (3.2)

where K1(z) is the modified Bessel function. The result is finite, but for small θ or external mo-
mentum p it behaves as p̃−2 + const.m2 ln(m2 p̃2) exhibiting a quadratic and a logarithmic infrared
divergence. The reason is quite simple: When p̃µ tends to zero, the regulating effect of the phase
factor is lost and the quadratic ultraviolet divergence has to reappear in the result, manifesting
itself as an infrared divergence in the regulator, and thus giving this effect its name: UV/IR mix-
ing [13, 31, 32]. The interpretation of this mixing of scales, however, is more subtle. E.g. it can
be seen as being due to the coupling of fields to (emergent) gravity [18]. In any case, these new
types of IR divergences cannot be regularized using a mass and present a true obstacle to renormal-
ization: Imagine a higher loop Feynman graph which includes multiple self-energy insertions. In
such a diagram arbitrary powers of 1/ p̃2 can appear and hence the outer loop integral over p fails
at p = 0. In order to render the theory renormalizable, additional relevant operators must be added
to the action2, as we will outline in Section 4.

3.2 Gauge fields

When generalizing gauge fields to the non-commutative setting, one has to consider always
enveloping algebras such as U(N), O(N), etc. since SU(N), SO(N), etc, do not close [34, 35].
This can be easily seen from the star commutator of two Lie algebra valued functions α = αaT a,
β = β aT a with generators T a,

[α ?, β ] =
1
2
{αa ?, β

b}[T a,T b]+
1
2
[αa ?, β

b]{T a,T b} , (3.3)

which features a second term, that is proportional to the anti-commutator of the generators and
which vanishes only in the commutative limit where lim

θ→0
[αa ?, β b] = 0. For now, we take the T a to

be U(N) generators. As in the scalar case, the strategy is to replace all fields with operators and
employ the Weyl quantization prescription leading to

S =
1
4

Tr
(
[∂̂µ ,Ŵ [A]ν ]−[∂̂ν ,Ŵ [A]µ ]−ig[Ŵ [A]µ ,Ŵ [A]ν ]

)2
=

1
4

∫
dDx trN

(
Fµν ?Fµν

)
,

Fµν = ∂µAν −∂νAµ − ig[Aµ
?, Aν ] , (3.4)

where the remaining trace is over U(N). This action is invariant under the infinitesimal gauge
transformations

δαAµ = Dµα = ∂µα− ig[Aµ
?, α] , δαFµν =−ig[Fµν

?, α] . (3.5)

2Another path one might take, is to impose supersymmetry [33] as is done in the matrix model approach [18]. We
will, however, not discuss supersymmetry here.

6



P
o
S
(
C
O
R
F
U
2
0
1
5
)
1
0
4

Aspects of NC field theory II Daniel N. Blaschke

Due to the non-commuting nature of the star product, even the U(1) case leads to a non-Abelian
structure, i.e. the star-commutators in the field strength and the gauge transformations are always
present, and the field strength is only gauge covariant (not invariant). Likewise, the Lagrangian is
not gauge invariant, but transforms covariantly: Only the action is invariant, since it is the integral
which renders expressions invariant under cyclic permutations.

Because of the relations

[ f (x) ?, g(x)] = 2isin
(1

2 θ
µν

∂
x
µ∂

y
ν

)
f (x)g(y)

∣∣∣
x=y

,

{ f (x) ?, g(x)}= 2cos
(1

2 θ
µν

∂
x
µ∂

y
ν

)
f (x)g(y)

∣∣∣
x=y

, (3.6)

sine and cosine functions play the role of (anti-)symmetric structure “constants” of the star-non-
Abelian algebra which are non-zero even in the U?(1) case. These non-Abelian properties also
lead to features such as asymptotic freedom of the coupling [34, 36, 35], which are typical for
non-Abelian gauge theories on commutative space such as QCD, but not what we would expect
from U(1) gauge fields or photons. Additionally, ghosts do not decouple from U(1) gauge fields.
For example, the BRS invariant action in Landau gauge fixing reads

S =
1
4

∫
d4x trN

(
Fµν ?Fµν +b?∂

µAµ − c̄?∂
µDµc

)
, (3.7)

and is invariant under the nilpotent supersymmetric BRS transformations

sAµ = Dµc = ∂µc− ig[Aµ
?, c] , sc = igc? c ,

sc̄ = b , sb = 0 ,

s2
ϕ = 0 , ∀ϕ , (3.8)

where c̄, c are the (anti-)ghost fields and b is the Lagrange multiplier implementing the Landau
gauge fixing.

