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I revisit a basic question about the noncommutative Yang-Mills theory: if it exists or not, or
more precisely, whether a nonperturbative formulation exists. As the most promising approach, I
consider a formulation based on matrix models. It is explained that the existence of the non-
commutative Yang-Mills theory is closely related to the Eguchi-Kawai equivalence. I argue
that supersymmetric noncommutative Yang-Mills theory can be defined straightforwardly. Non-
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1. Introduction

The existence of Yang-Mills theory on noncommutative space is a highly nontrivial issue.
Even the perturbative renormalizability is controversial due to the UV/IR mixing in the non-planar
sector [1]. The UV/IR mixing problem does not exist for certain cases, for example the planar limit
[2, 3] and maximally supersymmetric gauge theories [4, 5]. In such cases the noncommutative
theory can be renormalized just in the same way as in the commutative theory. In this talk I
consider more generic theories, based on a nonperturbative formulation motivated by string theory.
I do not intend to discuss the renoemalizability; I will consider the very first step of the formulation:
the stability of the noncommutative space.

In type II string theory, D-branes couple to Ramond-Ramond (RR) fields and can be polarized
nontrivially. With a certain background RR-flux, Dp-branes can form a fuzzy-spherical D(p+2)-
brane. In terms of (p+1)-dimensional supersymmetric U(N) Yang-Mills theory which describes
the low-energy dynamics of N Dp-branes, the action is modified due to the RR-flux so that fuzzy
sphere configurations become classical solutions. This is the Myers effect [6]. By taking the
large-N limit while tuning the flux parameter with N, the fluctuations about this solution describe
noncommutative Yang-Mills theory on the Moyal plane [7]. Formally, the same mechanism can
work in various large-N gauge theories and matrix models. It would be reasonable to adopt it as a
definition of the noncommutative theory, because the original, commutative theory can be obtained
when the commutative limit is continuous.

In order for this approach to work, the noncommutative background (e.g. fuzzy sphere, fuzzy
torus) must be stable at large-N. This is again a nontrivial issue. As I will explain in Sec. 3, the
stability of the noncommutative background is closely related to the Eguchi-Kawai equivalence [8].
Roughly speaking, the noncommutative background is stable when the Eguchi-Kawai equivalence
holds. In fact, historically the first appearance of noncmmutative Yang-Mills theory was in this
context [2, 3], although the geometric interpretation as noncommutative space was not realized
at that time. I will explain the connection between noncommutative Yang-Mills theory and the
Eguchi-Kawai model in Sec. 3 and Sec. 4. There, it is also explained how the noncommutative
background can turn unstable. In Sec. 5 and Sec. 6, I explain how the instabilities can be cured.

2. Eguchi-Kawai model

Wilson’s lattice gauge theory1 in d dimensions with U(N) gauge group is given by the follow-
ing action,

SW =−βN ∑
µ<ν

∑
~x

Tr
(

Uµ,~xUν ,~x+µ̂U†
µ,~x+ν̂

U†
ν ,~x

)
, (2.1)

where µ,ν = 1,2, · · · ,d, Uµ,~x is a unitary link variable which is related to the gauge field by Uµ,~x =

eiaAµ (~x) (a: lattice spacing), and β is the inverse ’t Hooft coupling at the cutoff scale. The original
version of the Eguchi-Kawai model [8] is obtained by reducing it to a single-site lattice,

SEK =−βN ∑
µ<ν

Tr
(
UµUνU†

µU†
ν

)
. (2.2)

1Below the volume is assumed to be ∞.
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There are only d link variables in the Eguchi-Kawai model.
The Eguchi-Kawai equivalence states that these two theories are equivalent in the ’t Hooft

large-N limit (N→∞ with β fixed), if the U(1)d symmetry in the Eguchi-Kawai model Uµ→ eiθµUµ

is not spontaneously broken. The ‘equivalence’ means that translationally invariant observables
take the same expectation values up to 1/N corrections. For example, the Wilson loop W =
1
N Tr

(
Uµ,~xUν ,~x+µ̂Uρ,~x+µ̂+ν̂ · · ·

)
and its counterpart in the Eguchi-Kawai model W̃ = 1

N Tr
(
UµUνUρ · · ·

)
agree at large-N,

〈W 〉W = 〈W̃ 〉EK, (2.3)

where 〈 · 〉W and 〈 · 〉EK stand for the expectation values evaluated in the Wilson’s lattice gauge
theory and the Eguchi-Kawai model, respectively. That the unbroken U(1)d symmetry is necessary
can be understood as follows. In the lattice gauge theory, only loops (closed lines) can have nonzero
expectation values, because of the gauge invariance. Open lines such as W = 1

