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1. Quantum Spacetime and Noncommutativity

There is a common belief that at the Planck’s scale (or even before) something is happening. . .
General Relativity and quantum field theory, in their present form, are not compatible. This is
just a conceptual problem for all case in which their domain of compatibility do not overlap. One
may use the latter to describe macroscopic black holes and galaxies, and the latter the collision of
particles at LHC. The problem arises when one has to describe objects and energies for which both
theories are needed. Although a full theory of quantum gravity is not known, it is very likely that it
will alter the very geometry of spacetime, leading possibly to a noncommutative geometry [2], or
some forms of loop quantum gravity [3]. Given that we do not have a theory of quantum gravity, it
is nevertheless reasonable to surmise that, being a quantization of general relativity, it will involve
the very structure of spacetime. On the other side, being a quantum theory, it will be described by
operators, and it may have noncommutative features.

The modification of spacetime might take the form of nontrivial commutation relations for the
position operator:

[xi,x j] = iθ i j (1.1)

where the dimensionful quantity θ may be a tensor [4] or a quantity coming from string theory [5,
6], but more in general it may be an arbitrary and nonconstant quantity. Another possibility is the
case of the generalized uncertainty principle [7, 8] In this case the deformation is of phase space:

[xi, p j] = ih̄
(
1+F i

j
)

(1.2)

Further generalizations are possibile considering also noncommutativity of momenta:

[pi, p j] = iCi j (1.3)

The case of θ ,F and C constant (non spacetime dependent) has been much studied in later years,
usually considering the deformation of products, usually via the Grönewold.Moyal product [9,
10], although alternative products are possible. This kind of noncommutativity breaks Poincaré
invariance, it retains translation invariance, and indeed all translationally invariant products share
some of of the Moyal-Grönewold product, such as infrared/ultraviolet mixing [11]. It is possible
that such a spacetime might have “quantum” symmetries (see for example [12] and references
therein).

For totally arbitrary θ ,F and C, a theorem by Kontsevich [13] ensures that it is always pos-
sible to formally define a product, but the construction may be exceedingly difficult, and is in any
case a formal series in the noncommutativity parameters, which may create problems of conver-
gence. Moreover the issue of Lorentz noninvariance remains. The presence of a tensor defines
always (except for the trivial case of two dimensions) some preferred directions, which break the
symmetry1

Apart from noncommutative spacetime, other visions of quantum spacetime point to a gran-
ularity of it, ie.e. to some structures appearing at Planckinan scale. This begs the question of the
measurement of such a spacetime, we will try to address some of these points in the next section.

1In more sophisticated approaches [4] the operators do not break Lorentz invariance, but preferred directions are
picked from the vacuum.
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2. How is space(time) measured?

Obviously this question has many layers, we will discuss it from an abstract point of view,
namely we will not concern ourselves with the actual apparatus, but will concentrate on the math-
ematical process leading to the definition of the position in a quantum context. Our discussion will
be in the context of non relativistic quantum mechanics. A treatment using quantum field theory
and/or relativity is more ambitious, but not beyond reach.

In a quantum theory the starting point for any measurable quantity is the concept of observ-
able.They are the selfadjoint part of an algebra of operators represented on a (typically infinite
dimensional) Hilbert space. Obviously not to every selfadjoint operator corresponds a quantity
with a physical meaning, but certainly every measurable quantity is described, in the quantum con-
text, by such an operator. To describe the state (in a physical sense) in which a system is, we use
the mathematically concept of state2, of course the homonymy is not a coincidence! Mathemati-
cally a state φ of a physical system is a positive and of unit norm map from the algebra to complex
numbers, in other words, for any operator it must be

φ(A†A)≥ 0 ; φ(1) = 1 (2.1)

A pure state is a state that cannot be written as the convex sum of two other states, in other words,
it is impossible to find two other states φ1,φ2 and a real number λ ∈ [0,1] such that

φ = λφ1 +(1−λ )φ2 (2.2)

If one considers as Hilbert space the space of square integrable functions on Rn, and as algebra
the one of bounded operators generated by position and momentum, the two operators xi

0 and
pj0 represented in the usual way (the reason for the presence of the subscript will be clear in the
following):

xi
0ψ(x) = xi

ψ(x)

pj0ψ(x) = −ih̄
∂

∂x j ψ(x) (2.3)

The pure states of this noncommutative algebra are the vectors of the Hilbert space, i.e. the pure
states of quantum mechanics. the other states being a generic density matrix.