As in the scalar case above, gauge theories on Moyal space suffer from UV/IR mixing —
see [37 – 40] for some early papers on non-commutative gauge field theories (NCGFTs). In partic-
ular, at one-loop order (see Figure 1) the vacuum polarization exhibits a quadratic IR divergence

Π
IR
µν(p) ∝

p̃µ p̃ν

(p̃2)2 , (3.9)

even though gauge invariance restricts the UV divergence to being only logarithmic. Likewise, the
one-loop correction to the 3-point function exhibits a linear infrared divergence

Γ
3A,IR
µνρ (p1, p2, p3) ∝ cos

(
p1 p̃2

2

)
∑

i=1,2,3

p̃i,µ p̃i,ν p̃i,ρ

(p̃2
i )

2 . (3.10)

The reason for this is that these two IR divergent terms are consistent with the Slavnov-Taylor
identities, which in the U(1) case read [41]

∂
z
µ

δ 2Γ(0)

δAν(y)δAµ(z)

∣∣∣
Φ=0

= 0 ,

∂
z
µ

δ 3Γ(0)

δAσ (x)δAν(y)δAµ(z)
= ig

[
δΓ(0)

δAσ (x)δAν(y)
?, δ (y− z)

]
+(σ ,x)↔ (ν ,y) , (3.11)

7
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Figure 1: The one-loop corrections to the gauge field two-point and three-point function exhibit quadratic
and linear infrared divergences, respectively.

while no quadratically or linearly UV divergent terms of the right dimension are allowed by them.
A curious feature of NC gauge theories is that these infrared divergences appear only for external
U(1) legs in a more general U(N) theory, at least to one-loop order [34]. Furthermore, these IR
divergences are independent from the chosen gauge fixing [40, 42].

3.3 Fermions

Following the same strategy as in the previous subsections, Weyl quantization leads to the
following action for charged fermions (in the fundamental representation) [43, 44]:

S =
∫

d4x iψ̄ ? γ
µ
(
∂µψ− igAµ ?ψ

)
, (3.12)

where the γ-matrices fulfill the usual Clifford algebra {γµ ,γν} = 2ηµν . This action is invariant
under the gauge transformations

δλ ψ = igλ ?ψ , δλ ψ̄ =−igψ̄ ?λ , δλ Aµ = ∂µλ − ig
[
Aµ

?, λ
]
. (3.13)

In contrast to commutative space, however, Moyal space additionally allows couplings be-
tween gauge fields and neutral fermions (in the adjoint representation). This peculiar feature
of non-commutative space means that neutrinos can couple to gauge fields in non-commutative
space [38, 45, 46], thus providing a means to estimate lower bounds on the NC scale [46, 47]. The
according action reads

S =
∫

d4x iψ̄ ? γ
µDµψ =

∫
d4x iψ̄ ? γ

µ
(
∂µψ− ig

[
Aµ

?, ψ
])

, (3.14)

and is invariant under the gauge transformations

δλ ψ =−ig [λ ?, ψ] , δλ ψ̄ =−ig [ψ̄ ?, λ ] . (3.15)

The coupling is linear in the θ -matrix defining the NC scale and thus vanishes in the commutative
limit, as does the related current:

Jµ ≡ δS
δAµ

=−gγ
µ

αβ

{
ψβ

?, ψ̄α

}
∝ θ , (3.16)

where α,β are spinor indices.
New features like this new coupling are of particular interest when search for signals beyond

the Standard model, and it hence makes sense to study small deviations therefrom by constructing a
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NC version of the Standard Model and expanding all quantities in powers of θ . Such an expansion
is known as the Seiberg-Witten map [12, 48]. For details on the SW map expanded NC Standard
Model, see e.g. [49 – 51] as well as P. Aschieri’s contribution to the present proceedings [52].
Since the expansion in θ has to be truncated at some point, crucial features such as UV/IR mixing
are lost. An alternative SW map which keeps all orders in θ while expanding in NC deviations of
the fields from their commutative counterparts has therefore been studied as well [53 – 55], see also
J. You’s contribution to these proceedings [56].

