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1. Introduction

The proposal that there is a gravitational dual to gauged matter systems represents a dramatic
insight into certain non-perturbative phenomena. The simplest known models with gravitational
duals are quantum mechanical models with extended supersymmetry and the simplest of these is
the model with maximal supersymmetry now known as the BFSS model [1]. Though the model
itself arose initially in the context of supersymmetric quantum mechanical models [2, 3, 4], it
subsequently emerged from the matrix regularisation of membranes introduced by Hoppe [5] and
extended to the supermembrane in [6] and [7].1 It is this quantisation of membranes that is our
focus here. The BFSS model was proposed as a non-perturbative formulation of M-theory which
in the infinite matrix size limit is conjectured to capture the entire dynamics of M-theory.

In Hoppe’s regularisation of membranes what remains of the original diffeomorphism invari-
ance of the membrane action is an SU(N) gauge symmetry. The model has a single dimensionful
coupling constant. When placed in a thermal bath the coupling can be absorbed into the fields
and the temperature, to define a dimensionless temperature. At high temperature the inverse of the
dimensionless temperature plays the rôle of a small parameter and the model is in a perturbative
regime. On the contrary at low temperature the the model becomes strongly coupled.

In the low temperature regime the bosonic model turns out [8] to be well described by a
massive quantum matrix model while the supersymmetric model is described by a dual geometry
[9] which is a solution to IIA supergravity and can be lifted to a solution to 11-d supergravity. For
the thermal system the gravity dual has a black hole whose Hawking-temperature is that of the
thermal bath.

A more complicated example that was designed to describe the M2-brane in a background lon-
gitudinal M5-brane is the Berkooz-Douglas model [10]. The model also arises naturally in string
theory as the effective low energy description of a D0/D4-brane system. The D0-branes give rise
to the adjoint fields of the pure BFSS model, while the D4-branes are described by fundamental
hypermultiplets. In the large N limit at strong ’t Hooft coupling the model has a supergravity dual
description. The best understood regime of this duality is when the number of D4-branes is much
smaller than the number of D0-branes, which from a field theory point of view corresponds to the
quenched approximation. In this limit the D0-branes are described by the supergravity dual of the
BFSS model, while the D4-branes are treated as Dirac–Born–Infeld probes. The model was suc-
cessfully simulated in ref. [11], where excellent agreement between field theory and supergravity
has been found.

We will review some recent progress in checking this duality and explain its significance to a
non-perturbative formulation of M-theory.2

2. Hoppe Regularised Membranes

The Membrane action, with metric signature (−,+, ..+), in Polyakov form is given by

S =− T
2Λ

∫
d3

σ
√
−h
(

hαβ
∂αX µ

∂β Xν
ηµν −Λ

)
with T =

1
(2π)2l3p

. (2.1)

1See also [12].
2For a recent review on the subject we refer the reader to ref. [13].
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Varying with respect to hαβ one obtains

1
2

hγδ (h
αβ Gαβ −Λ) = Gγδ , tracing gives hαβ Gαβ = 3Λ , so Λ hγδ = Gγδ . (2.2)

Then substituting into (2.1) gives the standard Nambu-Goto form

S =−T
∫

d3
σ
√
−G . (2.3)

Alternatively, instead of going to the Nambu-Goto form of the action, we can gauge away
some of its components of hαβ and attempt to solve the resulting constraints on the embedding
coordinates. When the membrane topology is restricted to R×Σ we can use the gauge h0i = 0 and
h00 =− 4

Λρ2 det(Gi j) so we have the constraint

∂tX µ
∂iXν

ηµν = 0 and Λ h00 = ∂tX µ
∂tX µ

ηµν =− 4
ρ2 det(Gi j) . (2.4)

Using light-cone coordinates with X± = (X0±XD−1)/
√

2 and choosing X+ = τ we see that the
constraints take the form

∂iX− = (∂τXa)(∂iXa) and ∂τX− =
1
2

∂τXa
∂τXa +

2
ρ2 det(G) (2.5)

with the action

S =
T ρ

4

∫
dtd2

σ

(
Ẋ µ Ẋν

ηµν −
4

ρ2 det(Gi j)

)
.

