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It was shown recently that expanding (3+1)-dimensional Universe emerges dynamically in the

Lorentzian version of the type IIB matrix model. Here, we consider two simplified models, which

are expected to describe the expanding behaviors at early times and late times, respectively. By

performing large-scale computations, we observe that exponential expansions in the former model

and power-law expansion in the latter model, which are reminiscent of the expansion in the stan-

dard cosmology.
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1. Introduction

Superstring theory is a promising candidate for a unified theory including quantum gravity.
There are numerous perturbatively (meta-)stable vacua, and perturbation theory does not resolve
the cosmic singularity. To elucidate the true nonperturbative vacuum and resolve the cosmic sin-
gularity, one needs a nonperturbative formulation. The type IIB matrix model [1] is expected to
provide such a formulation.

In [2], Kim, Nishimura and the present author showed by Monte Carlo simulation that ex-
panding (3+1)-dimensional Universe emerges dynamically in the Lorentzian version of the type
IIB matrix model. The behavior of expansion is consistent with an exponential expansion [3]. Here
only very initial time of the Universe is observed, and simulation at larger matrix size is needed to
see later times. However, computational cost is higher for larger matrix size.

Hence, in this talk, we propose and study two simplified models of type IIB matrix model. One
is called the VDM model [4], and the other is called the bosonic model [5]. The former is expected
to effectively describe the expanding behavior at early times, while the latter that at late times. By
performing large scale parallel computations, we reach around twenty times larger matrix size than
the case of the original model. In the VDM model, we observe an exponential expansion [6], which
is reminiscent of the inflation. On the other hand, in the bosonic model, we observe a power-law
expansion [5], which is reminiscent of the expansion in the radiation dominant era of the Universe.

2. Type IIB matrix model

The action of the type IIB matrix model [1] is

S= Sb+Sf , (2.1)

Sb =− 1
4g2Tr

(
[Aµ ,Aν ][A

µ ,Aν ]
)
, (2.2)

Sf =− 1
2g2Tr

(
ψα(C Γµ)αβ [Aµ ,ψβ ]

)
, (2.3)

whereAµ (µ = 0,1, · · · ,9) and ψα (α = 1, · · · ,16) areN×N hermitian bosonic and fermionic
matrices, respectively.Γµ are ten-dimensional gamma matrices with the Weyl projection, andC

is the charge conjugation matrix with the Weyl projection. The action is formally obtained by
dimensionally reducing ten-dimensionalN = 1 super Yang-Mills theory to zero.dimension. In
this model, the space-time does not exist a priori, but emerges dynamically from the degrees of
freedom of matrices.

The evidence that this model provides a nonperturbative formulation of superstring theory is
as follows. The action can be viewed as a regularization of the Green-Schwarz action of type IIB
string of the Schild type, wherew∞ algebra corresponding to the area preserving diffeomorphism
on the string worldsheet is regularized by the su(N) algebra. It is remarkable that this regularization
preservesN = 2 sypersymmetry in ten dimensions andSO(9,1) symmetry of the Green-Schwarz
action, which strongly suggests that the model includes gravity becauseN = 2 sypersymmetry in
ten dimensions is maximal. Furthermore, the model is a second quantized theory in the sense that it
can represent multi-body system of strings. The interaction between the D-branes in type IIB string
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theory is also reproduced correctly at long distance. It can be shown under reasonable assumptions
that light-cone string field theory of type IIB string theory is derived from the Schwinger-Dyson
equations for the Wilson loops, which are identified with the creation and annihilation operators of
strings [7]. This implies that the model reproduces perturbative expansion in type IIB string theory.
In this way, the model is shown to have a connection to type IIB string theory, which corresponds
to a point in moduli space of ‘superstring theory’, if one believes in string duality. By using a
formulation that allows one to calculate at strong coupling, one should be able to start anywhere
in the moduli space. Because the definition of the type IIB matrix model is not based on the
perturbation theory, one can expect the model to give a nonperturbative formulation of superstring
theory.