3.4 Other aspects

The stress tensor

All actions introduced above lead to NC generalizations of the energy-momentum (or stress)
tensor. For example, the stress tensor derived from the gauge field action (3.4) reads [57 – 59]

T µν =
1
2

({
Fµρ ?, Fν

ρ

}
− 1

2
δ

µνFρσ ?Fρσ

)
, (3.17)

which is neither conserved nor gauge invariant. Instead, it transforms covariantly under gauge
transformations and is covariantly conserved:

δλ T µν =−ig [T µν ?, λ ] , DµT µν = 0 . (3.18)

The reason is that T µν (like the Lagrangian) is a local, non-integrated quantity. But in Moyal space,
the integral plays the role of a trace, and hence only integrated quantities feature cyclic invariance
which would be required here for the desired properties. For the same reason, the stress tensor is
in general not unique: cyclic permutations in the star product are allowed as well [60].

It is, however, possible to construct gauge invariant observables out of gauge covariant quan-
tities using Wilson lines [61, 57]:

T̃ µν(y)≡
∫ d4k d4x

(2π)4 eik(y−x) ?W (k,x)?T µν(x) ,

W (k,x) = P? exp
(∫ 1

0
dσ Aµ(x+σθk)θ

µνkν

)
, (3.19)

where P? denotes path ordering with respect to the contour parameter σ . Since the Wilson line
transforms as W (k,x)→U(x)?W (k,x)?U(x+θk)† under a gauge transformation U(x), and since
eikx induces a translation of U† by −θk, T̃ µν is found to be gauge invariant. In the commutative
limit, the length of the Wilson line goes to zero and thus lim

θ→0
T̃ µν = T µν .

It is then subsequently possible to make a shift in T̃ µν to render it conserved, but at the price
of loosing symmetry in its indices [57]. The procedure outlined here works only if the stress ten-
sor T µν is conserved covariantly — but that is no longer the case as soon as couplings to matter
(fermions, scalars, etc.) are considered [60]. Instead, DµT µν is proportional to some star commu-
tator (or source) terms which would vanish under an integral. Such terms are in fact allowed by the
non-commutative generalization of Noether’s theorem [62]. It is therefore in general only possible
to construct either a gauge invariant but not conserved stress tensor via Wilson lines, or a conserved
but not gauge invariant stress tensor via appropriate redefinition, but not both.

9
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NC charged “point” particles

As already mentioned in the introduction (in connection with the quantum Hall effect), clas-
sical and quantum mechanics on non-commutative space are also of interest as toy models for
field theories which are more difficult to handle, such as the case of interactions with gauge
fields [63, 64]. In this respect, we recall the similar situation of the coupling of matter to Yang-
Mills fields on commutative space: A coarser level of description for these theories was proposed
by Wong [65] who considered the motion of charged point particles in an external gauge field [66 –
68]. Similar equations may be derived in Moyal space in a “semi-classical” approach, where the
action of a “point” particle coupled to a gauge field reads

S[x] =−m
∫

dτ

√
ẋ2−

∫
d4yJµAµ ,

Jµ(y) =
∫

dτ q(τ) ẋµ(τ)δ
4 (y− x(τ)) , (3.20)

where τ parametrizes the particle’s trajectory. Gauge invariance in non-commutative space requires
that DµJµ = 0, and the according equation of motion is [69]

mẍµ = qFµν ẋν , (3.21)

with Fµν = ∂µAν −∂νAµ − ig
[
Aµ

?, Aν

]
. This set of equations (i.e. the e.o.m. together with the co-

variant conservation of the current) constitute the NC analog of Wong’s equations for non-Abelian
point particles, see [69] and references therein.

4. Renormalization of non-commutative QFTs

So far, only very few QFTs on (Euclidean) Moyal space have been found that are renormaliz-
able to all orders in perturbation theory, and none of them involve gauge fields. On recent progress
on the passing to Minkowski space, we refer to [30], where Wick rotation was generalized to the
degenerate Moyal case.