An important observation is that in two dimensions det(Gi j) can be rewritten using { f ,g} =
ε i j∂i f ∂ jg so that

S =
T ρ

4

∫
dtd2

σ

(
Ẋ µ Ẋν

ηµν −
4

ρ2 {X
µ , Xν}2

)
and the constraints become

Ẋ µ
∂iXµ = 0 =⇒ {Ẋ µ , Xµ}= 0 and Ẋ µ Ẋµ =− 2

ρ2 {X
µ , Xν}{Xµ , Xν} . (2.6)

In light-cone coordinates the Lagrangian is linear in the momentum P− and a Legendre transform
to the Hamiltonian gives

S =−T
∫ √
−G−→ H =

∫ ( 1
ρT

PaPa +
T
2ρ
{Xa, Xb}2

)
,

with the remaining constraint {Pa, Xa}= 0.
This model is still not fully tractable, however Hoppe then made the observation that if he

treated the membrane surface as a quantum phase space one could use a matrix regularisation of
the membrane. In this scheme functions on the membrane world-volume at fixed time, f (σ1, σ2)

are replaced by N×N matrices, f → F , with the matrices providing a discrete approximation to
the corresponding functions. This is the same procedure as is used in the fuzzy approach [14] with
the significant difference that the geometry Σ the membrane surface is lost.
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The quantum Hamiltonian then reads

H =−1
2

∇
2− 1

4

p

∑
i, j=1

Tr[X i, X j]2

and the constraint requires that observables are restricted to SU(N) invariants. The model describes
a quantised “fuzzy” relativistic membrane in p+1 dimensions.

The Euclidean finite temperature action for the model is

Sb =
1
g2

∫
β

0
dt tr

{
1
2
(DtX i)2− 1

4
[X i, X j]2

}
. (2.7)

where DtX i = ∂tX i + [A, X i] and β , the period of the S1, is the inverse temperature. Since the
theory is one dimensional the only physical content of the gauge field is its holonomy around the
S1. It is also the high temperature limit of a 1+1 dimensional N = 8 supersymmetric Yang-Mills
theory on R×S1 where β is now the period of a spatial S1 (not the inverse temperature) and the
fermions drop out due to their anti-periodic boundary conditions at finite temperature [15].

This model has been studied in some detail both non-perturbatively [16, 8] and using a 1/p
expansion [8, 17, 18] where p is the spatial dimension into which the membrane is embedded. It
was found that as the temperature is decreased the model first undergoes a 2nd order deconfining-
confining phase transition into a phase with non-uniform but gapless distribution for the holonomy.
As the temperature is further decreased there is a 3rd order transition to a gapped holonomy with
a quadratic decrease in the internal energy to a constant value for lower temperatures. The high
temperature expansion of the model was developed in [19]. In [8] it was found that the low temper-
ature phase of the model has an effective description in terms of free massive scalars which captures
many of the finite temperature features of the model including one of its two phase transitions.

For the purposes of the discussion here the zero temperature aspects of the model are most
interesting. In this case, the gauge field which in the static gauge enters only as a holonomy at
finite temperature, can be completely gauged away and the model simplifies. Furthermore, at zero
temperature the correlator: 〈

Tr
(
X1(0)X1(t)

)〉
∝ e−mt + . . . , (2.8)

captures the gap ∆m = E1 − E0 of the theory. To calculate the gap in the discrete theory, we
periodically identify the time direction with period β :〈

Tr
(
X1(0)X1(t)

)〉
= A(e−mt + e−m(β−t)) , (2.9)

Note that although formally β is the same parameter that we have at finite temperature, since we set
the holonomy to zero here its meaning is just a periodic coordinate as opposed to inverse tempera-
ture. Our result for the correlator for N = 30, β = 10 and lattice spacing a = 0.25 is presented on
the left in Figure 1. The fitting curve is given by equation (2.9) and when we perform a two param-
eter fit we obtain A≈ 7.50±0.2 and m≈ (1.90± .01)λ 1/3 . However, for Gaussian scalar fields of
mass m we have A = N