Alternatively it is possible to consider the algebra of continuous functions on Rn vanishing
at infinity. This is a commutative algebra generated by just x0. To these functions correspond
operators represented as usual as a multiplication by a function:

fψ(x) = f (x)ψ(x) (2.4)

then the pure states δ~y are in one to one correspondence to the points of~y ∈ Rn, and they act as

δ~y(f) = f (~y) (2.5)

and there does not correspond to them a vectors (they are the Dirac’s δ distribution).In this view
configuration space emerges as the selfadjoint part of a commutative subalgebra. From this com-
mutative algebra it is possible to reconstruct the topology of configuration space as the set of pure
states of this commutative algebra. This is the Gelfand-Naimark-Moser, reconstruction theorem,
see for example [15].

2This material is standard and is treated in many books, for a view close in spirit to this talk see for example [14, 15].
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3. Generic Commutation Relations

Rewrite (1.2) generically as
[xi, p j] = iH i

j (3.1)

and consider the nontrivial commutation relations (1.1) and (1.3). They break Lorentz (or rather
rotational) invariance by picking two vectors in space at each point in space and time (in case they

are nonconstant). There is no evidence for such a breaking. The natural scale for (1.1) is
√

h̄G
c3 '

10−35m, the one for H i
j is h̄ = 6.63 10−34J sec, while the one for C is

√
h̄c3

G ' 6.5 Kg m/sec, which
unlike the other two is not microscopic.

4. Fast varying and stochastic commutators

One way to recover, at a certain level, the lost invariance is to have θ and C depend on space
and/or time and to be a random variables, fast oscillating around zero. In this way, even if the
theory is not formally invariant, no measurement made with coarse grained detectors can detect
this noninvariance. The invariance is recovered in an effective way, as an average. This is the
central point of this talk. It is most natural to imagine che the correlation length and time of a such
a quantum space time be of Planckian nature. From what has been said in Sect. 2, in quantum
mechanics, what counts is an algebra of observables, and the fact that within it one can recognize
a commutative subalgebra defining configuration space

Considering all of the variables of space time as a single vector, Y A = {xi, p j}, A = 1 . . .2d
the non trivial commutations described earlier can be stored into a single antisymmetric 2d× 2d
matrix

Ω =

(
θ i j H i

j

−H i
j Ci j

)
(4.1)

It is always possible, at least locally, to put the matrix Ω in canonical form with a Darboux trans-
formation to obtain

Ω
′ =

(
0 H ′ij
−H ′ij 0

)
(4.2)

with H ′ diagonal. This is just a change of variables involving linear combinations of position
and momenta leading to the definition of the new variables x′, p′.with the modified commutation
relations:

[x′i, p′j] = H ′ij

[x′i,x′i] = 0

[p′i, p′j] = 0 (4.3)

In other word we have a canonical structure for which the commutation relation between position
and momenta is a varying, stochastically changing quantity: a Planck’ Inconstant.

Having fundamental constants of nature to be variables is not a new idea, it goes back at least
to Dirac’s large number hypothesis [16]. But usually the variability was over long (cosmological)
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time scales. The previous reasoning instead suggests an effective Panck constant with a variability
over very short scales.

A comment about dimensionality. Planck’s constant has dimensions, and its time dependence
should be always related to some particular combinations of dimensionful quantities, depending on
the adopted experimental method. Only for adimensional combinations of fundamental constants,
such as the fine structure constant α , it is meaningful to speak about spacetime variation unambigu-
ously. The variability of fundamental constants is a delicate issue, a careful discussion of it can be
found in e.g. [17]. We will see later that the stochastic nature of h̄ is encoded in a dimensionful time
parameter τ and observable effects for light propagation or a harmonic oscillator show up through
the dimensionless combinations of τ and other dimensionful quantities related to the problem at
hand.

5. Simple one dimensional models

In the following we will concentrate on simple one dimensional models and consider the vari-
ation of h̄ to be only time dependent. It serves only to illustrated our idea in a semi-realistic
situation. A more complete treatment is beyond the scope of this talk. Let us therefore express the
commmutation relations as

[x,p] = ih̄(1+ ε(t)) (5.1)

The stochasticity is enforced by the requirement that ε is a rapidly changing (in time) quantity
which oscillates in a random way around a mean:

ε(t) = 0

ε(t)ε(t ′) = τ δ (t− t ′) (5.2)

Overline denotes the mean over the ε probability distribution. The fluctuations are uncorrelated for
time differences larger than a typical correlation time τ .