3. Lorentzian model

The partition function of the Lorentzian version of the type IIB matrix model is defined by

Z =

∫
dAdψ eiS =

∫
dAPf(A)eiSb , (3.1)

where the factor ‘i’ in the exponent is motivated from the fact that the metric on the string world-
sheet should also has the Lorentzian signature, andP f(A) is the Pfaffian coming from the integral
over the fermionic matrices The bosonic action is decomposed as

Sb =− 1
4g2Tr(−2[A0,Ai ]

2+[Ai ,A j ]
2) , (3.2)

which indicates that it is unbounded since−Tr[A0,Ai ]
2 and−Tr[Ai ,A j ]

2 are positive definite. Due
to this unboundedness, we need to introduce the IR cutoffs:

1
N

9

∑
i=1

Tr(A2
i )≤ L2,

1
N

Tr(A2
0)≤ κ

1
N

9

∑
i=1

Tr(A2
i ) , (3.3)

where we putL = 1 without loss of generality since the action is homogeneous inAµ andψ (for
details, see [4]), and we take theκ → ∞ limit as N → ∞.

We can fix SU(N) symmetryAµ → UAµU† whereU ∈ SU(N). We take a gauge in which
A0 = diag(α1,α2, · · · ,αN) with α1 < α2 < · · ·< αN. Note that the values ofαa (a= 1, · · · ,N) are
determined dynamically. It turns out thatAi (i = 1, · · · ,9) have a band-diagonal structure in this
gauge. Namely, there is a certain integern such that the magnitude of(Ai)ab for |a−b|> n is much
smaller than that for|a−b|< n. Thus it is natural to definen×n matrices

Āi(t)IJ = (Ai)ν+I ,ν+J , (3.4)

whereI ,J = 1, · · · ,n andν = 0,1, · · · ,N− n, andt is the time corresponding to then× n block
(Ai)ν+I ,ν+J:

t =
1
n

n

∑
I=1

αν+I . (3.5)
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Figure 1: The nine eigenvalues ofTi j (t) are plotted againstt for N = 16, n = 4 andκ = 4.0. After the
critical timetc, three eigenvalues become larger.

The band-diagonal structure should guarantee the locality of time evolution. We interpretĀi(t) as
representing the structure of the space at timet. For instance, we define the extent of the space at
time t as

R2(t) =

⟨
1
n

9

∑
i=1

tr(Āi(t)
2)

⟩
, (3.6)

and an analog of the moment of inertia tensor at timet as

Ti j (t) =
1
n

tr(Āi(t)Ā j(t)) . (3.7)

We denote the nine eigenvalues ofTi j (t) by λ1(t),λ2(t), · · · ,λ9(t). Their expectation values repre-
sent the extent of space in each of the nine directions at timet.

We plot the expectation values of the nine eigenvalues ofTi j (t) againstt for N = 16, n= 4 and
κ = 4.0 in Fig. 1 [2]. We find that three largest eigenvalues ofTi j (t) start to grow at the critical
time tc, which suggests that the SO(9) symmetry is spontaneously broken down to SO(3) aftertc.

4. Simplified models

The most time-consuming part of the Monte Carlo simulation comes from the Pfaffian, so that
we make approximations to it. The fermionic action (2.3) can be decomposed into two terms as

Sf ∝ Tr
(

ψα
(
C Γ0)

αβ
[
A0,ψβ

])
+Tr

(
ψα

(
C Γi)

αβ
[
Ai ,ψβ

])
. (4.1)

At early times, the second term is less important than the first one, because the expansion of the
universe has not proceeded so much. Hence we can omit the second term, so that the Pfaffian is
simplified to

Pf(A)≃ ∆16(α) , (4.2)
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Figure 2: (Left) The nine eigenvalues ofTi j (t) are plotted againstt for N = 128,κ = 8.0, n= 10. (Right)
The extent of the spaceR2 (t) normalized byR2 (tc) is plotted againstx= (t − tc)/R(tc) for N = 64 ,128 and
256. The dashed line is a fit toR2 (t)/R2 (tc) = a+(1−a)exp(bx) with N = 256 for 0≤ x ≤ 1.3, which
givesa= 0.89(3) andb= 4.0(3).

where∆(α)≡ ∏i> j (αi −α j) is the van der Monde determinant. Thus we obtain the VDM model,
which is expected to effectively describe the expanding behavior at early times.