2m(1−e−βm)
and performing a one parameter fit for m yields m = 1.965±0.007

and A = 7.63± 0.03. On the right we have presented a plot of the eigenvalue distribution of one
of the matrices for the same parameters. The fitting curve represents a Wigner semicircle of radius

4
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Figure 1: On the left: A plot of the correlator
〈
Tr
(
X1(0)X1(t)

)〉
for N = 30, β = 10 and lattice spacing

a = 0.25. The fitting curve is given by equation (2.9) with A = N
2m(1−e−βm)

and with parameters m≈ (1.965±
.007)λ 1/3 . On the right: A plot of the eigenvalue distribution of one of the scalars for the same parameters.
The fitting curve represent a Wigner-semicircle of radius Rλ ≈ 1.01.

Rλ ≈ 1.01. The fact that the theory is gapped and that the eigenvalue distribution is a semicircle
suggests that that at low temperate the model has an effective action:

Seff = N
∞∫
−∞

dt Tr
(

1
2
(
Ẋ i)2

+
1
2

m2 (X i)2
)

(2.10)

for each of the matrices X i. It is well known [20] that for the action (2.10) the eigenvalue distribu-
tion of X is given by a Wigner semicircle of radius:

Rλ =

√
2
m
≈ 1.009± .002, (2.11)

where we have substituted m≈ 1.965± .007. This agrees nicely (within errors) with the result for
Rλ ≈ 1.01 obtained by fitting the actual distribution. It is also in excellent agreement with the large
p theoretical prediction of [17],

Rλ (p) =

√
2

p1/3

(
1+

1
p

(
7
√

5
30
− 9

32

)
+ · · ·

)
' 1.0068 (2.12)

Numerical simulations of the gauged massive Gaussian model show that it too has a phase
transition (there is only one rather than the two of the full model) and that when the mass is tuned
to the value of the full model the transition temperature is almost identical [8].

That the Hoppe quantised bosonic membrane has a mass gap was clear from the analysis of
[21], the new ingredient here is putting a value on this mass and demonstrating how closely the
model is to a gauged massive Gaussian model.

2.1 Quantum Gravity from matrices

It has been argued [22] that at short distances due to quantum gravity the spatial coordinates,
Xa should not commute i.e. [Xa, Xb] 6= 0 somewhat in analogy with the non-commutativity of phase
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space, but putting this non-commutativity to a spacetime independent quantity, e.g. [Xa, Xb] = iθ ab

breaks rotational invariance. One would wish to have the non-commutativity be a feature of the
high energy theory and disappear at low energies. If one takes each Xa to be an N×N matrix (as
in matrix mechanics) and tries

H0 = Tr

(
1
2

p

∑
a=1

ẊaẊa− 1
4

p

∑
a,b=1

[Xa, Xb][Xa, Xb]

)
(2.13)

one can see that the bottom of the potential has [Xa, Xb] = 0 and one might hope that at low
energy the matrices would effectively commute3. However, as we saw above the model becomes
massive at low energies and the minimum is pushed upwards so that the non-commutativity does
not disappear. The Xa are always described (see Figure 1) by a Wigner semi-circle.

Following arguments similar to those above, Polchinski argues [23] that one might suspect
that the model still has something to do with quantum gravity and that the missing ingredient is
supersymmetry. The model can be made supersymmetric by adding a fermionic degree of freedom
for each bosonic degree of freedom so that

H1 = Tr

(
1
2

p

∑
a=1

ẊaẊa− 1
4

p

∑
a,a=1

[Xa, Xa][Xa, Xa]+
1
2

Θ
T

γ
i[Xa, Θ]

)
(2.14)

with the Fermions quantised as {Θα
j
i , Θβ

l
k}= δαβ δikδ jl , i.e. as Clifford algebra elements or equiv-

alently as fermionic Majorana oscillators. It was observed in [2] that one can only match fermions
with bosons if p = 2,3,5 or 9.

The potential is invariant under the global SU(N) transformations Xa→UXaU−1, so promot-
ing this symmetry to a gauge symmetry with U =U(t) and Ẋa→DtXa = Ẋa + i[A, Xa] where A is
the U(N) gauge field gives the matrix regularisation of the supermembrane [6]. The constraint of
supersymmetry then means that supersymmetric membranes only exist in spacetime dimensions 4,
5, 7 and 11.