The time evolution of an operator is given by its commutator with an Hamiltonian (apart form
possible explicit dependence on time):

dA
dt

=
1
ih̄
[A,H]+

∂A
∂ t

(5.3)

This time also the first term on the right hand side depends on time via h̄, and de are assuming
that the dependence on ε is given by the commutator. This means that also the Poisson bracket,
whose quantization gives the commutator, is also fluctuating. Defining the Poisson structure by
normalizing the commutator to h̄(1+ ε(t)) cancel all effects and one obtains standard quantum
mechanics. This is coherent with the view that the fluctuations are an effective way to take into
account an underlying structure of quantum gravity.

We now need to represent x and p as operators reflecting the modified commutator

xψ(x) = A(t)xψ(x) = A(t)x0 ψ(x) (5.4)

pψ(x) =−ih̄B(t)
d
dx

ψ(x) = B(t)p0 ψ(x) (5.5)

5
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with A(t)B(t) = 1+ ε(t), and x0, p0 the canonical pair of standard quantum mechanics introduced
in (2.3).

We treat position and momentum on the same footing and choose

A(t) = B(t) =
√

1+ ε(t) , (5.6)

Such an effective variable h̄ will undoubtedly have consequences at several levels. The effects will
depend on the scale τ

In [1] we investigated two possible experimental signatures. Surely there will be many more,
and we hope that other groups will explore other possibilities. We looked at

• Free particles and interferometric experiments.

• Harmonic Oscillators and coherent light

The Schrödinger equation for the free particle will show a time dependence via ε(t)

ih̄
∂

∂ t
ψ =

1
2m

(1+ ε(t))p2
0 ψ (5.7)

It is possible to solve it for a plane wave of momentum p0

ψp0(x, t) =
1√
2π

exp
[

i
p0x
h̄
− i

p2
0

2mh̄

(
t +
∫ t

0
ε(t ′)dt ′

)]
(5.8)

When measuring an observable in this scheme there are two averaging processes, conceptually
distinct.

• Averaging over the time fluctuations of ε . We indicate this averaging process with : Ā. This
means that repeating the experiment at different time gives different results, and one averages
over them.

• The quantum mechanical averaging.The possible results of a measurement are the eigenval-
ues of the operator with a probability given by the state. This second average we indicate
with 〈A〉

In practice, we are considering τ to be very small, certainly smaller than the experimental time
resolution. Then the two averaging coincide. Repeating the experiment samples both distribution.
Nevertheless they are conceptually different, and we will keep the two notations

We considered first the motion of a free particle. For a gaussian peaked at p and variance δ 2

we have

ψ(x, t) =
∫ d p0√

2π

1
(πδ 2)1/4 e−

(p0−p)2

2δ2 +ip0x/h̄−ip2
0(t+

∫ t
0 ε(t))/(2mh̄) (5.9)

The mean distance travelled by a particle is the usual

〈x〉
ψ
(t)−〈x〉

ψ
(0) =

p
m

t (5.10)
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The effect of the variability of h̄ shows up in the uncertainty, which can be calculated to be:

(∆x)2
ψ(t)− (∆x)2

ψ(0) =
δ 2

2m2 t2 +
p2 +δ 2/2

m2 τ t (5.11)

The motion is like a Brownian motion with diffusion coefficient

D =
p2 +δ 2/2

2m2 τ (5.12)

For δ � p, one can view D as due to scatterings with mean free path (p/m)τ . The suggestive
picture emerging is the presence of scattering over the quantum structure of spacetime

The usual spreading of the wave packet will dominate, but the effect can be enhanced for
massless particles. In this case

(∆x)2
ψ(t)− (∆x)2

ψ(0) = c2
τ t (5.13)

It is in principle possible to measure this effect in a double slit experiment with a screen ad distance
L from the slits. The effect is a change δ t, the time of travel, responsible for the interference. The
variance of the variation is

δ t2 = τ t = τ L/c (5.14)

with t = L/c the time mean value.Tthis entails a change of interference pattern which can be ex-
plicitly calculated. For frequency ω and intensity I at the mid-point on the screen we have