The Grosse-Wulkenhaar model

Historically, the first renormalizable NCQFT was the scalar Grosse-Wulkenhaar (GW) model
[70 – 72] which more recently was found to be non-perturbatively solvable [73, 74] and whose
action reads

S =
∫

d4x
(

1
2 ∂µφ ?∂

µ
φ + m2

2 φ
?2 +2Ω

2(x̃µφ)?(x̃µ
φ)+ λ

4! φ
?4
)
, x̃µ := (θ−1)µνxν . (4.1)

Compared to the naive scalar action of Eqn. (3.1), an additional harmonic oscillator-like term is
present, which ultimately cures the infamous UV/IR mixing problem. The propagator is the inverse
of the operator

(
−�+4Ω2x̃2 +m2

)
and is known as the Mehler kernel, which features a damping

behavior for high momenta (UV) as well as for low momenta (IR). An important feature of the GW
action is that it is "Langmann-Szabo" invariant [75], i.e. up to rescalings by Ω, it is form invariant
under Fourier transformations:

S[φ ;m,λ ,Ω] 7→Ω
2S[φ ;

m
Ω
,

λ

Ω2 ,
1
Ω
] , (4.2)
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although the kinetic term and the oscillator type x̃2-term exchange their roles in Fourier space.
Another way to exhibit the duality between the latter two terms is to use the properties that star-
commutators with x generate derivations while star-anticommutators with x become pointwise mul-
tiplications with x. Then those two terms can be written as

1
2 ∂µφ ?∂

µ
φ +2Ω

2(x̃µφ)?(x̃µ
φ) =−1

2

[
x̃µ

?, φ
]
? [x̃µ ?, φ ]+ Ω2

2

{
x̃µ

?, φ
}
?{x̃µ ?, φ} . (4.3)

The GW model is not only renormalizable, but also free of the Landau ghost problem [76, 77],
which constitutes an improvement compared to scalar φ 4 theory on commutative space. Further-
more, its beta-function vanishes at the self-dual point Ω = 1, whose special role is exhibited by
the Langmann-Szabo duality outlined above. Finally, the oscillator type x̃2-term breaks translation
invariance, but has been found to have a very nice interpretation in terms of the Ricci scalar of
Moyal space [78].

It should also be mentioned, that a generalization of the GW model to the degenerate Moyal
plane is possible and renormalizable, if an additional relevant operator is included into the ac-
tion. For details, we refer the interested reader to [79]. Furthermore, attempts have been made to
generalize this model to Minkowski space [80].

The Gurau et al. model

An alternative to the GW model is possible for φ 4 theory on Moyal space, which preserves
translation invariance. Its action, which has been proved to be renormalizable by its authors,
reads [81]

S =
∫

d4x
(

1
2 ∂µφ ?∂

µ
φ + m2

2 φ
?2−φ(x)?

a2

�̃x
?φ(x)+ λ

4! φ
?4
)
, (4.4)

where −1/�̃ = −(θ µρθµσ ∂ρ∂ σ )−1 becomes 1/k̃2 in momentum space and a is a dimensionless
constant. The non-local 1/k̃2-term replaces the GW oscillator term and constitutes a counter term
for the one-loop IR divergence of the scalar self-energy. The propagator features an infrared damp-
ing,

G(k) =
1

k2 +m2 + a2

k̃2

, lim
k→0

G(k) = 0 , (4.5)

which is key to the renormalizability of the model and is responsible for rendering insertions of
infrared divergent self-energies into higher order loops finite, e.g.

Π
n np-ins.(p)≈ λ

2
∫

d4k
eik p̃(

k̃2
)n
[
k2 +m2 + a2

k̃2

]n+1 . (4.6)

If a = 0, this n+1 loop graph, which is depicted in Figure 2, is IR divergent for n ≥ 2. However,
for finite a, the integrand remains finite because one has

lim
k→0

1

(k̃2)n
[a2

k̃2

]n+1 = lim
k→0

k̃2

(a2)n+1 . (4.7)
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p p

k

q1

q2

q3

Figure 2: Multiple self-energy insertions into a higher loop graph are rendered finite by the propagator’s
damping behavior.

The NC Gross-Neveu model

The only currently known renormalizable model on Moyal space which includes fermions, is
a NC extension of the Gross-Neveu model3 whose action reads [82]

S =
∫

d2x
[
ψ̄
(
−i/∂ +Ω/̃x+m

)
ψ +V (ψ̄,ψ)

]
,

V (ψ̄,ψ) = λ (ψ̄ ?ψ)?2 +permutations . (4.8)

As in the scalar cases, the x̃ dependent term can be interpreted as the coupling to geometry of NC
space, although here it is the coupling to torsion in Moyal space [83].