N Tr
(

U1,~xU2,~x+1̂

)
must vanish. In the Eguchi-Kawai model, on the other hand, any line is a loop, because there is
only one point. However the U(1)d symmetry can be used to distinguish the counterparts of loops
and open lines, because W̃ transforms as W̃ → eiθW̃ , where θ = ∑

d
µ=1 θµ × (# of Uµ − # of U†

µ).
Hence the counterparts of open lines automatically vanish provided that the U(1)d symmetry is not
broken.

In fact the U(1)d symmetry is broken spontaneously for d > 2 [9]. It can be seen by writing
Uµ as Uµ = VµDµV †

µ , where Dµ = diag(eiθ 1
µ ,eiθ 2

µ , · · · ,eiθ N
µ ) and Vµ = eiaµ , and integrating out the

‘fluctuation’ aµ at one-loop level. Then the one-loop effective action, which is justified when the
phases θ i

µ are not localized too much, is

S1−loop(θ
1
µ , · · · ,θ N

µ ) = (d−2)∑
i< j

log

(
∑
µ

sin2

(
θ i

µ −θ
j

µ

2

))
. (2.4)

This shows that the phases θ i
µ tend to localize in a small region. Because the U(1)d symmetry is

the shift symmetry of the distribution of θ i
µ modulo 2π , when θ i

µ localize the U(1)d symmetry is
broken.

In analogy to string theory, ~θ i’s describe D-branes distributed on the torus, which interact with
each other via strings stretched between them. The one-loop potential (2.4) shows that strings pull
D-branes to come close to each other, so that a single bunch of D-branes is formed.

As we will see below, this instability of the U(1)-symmetric background is essentially the same
as the instability of noncommutative backgrounds, which are used to formulate noncommutative
Yang-Mills theory.

3. Twisted Eguchi-Kawai model and noncommutative Yang-Mills

In order to save the U(1)d symmetry, the ‘twisted’ Eguchi-Kawai model [2, 3] has been pro-
posed.2 As we will see, the twisted Eguchi-Kawai model provides us with a nonperturbative for-

2The ‘quenched’ Eguchi-Kawai model has also been proposed [9, 10, 11]. However for purely bosonic theory the
quenching cannot save the U(1)d symmetry, as found in [12].
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mulation of noncommutaive Yang-Mills theory. Its action is given by

STEK =−βN ∑
µ<ν

ZµνTr
(
UµUνU†

µU†
ν

)
, (3.1)

where Zµν = e2πinµν/N , nµν =−nνµ ∈Z is the twist factor, which is essentially the same as the flux
term introduced by Myers in the context of string theory. Below I consider d = 4 and

nµν =


0 kn 0 0
−kn 0 0 0

0 0 0 kn
0 0 −kn 0

 , N = kn2, (3.2)

where integers k and n are related to the gauge group of the noncommutative theory U(k) and cutoff
scales. The generalizations to more generic cases are straightforward.

The classical solution can be obtained by using the shift matrix Sn and the clock matrix Cn,
which are n×n matrices given by

Sn =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

...
0 0 0 · · · 1
1 0 0 · · · 0

 , Cn = diag(1,ω,ω2 · · · ,ωn−1), ω = e2πi/n. (3.3)

By noticing ωCnSn = SnCn, it is easy to confirm that

U (0)
1 = 1k⊗Cn⊗1n, U (0)

2 = 1k⊗Sn⊗1n,

U (0)
3 = 1k⊗1n⊗Cn, U (0)

4 = 1k⊗1n⊗Sn (3.4)

satisfy

ZµνU (0)
µ U (0)

ν =U (0)
ν U (0)

µ , (3.5)

and hence minimize the action. In terms of the noncommutative space, this is the k-coincident
fuzzy torus solution. Although this solution is not invariant under the full U(1)4 transformation, it
is still invariant under Z4

n up to the U(N) transformation.
By writing as U (0)

µ = eiap̂µ and zooming up a tangent space of the fuzzy torus ap̂µ ∼ 0
(more precisely, by considering the excitations localized at ap̂µ ∼ 0), the noncommutative plane
[p̂µ , p̂ν ] = i · 2πnµν

Na2 ≡ i · (θ−1)µν is obtained. By using Hermitian matrices Aµ , which is related to
the unitary variable by Uµ = eiaAµ , the action becomes3

STEK =−a4βN
4

Tr
(
[Aµ ,Aν ]− i · (θ−1)µν ·1N

)2
(3.6)

up to terms higher order in a. This matrix model, expanded about Aµ = p̂µ , reproduces the U(k)
noncommutative Yang-Mills theory to all order in perturbation, with the following identification
[7]:

3This is essentially the bosonic part of the IKKT matrix model [13], which will be considered later.