In Fig. 2(Left), we plot the expectation values of the nine eigenvalues ofTi j (t) for N = 128,
κ = 8.0, n= 10 [6]. We observe the spontaneous symmetry breaking of SO(9) to SO(3) after the
critical timetc. In Fig. 2(Right), we plot the extent of the spaceR2(t) normalized byR2(tc) against
x= (t − tc)/R(tc) for N = 64 ,128and256[6]. We see that the data for differentN scale and that
the behavior ofR2(t) for t > tc is fitted to an exponential function. This behavior is reminiscent of
the inflation.

On the other hand, at late times, the second term in (4.1) becomes important. As a first ap-
proximation, we omit both the first and second terms, namely we ignore all the contribution of the
fermions. Thus we obtain the bosonic model, which is expected to effectively describe the expand-
ing behavior at late times. In this model, the IR cutoff for the temporal direction is not needed.
We observe that there exist a criticalNc ∼ 110such that the symmetry breaking of SO(9) does not
occur forN < Nc while it does forN > Nc.

In Fig. 3(Left), we plot the expectation values of the nine eigenvalues ofTi j (t) againstt
for N = 512 with the block sizen = 32 and observe that the SO(9) symmetry is spontaneously
broken down to SO(3) after the critical timetc [5]. In Fig. 3(Right), we plot the extent of space
R2(t) normalized byR2(tc) againstx = (t − tc)/R(tc) for N = 128, 256, 384 and512 [5]. We
observe scaling behavior for differentN. We see that the behavior ofR2(t) at t > tc can be fitted
to an exponential function only for a finite range and that at later times it can be fitted to a linear
function, which corresponds to the power-law expansion

R(t) ∝ t1/2 . (4.3)

This behavior is reminiscent of the expansion in the radiation dominant era of the Universe.
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Figure 3: (Left) The expectation values of the nine eigenvalues ofTi j (t) are plotted againstt for N = 512,
n = 32. (Right) The extent of spaceR2 (t) normalized byR2 (tc) is plotted againstx = (t − tc)/R(tc) for
N = 128, 256, 384 and 512, where the block sizes aren= 20,24,28,32, respectively. The solid line is a fit
of theN = 512 data toR2 (t)/R2 (tc) = a+(1−a)exp(bx) for 1.0≤ x≤ 1.85, which givesa= 0.9957(5)
andb= 4.03(7). The dashed line is a fit of theN = 512 data toR2 (t)/R2 (tc) = cx+d for 1.85≤ x≤ 2.5,
which givesc= 34.3(6) andd =−55(1).

5. Conclusion and discussion

In this talk, we showed the Monte Carlo results for the type IIB matrix model and the two
simplified models, the VDM model and the bosonic model. We are allowed to simulate at large
matrix size in the simplified models due to the simplification of the Pfaffian and the large-scale
parallel computation.

It turned out that the spontaneous symmetry breaking of SO(9) to SO(3) occurs after a crit-
ical time in the original and simplified models. Namely only three spatial directions out of nine
directions start to grow after the critical time. In the VDM model, we see that the expansion is an
exponential one, which is reminiscent of the inflation. In the bosonic model, we observe that the
expansion can be fitted at late times to a power-law one,R(t) ∼ t

1
2 , which is reminiscent of the

expansion in the radiation dominant era of the Universe.

We need to see the cutoff independence of the results. In the VDM model, we generalized the
IR cutoff (5.1) to

1
N

9

∑
i=1

Tr(A2p
i )≤ L2p,

1
N

Tr(A2p
0 )≤ κ p 1

N

9

∑
i=1

Tr(A2p
i ) , (5.1)

and obtained universal results forR(t)2 in the cases of different p withp> 1 [6]. The results are
qualitatively the same as the case ofp= 1, but quantitatively different. This implies that the effect
of the IR cutoffs disappears forp> 1 in the largeN limit. We expect the same thing to be true for
the original model.

It is important to study classical solutions since they are expected to dominate at late times.
In [8], we indeed examined classical solutions systematically and found some solutions that are
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cosmologically interesting. (For related recent work, see [9, 10].) In [11–14], how the Standard
model is realized in the type IIB matrix model was studied based on the idea of intersecting D-
branes. It is also of course important to investigate whether the power-law expansion is seen in the
original model. We hope to report progress in these subjects as well as the analysis of the IR cutoff
independence in the original model in the near future.
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