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1. Introduction

1.1. Invariant differential operators play very important role in the description of physical
symmetries - starting from the early occurrences in the Maxwell, d’Allembert, Dirac, equations,
to the latest applications of (super-)differential and difference operators in conformal field theory,
supergravity and string theory and their deformations. Thus, it is important for the applications in
physics to study systematically such operators and, in particular, their deformations in the setting
of quantum groups.

The approach to this problem used here relies on the following classical considerations. Con-
sider a semisimple Lie group G and two representations T,T ′ acting in the representation spaces
C,C′, which may be Hilbert, Fréchet, etc. An intertwining operator I for these two representa-
tions is a continuous linear map so that:

I : C −→C′ , I ◦T (g) = T ′(g)◦I , ∀g ∈ G (1.1)

Such equations exist also for more general symmetries. However, if G is semisimple (even
reductive) then there exists canonical ways for the construction of all intertwining operators and
thus, of the G - invariant equations. These operators are of two types - differential and integral.
Here we are interested in the invariant differential operators. Due to the lack of space we refer to
[1] for more motivations and recent literature.
1.2. We shall apply a procedure [2] which is rather algebraic and can be generalized almost
straightforwardly to quantum groups. We sketch this procedure illustrating the general notions
with the conformal group SU(2,2).

Let G be a real semisimple Lie group. Let G be the Lie algebra of G. We shall use the so-called
Bruhat decompositions of G

G = N +⊕M ⊕A ⊕N − (1.2)

(considered as direct sum of linear spaces), where A is a noncompact abelian subalgebra, M (a
reductive Lie algebra) is the centralizer of A in G (mod A ), and N +, N −, resp., are nilpotent
subalgebras forming the positive, negative, resp., root spaces of the restricted root system (G ,A ).
For the conformal group the subalgebras N −, M , A , N + may be chosen to be the subalgebras
of translations, Lorentz transformations, dilatations, special conformal transformations, resp. Note
that P̃± = N ±⊕M ⊕A are subalgebras of G , the so-called parabolic subalgebras. With the
above identification P̃± are maximal conjugate parabolic subalgebras; otherwise P̃+ is called
the Weyl algebra (comprising the Poincaré algebra and the dilatations).

Let us now introduce the corresponding subgroups of G. Let K denote the maximal compact
subgroup of G, and let K denote the Lie algebra of K. Then we have the simply connected
subgroups A = exp(A ), N± = exp(N ±). Further, M is the centralizer of A in G (mod A). (M has
the structure M = MdMr, where Md is a finite group, Mr is reductive with the same Lie algebra M

as M.) Then P± = MAN± are called parabolic subgroups of G.
The importance of the parabolic subgroups comes from the fact that the representations in-

duced from them generate all (admissible) irreducible representations of G [3],[4].
Let P = MAN be an arbitrary parabolic subgroup, (P = P+, N = N+, or P = P−, N = N− is

specified by convenience). Let µ fix a finite-dimensional representation Dµ of M on a space Vµ .
Let ν be a character of A, ν ∈A ∗.
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We call the induced representation χ = IndG
P (µ⊗ν⊗1) an elementary representation of G.

Consider the space of functions

Cχ = {F ∈C∞(G,Vµ) |F (gman) = eν(H) ·Dµ(m−1)F (g)} (1.3)

where g ∈G, m ∈M, a = exp(H) ∈ A, H ∈A , n ∈ N. The special property of the functions of Cχ

is called right covariance.
Then the elementary representation (ER) T χ acts in Cχ as the left regular representation

(LRR), by:
(T χ(g)F )(g′) = F (g−1g′) , g,g′ ∈ G (1.4)

An important ingredient in our considerations is the existence of a Verma module V Λ over
G C associated to each elementary representation χ , so that the weight Λ = Λ(χ) ∈ (H C)∗,
(H C is a Cartan subalgebra of G C) is determined uniquely from χ [2].