I ∝
1
4

∣∣∣e−iω(t+δ t1)+ e−iω(t+δ t2)
∣∣∣2 = 1

2
(1+ cos [ω(δ t1−δ t2)]) (5.15)

where δ t1,2 are the uncorrelated time shift along the two paths.In the standard case the two waves
show a constructive interference. Here, averaging over δ t1,2 we have

I ∝
1
2

(
1+ e−ω2τL/c

)
(5.16)

For large L, t the intensity behaves as the two waves were not interfering The relevant parameter
here is ω2τL/c≥ 1. A very preliminary analysis puts a bound for the Virgo ot Ligo interferometers[18,
19], whose sensibility is bound by the shot noise, of

τ < 10−10GeV−1h̄ (5.17)

The second example is the harmonic oscillator, and coherent light states. For a one–dimensional
harmonic oscillator with frequency ω and mass m the Hamiltonian reads

H =
1

2m
(1+ ε)p2

0 +
mω2

2
(1+ ε)x2

0 , (5.18)

the variability of h̄ manifests itself as time dependent mass and frequency, M = m/(1+ ε) and
Ω = ω(1+ ε), [20, 21], with MΩ = mω a constant. The Hamiltonian depends on time via an
overall multiplicative factor, as a consequence[

H(t),H(t ′)
]
= 0 (5.19)
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and the time evolution operator can be explicitly calculated with a Dyson series

U(t) = exp
(
− i

h̄

∫ t

0
H(t ′)dt ′

)
. (5.20)

Proceeding as usual we have

H = h̄ω(1+ ε)

(
a†a+

1
2

)
. (5.21)

with the standard creation and annihilation operator

a =

√
mω

2h̄
x0 + i

1√
2mh̄ω

p0

a† =

√
mω

2h̄
x0− i

1√
2mh̄ω

p0[
a,a†] = 1 (5.22)

The equation of motion for a is

da(t)
dt

=−iω (1+ ε(t))a(t) , (5.23)

which has the formal solution

a(t) = a(0)e−iωt
∑
n

(−iω)n

n!

∫ t

0
dt1....

∫ t

0
dtnε(t1)....ε(tn) . (5.24)

Averaging over ε(t) probability distribution and computing n–point correlation functions in terms
of two–point correlation à la Wick gives

a(t) = a(0)e−iωt
∑
k

(−ω2)k

2k!
(2k−1)!!(τ t)k

= a(0)e−iωt
∑
k

(−ω2τt)k

2kk!
= a(0)e−iωte−ω2τt/2 . (5.25)

Apart from standard oscillatory term, evolution is exponentially damped on time–scales larger than
the characteristic time 2(ω2τ)−1.

Consider now a coherent state |λ 〉 at time t = 0. With no loss of generality we take λ real. As
discussed already, position/momentum measurements at some particular time amounts to measure
x0 and p0. From equation (5.24) after averaging over ε distribution

〈x〉
λ
(t) =

√
2h̄
mω

λ cos(ωt)e−ω2τt/2 ,

〈p〉
λ
(t) = −

√
2h̄mω λ sin(ωt)e−ω2τt/2 ,

〈x2〉
λ
(t) =

h̄
mω

[
1
2
+λ

2
(

1+ cos(2ωt)e−ω2τt
)]

,

〈p2〉
λ
(t) = mh̄ω

[
1
2
+λ

2
(

1− cos(2ωt)e−ω2τt
)]

,

(5.26)
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so that coherent states do not saturate the lower limit of Heisenberg relation as time flows, unless
λ = 0,

∆xλ ∆pλ =
h̄
2

[
1+2λ

2
(

1− e−ω2τt
)]

. (5.27)

This effect is in all similar to decoherence processes affecting the oscillator phase but leaving
its energy unperturbed. We show position mean value, squared mean value and uncertainty in
Figure 1. The growing behaviour of ∆x2

λ can be appreciated provided the state remains in a
coherent configuration for times tω ≥ (τω)−1.