Gauge theories

Many approaches have been attempted to remedy the renormalizability of gauge fields in
Moyal space, but difficulties remain and a renormalization proof is still missing. Here we just
mention a few selected models and refer to the reviews [84, 17] for further details. The most ob-
vious strategy to construct a renormalizable NC gauge field theory, is to use the successful scalar
models as starting points. For example, in coupling the GW model to external gauge fields by
replacing x̃µ → X̃µ = x̃µ + gAµ , an effective gauge field action is induced via a heat kernel ex-
pansion [85, 86]. The X̃µ transform covariantly under gauge transformations and are hence called
“covariant coordinates”. Similar to the GW case, both star-commutators and anticommutators in
the X̃µ appear in the resulting “induced” gauge field action, the commutator being related to the
field strength via

[
X̃µ

?, X̃ν

]
= igFµν− iθ−1

µν . Furthermore, starting from the naive NCGFT (3.4) and
adding an oscillator type term in a BRS invariant way [87] leads to that same action at the one-loop
level [88]. The main difficulty of the induced gauge field action lies in the vacuum structure which
exhibits tadpoles and is not very well understood [89, 90]. Also, calculating the propagator is a
non-trivial enterprise.

3The Gross-Neveu model is the non-Abelian generalization of the Thirring model. In Moyal space, however, one
always has non-Abelian fields due to the star product.
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Another approach that has been attempted, is to implement an IR damping for the gauge field
propagator via a translation invariant term inspired by the scalar Gurau model (4.4) introduced
above. This has been done for U(1) gauge fields in [91] and extended to the U(N) case in [92, 41],
using techniques known from the Gribov-Zwanziger action in QCD — see [93] and references
therein for a review of the latter. The crucial observation is that the restriction to the first Gribov
horizon in QCD alters the gluon propagator in a way that it vanishes in the infrared: By adding the
operator

γ
4g2

∫
d4x f abcAb

µ(M
−1)ad f decAe

µ , (4.9)

where (M−1)ad is the inverse Fadeev-Popov operator of QCD and γ is known as the Gribov pa-
rameter, the gluon propagator is modified to

Gab
µν =

δ ab

k2 + γ2

k2

(
δµν −

kµkν

k2

)
. (4.10)

Subsequently, Eqn. (4.9) can be localized by introducing additional fields leading to the Gribov-
Zwanziger action. The infrared behavior of the gluon propagator is exactly what we want in the
non-commutative case to damp IR divergences from UV/IR mixing.

More recently, the Gribov problem was studied in the NC setting [94] leading to the conclusion
that indeed Gribov copies exist even in the NC U(1) case. The obvious question now is, whether
both the Gribov and the UV/IR mixing problem might be solved simultaneously via the Gribov-
Zwanziger approach. It is, however, unclear which additional operator to add to the action: the
one proposed in [91, 92, 41] or a NC analog of the inverse Fadeev-Popov operator like in QCD, or
possibly both?

5. On renormalization techniques for NCQFTs

In order to prove renormalizability of a NC gauge field theory candidate, a renormalization
scheme must be employed that is compatible with the underlying non-commutative space as well
as with gauge symmetry.

A very successful scheme compatible with Moyal space that was used to prove renormalizabil-
ity for the scalar models in the preceding sections is called Multiscale Analysis [16]. Unfortunately,
it breaks gauge invariance making it unfeasible for NC gauge theories. Several other schemes
require locality of the theory and cannot easily be generalized to the NC setting which is inher-
ently non-local. However, there have been more recent attempts at generalizing the well-known
BPHZ (named after their inventors Bogoliubov, Parasiuk, Hepp and Zimmermann) renormaliza-
tion scheme to Moyal space [95, 96]. In a nutshell, it consists of a subtraction scheme, a proof
of locality of these subtractions, normalization conditions, and overlapping (sub-)divergences are
treated using Zimmermanns forest formula. The most intriguing feature, however, is that diver-
gences are subtracted without requiring regularization, e.g.