We recall that a Verma module is a highest weight module V Λ with highest weight L, such that
V Λ ∼=U(G C

− )v0, where v0 is the highest weight vector, U(G C
− ) is the universal enveloping algebra

of G C
− .
Generically, Verma modules are irreducible, however, we shall be mostly interested in the

reducible ones since these are relevant for the construction of invariant differential operators. We
recall the Bernstein-Gel’fand-Gel’fand criterion [5] according to which the Verma module V Λ is
reducible iff

⟨Λ+ρ ,β∨⟩ = m (1.5)

holds for some β ∈ ∆+, m ∈N, where ∆+ denotes the positive roots of the root system (G C,H C),
ρ is half the sum of the positive roots ∆+.

Whenever (1.5) is fulfilled there exists [6] in V Λ a unique vector vs, called singular vector,
such that vs ̸=Cv0 and it has the properties of a highest weight vector with shifted weight Λ−mβ :

X̂vs = (Λ−mβ )(X) · vs , X ∈H C (1.6a)

X̂vs = 0 , X ∈ G C
+ (1.6b)

The general structure of a singular vector is [2]:

vs = Pmβ (X
−
1 , . . . ,X−ℓ )v0 (1.7)

where Pmβ is a homogeneous polynomial in its variables of degrees mki, where ki ∈ Z+ come from
the decomposition of β into simple roots: β = ∑kiαi, αi ∈ ∆S, the system of simple roots, X−j are
the root vectors for −α j, α j are the simple roots, ℓ= rankG C .

It is obvious that (1.7) satisfies (1.6a), while conditions (1.6b) fix the coefficients of Pmβ up to
an overall multiplicative nonzero constant.

Now we are in a position to define the differential intertwining operators, corresponding to the
singular vectors. Let the signature χ of an ER be such that the corresponding Λ = Λχ satisfies (1.5)
for some β ∈ ∆+ and some m ∈ N. Then there exists an intertwining differential operator [2]

Dmβ : C̃χ −→ C̃χ ′ (1.8)
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where χ ′ is such that Λ′ = Λ′χ ′ = Λ−mβ .
The important fact is that (1.8) is explicitly given by [2]

Dmβ φ(g) = Pmβ (X̂
−
1 , . . . , X̂−ℓ )φ(g) (1.9)

where Pmβ is the same polynomial as in (1.7) and X̂−j denotes the right action.
One important simplification is that in order to check the intertwining properties of the op-

erator in (1.9) it is enough to work with the infinitesimal versions of (1.3) and (1.4), i.e., work
with representations of the Lie algebra. Thus, also in the quantum group setting we work with
representations of quantum algebras.

2. The matrix quantum group GLq(n) and the dual quantum algebra

Let us consider an n× n quantum matrix M with non-commuting matrix elements ai j,
1 ≤ i, j ≤ n. The matrix quantum group Ag = GLq(n), q ∈ C, is generated by the matrix
elements ai j with the following commutation relations [7] (λ = q−q−1) :

aiℓai j = qai jaiℓ , ℓ > j , ak jai j = qai jak j , k > i (2.1)

ak jaiℓ = aiℓak j , k > i , ℓ > j , ai jakℓ = akℓai j−λaiℓak j, k > i, ℓ > j

Considered as a bialgebra, it has the following comultiplication δA and counit εA :

δA (ai j) =
n

∑
k=1

aik⊗ak j , εA (ai j) = δi j (2.2)

This algebra has determinant D given by:

D = ∑
ρ∈Sn

ε(ρ) a1,ρ(1) . . .an,ρ(n) = ∑
ρ∈Sn

ε(ρ) aρ(1),1 . . .aρ(n),n (2.3)

where summations are over all permutations ρ of {1, . . . ,n} and the quantum signature is:

ε(ρ) = ∏
j<k

ρ( j)>ρ(k)

(−q−1) (2.4)