These features could be constrained using optical cavities. Excited by an external coherent
beam, they can store coherence properties of electromagnetic field for long times, and consist in
spatial confinement between two highly reflecting surfaces of a well defined propagation mode.
Commonly used in laser/maser physics and in optical experiments where high spectral spatial pu-
rities are required (high resolution spectroscopy, interferometry, quantum optics, etc.), their con-
finement ability can be quantified, as for mechanical oscillators, in terms of quality factor Q = ωtc,
the ratio between energy lost in a cycle to the energy stored in the cavity, with ω the frequency
and tc the cavity decay time. Using supermirrors, at optical frequency, values of Q ∼ 1015 are
accessible [22].

A single mode coherent state of an electromagnetic harmonic oscillator is a minimum uncer-
tainty states for any pair of orthogonal field quadrature operators [23, 24], the analogue of position
and momentum operators. In phase space this state is represented by a two dimensional Gaussian
distribution with equal variances at all direction. To keep a stricter analogy with the harmonic oscil-
lator discussed here, we define field quadratures as X =

√
h̄/2

(
a+a†

)
and Y = i

√
h̄/2

(
a†−a

)
.

Measurements of the uncertainty for a given quadrature of an electromagnetic mode can be ob-
tained by a homodyne detector.

For a random h̄, coherent configuration of radiation do not saturate the lower bound h̄/2 for
∆X∆Y, which monotonically increases and is related to |λ |2, the mean photon occupation number,
see equation (5.27). Measurements in resonant cavities however, are limited by tc. For t > tc the
coherent electromagnetic field escapes from cavity due to unavoidable couplings to the external
thermal bath, and the system evolves towards vacuum state λ = 0. To account for this effect we
modify equation (5.27) by introducing an exponentially damped λ

∆Xλ ∆Yλ =
h̄
2

[
1+2λ

2e−2t/tc
(

1− e−ω2τt
)]

. (5.28)

This approximation is satisfied if tc = Q/ω is much larger than τ , so that λ adiabatically decays on
τ time scales. The r.h.s. of equation (5.28) grows for small times, reaches a maximum at t∗

∆Xλ ∆Yλ

∣∣
t∗
=

h̄
2

[
1+λ

2Qωτ

(
2

2+Qωτ

)(2+Qωτ)/(Qωτ)
]
, (5.29)

and eventually decays towards the standard value h̄/2. For Qωτ � 1, t∗ ' tc/2−Q2 τ/8.
Consider one measures the uncertainty product with some error. In the standard approach,

this product for a coherent state gives h̄/2, so is a way to determine Planck constant, with some
uncertainty, h̄±∆h̄. If the time behaviour of equation (5.28) is undetected, in particular the peak at

9
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Figure 1: The time evolution of position mean value 〈x〉
λ

(solid), 〈x2〉
λ

(long-dashed) and squared uncer-
tainty ∆x2

λ (short-dashed) for a coherent state with λ = 1. Values are in units of appropriate powers of the
length unit

√
h̄/(mω). We have chosen an unrealistic large value ωτ = 0.05 to emphasize the non standard

time behavior with respect to the case of a constant h̄.

t∗, this means that τ should be sufficiently small

λ
2Qωτ

(
2

2+Qωτ

)(2+Qωτ)/(Qωτ)

<
∆h̄
h̄

, (5.30)

To have an order of magnitude of this bound, we take λ = 1. Choosing Q = 1015, ω ≈ 3 ·1015 Hz,
[22], and a measurement uncertainty ∆h̄/h̄∼ 1% we obtain

τ < 10−32 s , (5.31)

or, in terms of energy scale, Λ = h̄/τ > 108 GeV. For smaller ∆h̄, the bounds on τ scales approxi-
mately as (∆h̄/h̄)/(Qω), see equation (5.30).

6. Discussion

There are some elements, which are at the same time premises of this work, and that can have
developments.

• Lorentz invariance may be the result of granular random structure on very short distances.
This is not new (random lattices, causal sets), but it has not been used in noncommutative
geometry, or to investigate some fundamental aspects of quantum mechanics.

• A quantum space time can give as effective theory, at low energy, one for which some con-
stants of nature are actually variables. With a similar spirit, in a different development the
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possibility that Newton’s gravitational constant is also a similarly varying quantity has been
considered [25], and found to have interesting connections with a nonzero cosmological con-
stant.

• In addition to particle, cosmological and astrophysical experiments, there could be signatures
of quantum spacetime (non necessarily noncommutative) that can be seen using new kinds of
experiments, such as interferometry, or optical cavities, which investigate the consequences
of quantum gravity “granularity” also at a quantum mechanical level.
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