3. The BFSS model

Matrix supermembranes propagating in p+2 dimensions coincide with p+1-dim SU(N) su-
persymmetric Yang-Mills theory dimensionally reduced to one dimension (only time dependence).
The BFSS model, p = 9, also describes a system of N interacting D0 branes.

3.1 The Hamiltonian Formulation

The 16 supercharges:

Qβ = Tr
(

1
2

Θαγ
a
αβ

Pa +
i
4

Θαγ
ab
αβ

[Xa,Xb]

)
{Qα ,Qβ}= δαβ H + γ

a
αβ

Tr(XaJ)

3It is interesting to see what would be the physics of the ensemble of eigenvalues if quantum effects did not lift the
minimum drastically. This was studied in [24] where it was found that for an ensemble of p commuting matrices, Xa, in
a quadratic potential, the Xa are concentrated on a sphere for p≥ 4.

6
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give the Hamiltonian:

H = Tr
(

1
2

PaPa− 1
4
[Xa,Xb]2 +

1
2

Θ
T

γ
a[Θ,Xa]

)
,

where J is the generator of SU(N) and is zero on physical states

J = i[Pb,Xb]+ΘαΘα −δαα

N2−1
2N

.

The 16 fermionic matrices Θα = ΘαAtA are quantised as ΘαA,ΘβB = 2δαβ δAB. The ΘαA are
28(N2−1) and the Fermionic Hilbert space is

H F = H256⊗·· ·⊗H256

with H256 = 44⊕84⊕128 suggestive of the graviton, anti-symmetric tensor and gravitino of 11-
dimensional supergravity. For an attempt to find the ground state if this Hamiltonian see ref. [26].

3.2 Lagrangian formulation

The easiest way to obtain the BFSS matrix model is via dimensional reduction of ten di-
mensional supersymmetric Yang-Mills theory down to one dimension. The resulting reduced ten
dimensional action is given by

SM =
1
g2

∫
dt Tr

{
1
2
(D0X i)2 +

1
4
[X i,X j]2− i

2
Ψ

TC10 Γ
0D0Ψ+

1
2

Ψ
TC10 Γ

i[X i,Ψ]

}
, (3.1)

where Ψ is a thirty two component Majorana–Weyl spinor, Γµ are ten dimensional gamma matrices
and C10 is the charge conjugation matrix satisfying C10ΓµC−1

10 =−Γµ T .

4. The gravity dual

Since the BFSS model describes the dynamics of D0-branes gauge/gravity dualtiy gives pre-
dictions for the strong coupling regime of the theory. To access these predictions one needs to look
at the supergravity. Also, since the supermembrane is meant as the basic ingredient of M-theory
and in analogy with string theory where quantised superstrings gives 10-dimensional supergravities
as their low energy theories, the supermembrane is expected to give 11-dimensional supergravity
as its low energy theory. It turns out that the dual geometry for the BFSS model can be lifted to a
solution to 11-dimensional supergravity. We briefly describe the solution in this context.

The bosonic action for eleven-dimensional supergravity is given by:

S11D =
1

2κ2
11

∫ [√
−gR− 1

2
F4∧∗F4−

1
6

A3∧F4∧F4

]
, (4.1)

where 2κ2
11 = 16πG11

N =
(2πlp)

9

2π
. With the equations of motion of this system being:

RMN−
1
2

gMNR =
1
2

F2
MN−

1
4

gMN |F4|2 (4.2)

d ∗F4 +
1
2

F4∧F4 = 0, dF4 = 0. (4.3)

7
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Dimensionally reducing on S1 gives us IIA supergravity. The reduction is specified by:

g11
MNdxMdxN = e−

2
3 Φg10

mndxmdxn + e
4
3 Φ(dx10 +Cmdxm)2 (4.4)

A10mndxm∧dxn =
B2

2πR
Almndxl ∧dxm∧dxn =C3 , (4.5)

where the constant giving the string coupling has been removed from the dilaton. Then with
2κ2

0 g2
s =

2κ2
11

2πR , where R is the radius of the X10 circle on which the compactification is done, one
obtains the IIA supergravity action.