The determinant obeys:

δA (D) = D⊗D , εA (D) = 1, aik D = D aik (2.5)

Further, if D ̸= 0 one extends the algebra by an element D−1 which obeys:

DD−1 = D−1D = 1A (2.6)

Then one can introduce the antipode in GLq(n) which is omitted for the lack of space.
Next we introduce a basis of GLq(n) which consists of monomials

fm̄,ℓ̄,n̄ = (a21)
m21 . . .(an,n−1)

mn,n−1 × (a11)
ℓ1 . . .(ann)

ℓn × (an−1,n)
nn−1,n . . .(a12)

n12 ,

f0̄,0̄,0̄ = 1Ag (2.7)
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where m̄, ℓ̄, n̄ denote the sets {mi}, {ℓi j}, {ni j}, resp., mi, ℓi j,ni j ∈ Z+ and we use the so-called
normal ordering of the elements ai j .

The dual algebra of GLq(n) is Ug = Uq(sl(n))⊗Uq(Z ), where Uq(Z ) is central in Ug.
We denote the Chevalley generators of sl(n) by Hi, X±i , i = 1, . . . ,n− 1. Then we take for the
’Chevalley’ generators of U =Uq(sl(n)) : ki = qHi/2, k−1

i = q−Hi/2, X±i , i = 1, . . . ,n−1, with the
following algebra relations:

kik j = k jki , kik−1
i = k−1

i ki = 1Ug , kiX±j = q±ci j X±j ki

[X+
i ,X−j ] = δi j

(
k2

i − k−2
i

)
/λ(

X±i
)2 X±j − [2]qX±i X±j X±i + X±j

(
X±i

)2
= 0 , |i− j|= 1

[X±i ,X±j ] = 0 , |i− j| ̸= 1 (2.8)

where ci j is the Cartan matrix of sl(n), and coalgebra relations :

δU (k±i ) = k±i ⊗ k±i , δU (X±i ) = X±i ⊗ ki + k−1
i ⊗X±i

εU (k±i ) = 1 , εU (X±i ) = 0
γU (ki) = k−1

i , γU (X±i ) = −q±1 X±i (2.9)

where k+i = ki, k−i = k−1
i . Further, we denote the generator of Z by H and the generators of

Uq(Z ) by k = qH/2, k−1 = q−H/2, kk−1 = k−1k = 1Ug . The generators k,k−1 commute with the
generators of U , and their coalgebra relations are as those of any ki.

The bilinear form giving the duality between Ug and Ag is given by [8]:

⟨ ki , a jℓ ⟩ = δ jℓ q(δi j−δi, j+1)/2 , ⟨ k , a jℓ ⟩ = δ jℓ q1/2 (2.10)

⟨ X+
i , a jℓ ⟩ = δ j+1,ℓδi j , ⟨ X−i , a jℓ ⟩ = δ j−1,ℓδiℓ

⟨ y , 1Ag ⟩ = εUg(y)

The pairing between arbitrary elements of Ug and f follows then from the properties of the duality
pairing.

3. Representations of Ug and U

We begin by defining two actions of the dual algebra Ug on the basis (2.7) of Ag.
First we introduce the left regular representation of Ug for which in the q = 1 case we need

the infinitesimal version of :

π(Y ) M = Y−1 M , Y,M ∈ GL(n) (3.1)

Explicitly, we define the action of Ug on Ag as follows (cf. also (1.4)):

π(y) aiℓ
.
=

(
F
(
γ0
U (y)

)
M
)

iℓ = ∑
j

F
(
γ0
U (y)

)
i j a jℓ = ∑

j
⟨ γ0

U (y) , ai j ⟩ a jℓ (3.2)

where y denotes the generators of Ug and γ0
U (y) is the antipode action for q = 1.