4



P
o
S
(
C
O
R
F
U
2
0
1
5
)
1
0
5

Does NCYM exist? Masanori Hanada

Matrix Model NCYM

kna2

2π
θ

matrix x̂µ ≡ θµν p̂ν coordinate xµ

matrix product x̂µ x̂ν Moyal product xµ ∗ xν

i[p̂µ , · ] ordinary derivative ∂µ

i[Aµ , · ] covariant derivative Dµ

âµ ≡ Aµ − p̂µ U(k) gauge field Aµ(x)
a4Tr

∫
d4x Tr√

n∼ 1
a UV cutoff ΛUV

1√
n ∼ a IR cutoff ΛIR

(3.7)

In the twisted Eguchi-Kawai reduction [2, 3], the ’t Hooft large-N limit (β is fixed and hence
a is also fixed) with fixed k is taken. Then the noncommutativity parameter θ = kna2

2π
goes to

infinity, and hence only the planar diagrams survive, which is equivalent to the planar sector of the
commutative theory.

In this talk, I consider the limit of noncommutative Yang-Mills theory, in which the noncom-
mutativity parameter θ is fixed. Therefore n =

√
N/k is tuned as n∼ 1/a2.

4. Twist is not enough

It turned out that, for sufficiently large N, the Z4
n symmetry of the twisted Eguchi-Kawai

model is broken at intermediate coupling region βc,H < β < βc,L [14, 15, 16]. (Essentially the
same phenomenon in a related theory was reported in [17].) Furthermore, the critical value at
weak coupling side increases with N as βc,L ∼ N for fixed k [16]. 4 This scaling of βc,L can be
understood rather easily in the following manner. If one interprets the action (3.6) as an effective
action of D-branes and open strings, the Z4

n-broken vacuum corresponds to a bunch of D-branes
localized to a point. There the open strings are short and can easily be excited. On the other hand,
in the Z4

n-unbroken vacuum, D-branes are spread out and hence most open strings are long, heavy
and cannot be excited much. Therefore, the former has more dynamical degrees of freedom and
hence it is entropically favorable; just by counting the number of off-diagonal elements, we can
easily estimate that the difference of the entropies is of order N2, which can be seen as a quantum
correction in the effective action of D-branes by integrating out the open strings. The Z4

n-unbroken
vacuum can exist only if the twist is strong enough so that the difference of classical potential
energies, βN2 (1− cos(2π/n)) ∼ βN, is larger than the entropy factor. Hence the critical value is
given by βc,L ∼ N.

In the noncommutative Yang-Mills limit, the continuum limit is taken fixing θ ∼ a2
√

N. Al-
though the scaling of the coupling constant in noncommutative Yang-Mills theory is not completely

4It has been pointed out that this instability cab be avoided by tuning k with N [21]. Although this modification can
save the twisted Eguchi-Kawai equivalence, it does not help noncommutative Yang-Mills because it changes the gauge
group U(k).
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understood because of the UV/IR mixing problem, it is reasonable to assume that it should scale
as in the usual Yang-Mills theory, β (a) ∼ − loga, because otherwise the agreement in the planar
sector is gone. Then, it is impossible to take the continuum limit, because β (a)∼− loga∼ logN is
smaller than βc,L ∼ N at sufficiently large N. Essentially the same arguments hold for any bosonic
matrix models and noncommutative backgrounds [18]. This instability is related to an infrared
singularity which appears in the perturbative calculation of noncommutative Yang-Mills [19] (see
also [20] for a related argument), and hence it is unlikely that it can be avoided by using other
nonperturbative formulations.5 Note also that many other theories, including the noncommutative
generalization of the standard model, fail for the same reason.

So it seems that I arrived at a conclusion which would upset the participants of this workshop,
“Workshop on Noncommutative Field Theory and Gravity” – noncommutative Yang-Mills theory
does not exist! At best one can only claim that it exists as an unstable theory, like bosonic string
theory. In fact, however, the (in-)stability of the background is sensitive to the matter content. In
the following sections I argue that the instability can be cured in certain cases.