Jfinite
Γ (p)≡

∫
d4k

[
1− tδ (Γ)

p

]
IΓ(p,k) ,(

tN
p IΓ

)
(p,k)≡

N

∑
l=0

1
l!

pµ1
i1 · · · p

µl
il

∂ lIΓ

∂ pµ1
i1 · · ·∂ pµl

il

(
p = 0,k

)
, (5.1)
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where p collectively denotes all momenta pi. (In the case of the 2-point function there is only one.)
δ (Γ) is the superficial degree of UV divergence of the graph under consideration. For example, if
the superficial degree of divergence is quadratic, t2

p is required.

p1

p2 p3

p4k

p + k

Figure 3: The “fish” diagram of φ 4 theory.

The main problem in applying these subtractions to a NC theory is that the result is not finite.
Let us illustrate this point using φ 4 theory’s “fish” diagram shown in Figure 3. Being superficially
a logarithmically divergent one-loop graph, the BPHZ subtraction scheme in commutative space
prescribes

Jfinite
Γ (p)≡

∫
d4k [1− t0

p] IΓ(p,k) =
∫

d4k [IΓ(p,k)− IΓ(0,k)]

=
∫

d4k
(

1
[(p+ k)2 +m2][k2 +m2]

− 1
[k2 +m2]2

)
. (5.2)

In Moyal space, however, part of this diagram (the so-called non-planar part) includes regularizing
phase factors leading to

JNC
Γ (p) =

∫
d4k

(
A+Bcos(kp̃)

[(p+ k)2 +m2][k2 +m2]
− A+B

[k2 +m2]2

)
, (5.3)

(where once more p̃µ = θ µν pν ), which is not finite. Not only did the subtraction fail to eliminate
the infrared divergence due to UV/IR mixing (parametrized by B), it also failed to eliminate the
UV divergence of the planar part of the graph (parametrized by A).

The remedy which was put forward in [95, 96] suggests to treat p and p̃ independently in the
subtraction scheme, i.e. to modify the subtraction scheme according to

Jfinite
Γ (pi, p̃i,k) =

∫
d4k

[
1− tδ (Γ)

p

]
IΓ(pi, p̃i,k) ,

(tn
p f )(pi, p̃i) := f (0, p̃i)+∑

j
pµ

j

(
∂

∂ pµ

j
f (pi, p̃i)

)∣∣∣
pi=0

+ . . .

+
1
n! ∑

j1,..., jn

pµ1
j1 . . . pµn

in

(
∂

∂ pµ1
j1

. . .
∂

∂ pµn
jn

f (pi, p̃i)

)∣∣∣
pi=0

. (5.4)

In our present example this leads to

JNC
Γ (p) =

∫
d4k (A+Bcos(kp̃))

(
1

[(p+ k)2 +m2][k2 +m2]
− 1

[k2 +m2]2

)
(5.5)

which is indeed finite. This modified BPHZ scheme was successfully applied to a scalar φ 4 theory
on Moyal space at one-loop level. Additionally, the “sunrise graph”, a two-loop graph depicted
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Figure 4: The “sunrise” diagram of φ 4 theory features an overlapping divergence.

in Figure 4 which features an overlapping divergence, was studied and successfully treated within
this new scheme.

Finally, BPHZ subtractions always involve some ambiguities (finite terms), which in the NC
setting lead to additional possible counter terms such as φ�̃−1φ in the scalar case. This term is
precisely the additional one included in the renormalizable Gurau et al. scalar model (4.4), i.e.
that term naturally appears within the modified BPHZ scheme. The reason we do not find the
Grosse-Wulkenhaar oscillator type term is that it breaks translation invariance while for the BPHZ
scheme (modified or not) one always enforces translation invariance. In more general theories, the
counter terms generated by the modified BPHZ involve polynomials in 1/p̃2 (in Fourier space)
whose degree is determined by the degree of IR divergence.

The application of this new renormalization scheme to gauge theories was started in [96]
where it was determined that it works fine for the one-loop vacuum polarization. Since gauge fields
are massless, one usually needs a further regularization, but in the Gribov-Zwanziger inspired NC
gauge models mentioned in the previous section, the gauge field propagator features an IR damping
which renders further regularizations, such as Lowenstein’s s-trick or dimensional regularization,
unnecessary. Vertex corrections and higher-order loop graphs have not yet been studied.

6. Conclusion and Outlook

We have introduced and motivated the concept of QFTs on NC (Moyal) space and given a brief
overview over some topics of current research. While renormalizable scalar and fermionic theo-
ries exist on (Euclidean) Moyal space, gauge theories are still an open matter although promising
candidates for renormalizable NCGFTs exist. A proof of renormalizability of gauge theories on
Moyal space requires a compatible renormalization scheme, possibly the modified BPHZ scheme
outlined in the last section of this paper.