The leading α ′ = l2
s low energy effective field theory on the dual gravity side is given by IIA

supergravity the bosonic part of whose action is given in the string frame by:

SIIA =
1

2κ2
0 g2

s

∫
d10x
√
−g
{

e−2Φ[R+4|dφ |2− 1
12
|H3|2−

1
4
|G2|2−

1
48
|G4|2]

}
+

1
4κ2

0

∫
B2∧dC3∧dC3 ,

where

H3 = dB2 , G2 = dC1 , G4 = dC3 +H3∧C1 .

Eleven dimensional supergravity is the natural strong coupling limit of the IIA superstring. The
fields (φ ,gmn,Bmn) are from the NS⊗NS sector of the IIA string while the fields (C1,C3) are from
the R⊗R sector.

The relevant solution to eleven dimensional supergravity for the dual geometry to the BFSS
model corresponds to N coincident D0 branes in the IIA theory. It is given by:

ds2 =−H−1dt2 +dr2 + r2dΩ
2
8 +H(dx10−Cdt)2

with A3 = 0.
The one-form is given by C = H−1− 1 and H = 1+ α0N

r7 , where α0 = (2π)214πgsl7
s . After

reducing to ten dimensions and taking near horizon limit (with U = r/α ′) the metric becomes [9]:

ds2 = α
′

(
− F√

H
dt2 +

√
H

F
dU2 +

√
HU2dΩ8

)
, (4.6)

where H(U) = 240π5λ

U7 and the black hole time dilation factor is F(U) = 1− U7
0

U7 , where U0 is the
radius of the horizon related to the Hawking temperature:

T
λ 1/3 =

1
4πλ 1/3 H−1/2F ′(U0) =

7
24151/2π7/2

(
U0

λ 1/3

)5/2

. (4.7)

Then from black hole thermodynamics the predictions for the entropy and energy are:

S
N2 =

1
N2

A
4GN

= 4
13
5 15

2
5

(
π

7

) 14
5
(

T
λ 1/3

)9/2

=⇒ E
λ 1/3N2 =

(
22131252

719 π
14
)1/5( T

λ 1/3

)14/5

(4.8)
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5. Non-perturbative Field Theory Results

To illustrate the difference between the bosonic membrane and its supersymmetric relative in
the eleven dimensional theory we show the expectation value of the energy, i.e. 〈H〉/N2 given by

E/N2 =

〈
− 3

4Nβ

β∫
0

dτ Tr
(
[X i,X j]2

)〉
(5.1)

while for the BFSS model the energy has a fermionic component and is given by

E/N2 =

〈
− 3

4Nβ

∫
β

0
dτ Tr

(
[X i,X j]2 +Ψ

TC10 Γ
i[X i,Ψ]

)〉
. (5.2)

We show the measured values of the two energies in Figure 2.
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Figure 2: On the left: Results for the internal energy for 8 ≤ N ≤ 14 and 8 ≤ Λ ≤ 16. The dashed curve
at high temperature correspond to the theoretical results of [19], while the low temperature curve represent
the prediction for the internal energy from the gauge/gravity correspondence [27]. On the right: Plots of
the scaled energy E/N2 of the bosonic model as functions of the temperature. The dashed curve correspond
to the high temperature behaviour obtained in [19]. One can see that near T ≈ 0.9 the plots suggest the
existence of a second order phase transition. The energy and temperature in the plots are in units of λ 1/3.

When 1/α ′ corrections are included, the data converges on the low temperature prediction of
the gauge/gravity correspondence. Our results on the BFSS model [8] agree well with those of the
other groups that have simulated the system [28] [29], [30].

6. Conclusions

• Bosonic membranes when quantised are massive m' p1/3lp and well approximated by a set
of p massive Gaussian matrix models.

• Supersymmetric membranes are highly non-trivial with infra-red divergences. Gauge/gravity
predictions are in excellent agreement with non-perturbative tests and the interpretation as a
non-perturbative formulation of M-theory is promising.
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