5. A cure by supersymmetry

In terms of string theory, the instability described above indicates that the flux is not strong
enough to overcome the attractive force coming from strings between D-branes. There I considered
only the bosonic degrees of freedom; what happens if fermions are introduced? Intuitively, if a few
adjoint fermions are added so that the theory becomes supersymmetric, then the forces coming
from bosonic and fermionic degrees of freedom cancel with each other.6

Actual situation can be slightly more complicated, because the flux term and the noncommu-
tative background can break supersymmetry.7 There are several ‘twisted’ matrix models which do
not break supersymmetry:

• The plane-wave matrix model (or the BMN matrix model) [27].

This is a supersymmetric deformation of the BFSS matrix model [25, 26] ,

SBFSS = Sb +S f , (5.1)

where

Sb = N
∫

β

0
dt Tr

{
1
2
(DtXM)2− 1

4
[XM,XN ]

2
}
, (5.2)

and

S f = N
∫

β

0
dt Tr

{
iψ̄γ

10Dtψ− ψ̄γ
M[XM,ψ]

}
. (5.3)

5The formulation in [22] has the same problem.
6Near zero temperature, at nonperturbative level, the attraction can still win [23, 24]. However the remaining

attractive force is negligible compared to the twist.
7Formally, at N = ∞, the Moyal plane can be realized in the supersymmetric matrix models such as the BFSS matrix

model [25, 26] (the dimensional reduction of (9+ 1)-d N = 1 super Yang-Mills to (0+ 1)-dimension) and the IKKT
matrix model [13] (the dimensional reduction of (9+ 1)-d N = 1 super Yang-Mills to (0+ 0)-dimension). However
it is necessary to consider finite-N because we are discussing the nonperturbative formulation, and then the flux term is
needed.
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The plane-wave deformation is given by [27]

SBMN = SBFSS +∆S, (5.4)

where

∆Sb = N
∫

β

0
dt Tr

{
µ2

2

3

∑
i=1

X2
i +

µ2

8

9

∑
a=4

X2
a + i

3

∑
i, j,k=1

µε
i jkXiX jXk

}
(5.5)

and

∆S f =
3iµ
4
·N
∫

β

0
dt Tr

(
ψ̄γ

123
ψ
)
. (5.6)

Here εi jk is the structure constant of SU(2): ε123 = +1,ε213 = −1 etc. The deformation
term ∆S is essentially the twist. The fuzzy sphere embedded in X1,2,3 is a BPS solution of
the equation of motion of this theory. About the k-coincident fuzzy sphere, the (1+ 2)-
dimensional maximally supersymmetric noncommutative Yang-Mills theory can be realized
[28].

As pointed out in [29], the plane wave matrix model can be obtained by dimensionally re-
ducing 4d N =4 super Yang-Mills on S3 to (0 + 1)-dimension. In the same manner, by
dimensionally reducing various 4d theories on S3, such as 4d N =2 and 4d N =1, the plane
wave deformation of various supersymmetric matrix models are obtained, by keeping super-
symmetry [30]. From them, various 3d noncommutative theories can be obtained.

• The flux deformation can also be introduced to the two-dimensional super Yang-Mills[31,
32, 33, 34, 35, 36]. Fuzzy spheres give stable vacua, and hence noncommutative super Yang-
Mills with two spatial noncommutative dimensions can be constructed by taking appropriate
limit[34, 35, 36].

• It is also possible to construct two- and four-dimensional theories starting with zero-dimensional
supersymmetric matrix models with ‘twist’; see e.g. [37, 38] for attempts along this direc-
tion.

When the regularization breaks the SUSY, the stability of the background is very subtle. How-
ever, as we will see in Sec. 6, it can also be realized by using SUSY-breaking regularizations with
parameter fine tunings. The ultraviolet and infrared behaviors might be modified then.