Some open questions that suggest themselves in this work are

• Which one of the two Gribov-Zwanziger inspired operators (or both) should be included in
NC gauge field theories in order to render them renormalizable?

• A renormalization proof to all orders in perturbation theory is required for NCGFTs, either
using the modified BPHZ scheme or developing/generalizing yet another renormalization
scheme.

• Another possibility is that the translation invariance breaking induced gauge field theory
action is renormalizable, but this needs to be proven and the non-trivial vacuum structure
needs to be better understood.
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• Although some progress has been made in recent years, the passing to Minkowski space,
especially when NC time is involved, needs to be better understood and worked out for all
renormalizable models.
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[57] M. Abou-Zeid and H. Dorn, Comments on the energy momentum tensor in noncommutative field
theories, Phys. Lett. B514 (2001) 183–188, [arXiv:hep-th/0104244].

[58] J. M. Grimstrup, B. Kloibock, L. Popp, V. Putz, M. Schweda, and M. Wickenhauser, The energy
momentum tensor in noncommutative gauge field models, Int. J. Mod. Phys. A19 (2004) 5615–5624,
[arXiv:hep-th/0210288].

[59] A. K. Das and J. Frenkel, On the energy momentum tensor in noncommutative gauge theories, Phys.
Rev. D67 (2003) 067701, [arXiv:hep-th/0212122].

[60] H. Balasin, D. N. Blaschke, F. Gieres, and M. Schweda, On the energy-momentum tensor in Moyal
space, Eur. Phys. J. C75 (2015) 284, [arXiv:1502.03765].

[61] D. J. Gross, A. Hashimoto, and N. Itzhaki, Observables of noncommutative gauge theories, Adv.
Theor. Math. Phys. 4 (2000) 893–928, [arXiv:hep-th/0008075].

[62] J. Zahn, Wirkungs- und Lokalitätsprinzip für nichtkommutative skalare Feldtheorien, Master’s thesis,
Universität Hamburg, 2003.

[63] F. Delduc, Q. Duret, F. Gieres, and M. Lefrançois, Magnetic fields in noncommutative quantum
mechanics, J. Phys.: Conf. Ser. 103 (2008) 012020, [arXiv:0710.2239].

[64] P. A. Horváthy, L. Martina, and P. C. Stichel, Exotic Galilean Symmetry and Non-Commutative
Mechanics, SIGMA 6 (2010) 060, [arXiv:1002.4772].

[65] S. K. Wong, Field and particle equations for the classical Yang-Mills field and particles with isotopic
spin, Nuovo Cim. A65 (1970) 689–694.

[66] A. P. Balachandran, S. Borchardt, and A. Stern, Lagrangian and Hamiltonian Descriptions of
Yang-Mills Particles, Phys. Rev. D17 (1978) 3247.

[67] C. Duval and P. Horváthy, Particles With Internal Structure: The Geometry of Classical Motions and
Conservation Laws, Annals Phys. 142 (1982) 10.

[68] B. P. Kosyakov, Exact solutions in the Yang-Mills Wong theory, Phys. Rev. D57 (1998) 5032–5048,
[arXiv:hep-th/9902039].

[69] H. Balasin, D. N. Blaschke, F. Gieres, and M. Schweda, Wong’s equations and charged relativistic
particles in non-commutative space, SIGMA 10 (2014) 099, [arXiv:1403.0255].

[70] H. Grosse and R. Wulkenhaar, Renormalisation of φ 4 theory on noncommutative R2 in the matrix
base, JHEP 12 (2003) 019, [arXiv:hep-th/0307017].

[71] H. Grosse and R. Wulkenhaar, Renormalisation of φ 4 theory on noncommutative R4 in the matrix
base, Commun. Math. Phys. 256 (2005) 305–374, [arXiv:hep-th/0401128].

[72] V. Rivasseau, F. Vignes-Tourneret, and R. Wulkenhaar, Renormalization of noncommutative φ 4-theory
by multi-scale analysis, Commun. Math. Phys. 262 (2006) 565–594, [arXiv:hep-th/0501036].