In order to derive the action of π(y) on arbitrary elements of the basis (2.7), we use the twisted
derivation rule consistent with the coproduct and the representation structure, namely, we take:
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π(y)φψ = π(δ ′Ug
(y))(φ ⊗ψ), where δ ′Ug

= σ ◦ δUg is the opposite coproduct, (σ is the
permutation operator). Thus, we have:

π(ki)φψ = π(ki)φ ·π(ki)ψ , π(k)φψ = π(k)φ ·π(k)ψ
π(X±i )φψ = π(X±i )φ ·π(k−1

i )ψ + π(ki)φ ·π(X±i )ψ (3.3)

Analogously, we introduce the right action for which in the classical case one needs the
infinitesimal counterpart of :

πR(Y ) M = M Y , Y,M ∈ GL(n) (3.4)

Thus, we define the right action of Ug as follows:

πR(y) aiℓ = (MF(y))iℓ = ∑
j

ai j F(y) jℓ = ∑
j

ai j ⟨ y , a jℓ ⟩ (3.5)

where y denotes the generators of Ug .
The twisted derivation rule is now given by πR(y)φψ = πR(δUg(y))(φ⊗ψ), i.e.,

πR(ki)φψ = πR(ki)φ ·πR(ki)ψ , πR(k)φψ = πR(k)φ ·πR(k)ψ
πR(X±i )φψ = πR(X±i )φ ·πR(ki)ψ + πR(k−1

i )φ ·πR(X±i )ψ (3.6)

Let us now introduce the elements φ as formal power series of the basis (2.7):

φ = ∑
m̄,ℓ̄,n̄∈Z+

µm̄,ℓ̄,n̄ fm̄,ℓ̄,n̄ (3.7)

As in the classical case the left and right actions commute, and as in [8] we shall use the right
covariance to reduce the left regular representation. In particular, we require the right action to
mimic properties of a highest weight module, i.e., annihilation by the raising generators X+

i and
scalar action by the (exponents of the) Cartan operators ki,k. However, first we have to make a
change of basis using the q-analogue of the classical Gauss decomposition. For this we have to
suppose that the principal minor determinants of M :

Dm = ∑
ρ∈Sm

ε(ρ) a1,ρ(1) . . .am,ρ(m) = ∑
ρ∈Sm

ε(ρ) aρ(1),1 . . .aρ(m),m , m≤ n (3.8)

are invertible; note that Dn = D, Dn−1 = Ann.
Further, for the ordered sets I = {i1 < · · ·< ir} and J = { j1 < · · ·< jr}, let ξ I

J be the r-minor
determinant with respect to rows I and columns J such that

ξ I
J = ∑

ρ∈Sr

ε(ρ) aiρ(1) j1 · · ·aiρ(r) jr (3.9)

Note that ξ 1 ··· i
1 ··· i = Di . Then we have (i, j, ℓ= 1, . . . ,n) :

aiℓ = ∑
j

Ỹi jD j jZ jℓ , Ỹi j = ξ 1 ··· j−1 i
1 ··· j D−1

j , D j j = D jD−1
j−1 , Z jℓ = D−1

j ξ 1 ··· j
1 ··· j−1ℓ (3.10)
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Ỹi j = 0 for i < j, Z jℓ = 0 for j > ℓ, D0 ≡ 1Ag . Then Ỹi j, i > j, may be regarded as a q-analogue of
local coordinates of the q - deformed flag manifold GL(n)/DZ, while Z jℓ, j < ℓ, may be regarded
as a q-analogue of local coordinates of the q - deformed flag manifold Ỹ D\GL(n).