6. A possible cure without supersymmetry

With supersymmetry, the forces coming from bosonic and fermionic degrees of freedom can-
cel with each other. It means the massless adjoint fermions give repulsive force between eigen-
values (D-branes). When more massless adjoint fermions are added, the repulsive force wins and
eigenvalues repel with each other. At first glance it is a pathological situation: eigenvalues spread
out indefinitely and hence there is no stable vacuum. However it is not a problem if the space is
compact, then the uniform distribution of eigenvalues can be realized. In terms of matrix model, if

7
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the bosonic variables are Hermitian matrices then the eigenvalues spread indefinitely and hence the
model does not make sense. On the other hand, with the unitary variables, eigenvalues are restricted
on the unit circle and hence there is a natural ‘infrared cutoff.’ Hence the Eguchi-Kawai equiva-
lence holds in this case [39]. By adding a twist, it should be possible to realize the noncommutative
Yang-Mills theory with massless adjoint fermions.

While the theory with many massless adjoint fermions (N f ≥ 1) itself does not seem to be
relevant for physics at first glance, it is related to 2N f -flavor QCD in the following sense. Firstly,
it is equivalent [40, 41] to the theories with 2N f fermions in the anti-symmetric representation
at large-N, in the sense that certain correlation functions coincide. Secondly, the latter theory
can be regarded [42] as a large-N limit of QCD, because at N = 3 the fundamental and the anti-
symmetric representations are the same thing. A priori there is no reason to favor the fundamental
representation rather than the anti-symmetric representation. Large-N limit with the anti-symmetric
fermions is similar to the Veneziano large-N limit (N f fundamental fermions, N,N f →∞ with N f /N
fixed), in the sense that the loops of fermions are not suppressed.

Somewhat surprisingly, the instability can be avoided even when the mass of the adjoint
fermion is as large as the cutoff scale. This was found numerically [43], along the way of go-
ing to the massless limit. (See also [44, 45, 46] for related studies.) Soon a simple theoretical
explanation was given in [47]. In a small volume theory, the dynamics of eigenvalues at short
distance are approximated by the dimensionally reduced theory,

S0d =
1

g2
0d

Tr
(
−[Aµ ,Aν ]

2− ψ̄ f
(
γ

µ [Aµ ,ψ f ]+mψ
))

, (6.1)

where the matrices Aµ and ψ f are the zero-modes of the four-dimensional gauge field and fermion
and the coupling is given by g2

0d = g2
4d/V , where the volume V is related to the lattice spacing a

by V = a4 in the case of the single-site lattice. The ’t Hooft coupling λ0d = g2
0dN, which has the

dimension of (mass)4, sets the scale of the theory; in particular, the fluctuation of the gauge field is
of order λ

1/4
0d ∼ λ

1/4
4d /a. Compared to this huge fluctuation, the mass term is simply negligible, as

long as m� λ
1/4
4d /a∼ 1

a·(− loga)1/4 . Note that the heavy adjoint fermions can be seen near the cutoff
scale, and hence the ultraviolet structure is modified. Then, due to the UV/IR-mixing, the behavior
at deep IR is also modified.

Although I considered the Eguchi-Kawai model (zero-dimensional theory) and four-dimensional
fuzzy space with four noncommutative dimensions, the same argument applies to other cases, in-
cluding three-dimensional theory with two noncommutative dimensions (from matrix quantum me-
chanics) and four-dimensional theory with two noncommutative dimensions (from two-dimensional
Yang-Mills theory).

With the heavy adjoint fermions, it is possible to construct various complicated theories, for
example the noncommutative QCD with U(Nc) gauge group and N f flavors; we only have to con-
struct the U(Nc)×U(N f ) theory with bifundamental fermions, and then un-gauge U(N f ) [48]. In
the same way, it is possible to realize quiver gauge theories on noncommutative space.

7. Conclusion and outlook

I have discussed whether the matrix model formulation of the noncommutative Yang-Mills
theory can work. In general, it depends on the field content. I have shown that very heavy adjoint
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fermions near the cutoff scale can make the formulation work, by stabilizing the background matrix
configurations. As pointed out in [19], the instability of the noncommutative background in the
bosonic non-commutative Yang-Mills corresponds to the tachyonic instability in the perturbation
theory arising from the UV/IR mixing. The massive adjoint fermions remove those singularities.
This procedure modifies the theory near UV and IR cutoff scale.

As physics itself, it would not be a big change, because the energy scale of interest is the non-
commutativity scale which is far separated from UV and IR cutoff scales. For phenomenological
model buildings, one can consider any kind of matter content, but it is crucial to introduce the right
UV completions. From more formal theoretical point of view, it is important to study theories with
adjoint fermions. The stability of the background suggests that the IR singularity is rather harmless
and the theory seems to be well-defined. Hence this is the best theory for theoretical considerations,
for example on the renormalizability.
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