[73] H. Grosse and R. Wulkenhaar, Self-Dual Noncommutative φ 4 -Theory in Four Dimensions is a
Non-Perturbatively Solvable and Non-Trivial Quantum Field Theory, Commun. Math. Phys. 329
(2014) 1069–1130, [arXiv:1205.0465].

19

http://dx.doi.org/10.1103/PhysRevD.92.125006
http://dx.doi.org/10.1103/PhysRevD.92.125006
http://arxiv.org/abs/1510.08691
http://pos.sissa.it/cgi-bin/reader/conf.cgi?confid=263
http://dx.doi.org/10.1016/S0370-2693(01)00780-8
http://arxiv.org/abs/hep-th/0104244
http://dx.doi.org/10.1142/S0217751X04021007
http://arxiv.org/abs/hep-th/0210288
http://dx.doi.org/10.1103/PhysRevD.67.067701
http://dx.doi.org/10.1103/PhysRevD.67.067701
http://arxiv.org/abs/hep-th/0212122
http://dx.doi.org/10.1140/epjc/s10052-015-3492-8
http://arxiv.org/abs/1502.03765
http://arxiv.org/abs/hep-th/0008075
http://dx.doi.org/10.3204/DESY-THESIS-2003-041
http://dx.doi.org/10.1088/1742-6596/103/1/012020
http://arxiv.org/abs/0710.2239
http://dx.doi.org/10.3842/SIGMA.2010.060
http://arxiv.org/abs/1002.4772
http://dx.doi.org/10.1007/BF02892134
http://dx.doi.org/10.1103/PhysRevD.17.3247
http://dx.doi.org/10.1016/0003-4916(82)90226-3
http://dx.doi.org/10.1103/PhysRevD.57.5032
http://arxiv.org/abs/hep-th/9902039
http://dx.doi.org/10.3842/SIGMA.2014.099
http://arxiv.org/abs/1403.0255
http://dx.doi.org/10.1088/1126-6708/2003/12/019
http://arxiv.org/abs/hep-th/0307017
http://dx.doi.org/10.1007/s00220-004-1285-2
http://arxiv.org/abs/hep-th/0401128
http://dx.doi.org/10.1007/s00220-005-1440-4
http://arxiv.org/abs/hep-th/0501036
http://dx.doi.org/10.1007/s00220-014-1906-3
http://dx.doi.org/10.1007/s00220-014-1906-3
http://arxiv.org/abs/1205.0465


P
o
S
(
C
O
R
F
U
2
0
1
5
)
1
0
4

Aspects of NC field theory II Daniel N. Blaschke

[74] H. Grosse and R. Wulkenhaar, On the fixed point equation of a solvable 4D QFT model,
arXiv:1505.05161.

[75] E. Langmann and R. J. Szabo, Duality in scalar field theory on noncommutative phase spaces, Phys.
Lett. B533 (2002) 168–177, [arXiv:hep-th/0202039].

[76] H. Grosse and R. Wulkenhaar, The beta-function in duality-covariant noncommutative φ 4 theory, Eur.
Phys. J. C35 (2004) 277–282, [arXiv:hep-th/0402093].

[77] M. Disertori, R. Gurau, J. Magnen, and V. Rivasseau, Vanishing of beta function of non commutative
φ 4

4 theory to all orders, Phys. Lett. B649 (2007) 95–102, [arXiv:hep-th/0612251].

[78] M. Buric and M. Wohlgenannt, Geometry of the Grosse-Wulkenhaar Model, JHEP 03 (2010) 053,
[arXiv:0902.3408].

[79] H. Grosse and F. Vignes-Tourneret, Quantum field theory on the degenerate Moyal space, J.
Noncommut. Geom. 4 (2010) 555–576, [arXiv:0803.1035].

[80] A. Fischer and R. J. Szabo, Propagators and Matrix Basis on Noncommutative Minkowski Space,
Phys. Rev. D84 (2011) 125010, [arXiv:1106.6166].

[81] R. Gurau, J. Magnen, V. Rivasseau, and A. Tanasa, A translation-invariant renormalizable
non-commutative scalar model, Commun. Math. Phys. 287 (2009) 275–290, [arXiv:0802.0791].

[82] F. Vignes-Tourneret, Renormalization of the orientable non-commutative Gross-Neveu model, Ann.
Henri Poincaré 8 (2007) 427–474, [arXiv:math-ph/0606069].
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