Clearly, we can replace the basis (2.7) of Ag with a basis in terms of Ỹiℓ, i > ℓ, Dℓ, Ziℓ, i < ℓ.
(Note that Ỹii = Zii = 1Ag .) Thus, we consider formal power series:

φ̃ = ∑
m̄,n̄∈Z+
ℓ̄∈Z

µ ′ℓ̄,m̄,n̄ (Ỹ21)
m21 . . .(Ỹn,n−1)

mn,n−1(D1)
ℓ1 . . .(Dn)

ℓn(Zn−1,n)
nn−1,n . . .(Z12)

n12 (3.11)

Now, let us impose right covariance with respect to X+
i :

πR(X+
i ) φ̃ = 0 (3.12)

This is fulfilled automatically for D j and Ỹjℓ , but not for Z jℓ , which simply means that our
functions φ̃ do not depend on Z jℓ . Thus, the functions obeying (3.12) are:

φ̃ = ∑
ℓ̄∈Z , m̄∈Z+

µℓ̄,m̄ (Ỹ21)
m21 . . .(Ỹn,n−1)

mn,n−1 (D1)
ℓ1 . . .(Dn)

ℓn (3.13)

Next, we impose right covariance with respect to ki,k :

πR(ki) φ̃ = qri/2 φ̃ , πR(k) φ̃ = qr̂/2 φ̃ (3.14)

As a consequence we obtain that the powers of Di in (3.13) are fixed: ℓi = ri, for i< n, ∑n
j=1 jℓ j =

r̂. This means that ri, r̂ ∈ Z and that there is no summation in ℓi, also ℓn = (r̂−∑n−1
j=1 jr j)/n≡ r̃.

Thus, the reduced functions obeying (3.12) and (3.14) are:

φ̃ = ∑
m̄∈Z+

µm̄ (Ỹ21)
m21 . . .(Ỹn,n−1)

mn,n−1 , (D1)
r1 . . .(Dn−1)

rn−1(Dn)
r̃ (3.15)

Next we derive the Ug - action π on φ̃ . First, we notice that U acts trivially on Dn = D :

π(X±i ) D = 0 , π(ki) D = D (3.16)

Then we note:
π(k) D j = q− j/2 D j , π(k) Ỹjℓ = Ỹjℓ (3.17)

from which follows:
π(k) φ̃ = q−r̂/2 φ̃ (3.18)

Thus, the action of U involves only the parameters ri, i < n, while the action of Uq(Z ) involves
only the parameter r̂. Thus we can consistently also from the representation theory point of view
restrict to the matrix quantum group SLq(n), i.e., we set:

D = D−1 = 1Ag (3.19)

Then the dual algebra is U = Uq(sl(n)). This is justified as in the q = 1 case [2] since for our
considerations only the semisimple part of the algebra is important.
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Thus, the reduced functions for the U action are:

φ̃(Ȳ , D̄) = ∑
m̄∈Z+

µm̄ (Ỹ21)
m21 . . .(Ỹn,n−1)

mn,n−1 (D1)
r1 . . .(Dn−1)

rn−1 = (3.20a)

= φ̂(Ȳ ) (D1)
r1 . . .(Dn−1)

rn−1 (3.20b)

where Ȳ , D̄ denote the variables Ỹil , i > ℓ, Di, i < n.
From (3.20) it is clear that the parameters ri indeed characterize the representation of U .

Furthermore, we can introduce the restricted functions φ̂(Ȳ ) by the formula which is prompted in
(3.20b):

φ̂(Ȳ ) .
= φ̃(Ȳ ,D j = 1Ag) = ∑

m̄∈Z+

µm̄ (Ỹ21)
m21 . . .(Ỹn,n−1)

mn,n−1 (3.21)

We have defined the representations π̂r̄ for ri ∈ Z. However, notice that we can consider the
restricted functions φ̂(Ȳ ) for arbitrary complex ri. We shall make these extension from now on,
since this gives the same set of representations for Uq(sl(n)) as in the case q = 1.

For the more compact exposition of the representation formulae we shall need below also the
following operators (corresponding to each Ỹjℓ) :

M̂ jℓ φ̂(Ȳ ) = ∑
m̄∈Z+

µm̄ M̂ jℓ f̃m̄ , M̂ jℓ f̃m̄ = (Ỹ21)
m21 . . .(Ỹjℓ)

m jℓ+1 . . .(Ỹn,n−1)
mn,n−1

f̃m̄ = (Ỹ21)
m21 . . .(Ỹn,n−1)

mn,n−1 ,

Tjℓ φ̂(Ȳ ) = ∑
m̄∈Z+

µm̄ Tjℓ f̃m̄ , Tjℓ f̃m̄ = qm jℓ f̃m̄ (3.22)

Using this we define the q-difference operators by:

D̂ jℓ φ̂(Ȳ ) =
1
λ

M̂−1
jℓ

(
Tjℓ−T−1

jℓ

)
φ̂(Ȳ ) (3.23)

from which follows:

D̂ jℓ f̃m̄ = [m jℓ]q (Ỹ21)
m21 . . .(Ỹjℓ)

m jℓ−1 . . .(Ỹn,n−1)
mn,n−1 (3.24)

Of course, for q→ 1 we have D̂ jℓ → ∂Y jℓ ≡ ∂/∂Yjℓ. (Note that the above operators for
different variables commute, i.e., with these we have actually passed to commuting variables.)

4. The case of Uq(sl(4))

Here we consider in more detail the case n = 4. It is convenient (also for the comparison with
the q = 1 case) to make the following change of variables:

Y31 = Ỹ31−qỸ21Ỹ32 , Y41 = Ỹ41−qỸ21Ỹ42 , (4.1)

Y21 = −qỸ21 , Y43 = qỸ43 , Yi j = Ỹi j , for (i j) = (32),(42)

For the commutation properties we have:

YiℓYi j = q1−δℓ2Yi jYiℓ , 4≥ i > ℓ > j ≥ 1 (4.2a)

Yk jYi j = q1−δi2Yi jYk j , 4≥ k > i > j ≥ 1 (4.2b)

Y41Y32 = Y32Y41 +λY31Y42 , (4.2c)

Y4iYj1 = Yj1Y4i , (i j) = (23),(32) , (4.2d)

YkiYi j = q1−2δi3Yi jYki− (−1)δi3λYk j
′ 4≥ k > i > j ≥ 1 (4.2e)
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(each of (4.2a,b,e) has four cases).
Note that for q a phase (|q|= 1) the q - deformed flag manifold in the Y coordinates is invariant

under the anti-linear anti-involution ω acting as:

ω(Yjℓ) = Y5−ℓ,5− j (4.3)

Thus it can be considered as a q - deformed flag manifold of the quantum group SUq(2,2).
The restricted functions for the U action are (cf. (3.21)):

φ̂(Ȳ ) = ∑i, j,k,ℓ,m,n∈Z+
µi jkℓmn φ̂i jkℓmn (4.4)

φ̂i jkℓmn = (Y21)
i (Y31)

j (Y32)
k (Y41)

ℓ (Y42)
m (Y43)

n

Recall that we consider the representations π̂r̄ for arbitrary complex ri and we know from the
general analysis of [2] that whenever some mi = ri +1 or mi j = mi + · · ·+m j, (i < j) is a positive
integer the representations are reducible and there exist invariant subspaces.

It will be convenient to use also the following notation for the coordinates of the flag manifold:

ξ = Y21 , x = Y31 , u = Y32 , w = Y41 , y = Y42 , η = Y43 (4.5)

5. Intertwining operators

The general prescription for finding the intertwining operators is as in the classical case (cf.
also [2]). In order to apply this procedure we need the explicit action of πR(X−i ) on our functions.
We have:

πR(X−1 ) φ̃r1,r2,r3
i jkℓmn = −qi− j−k−ℓ−m+(r1−1)/2 [i]qφ̃r1−2,r2+1,r3

i−1, jkℓmn + q(r1−1)/2 [r1]q φ̃r1,r2,r3
i jkℓmn Z12

πR(X−2 ) φ̃r1,r2,r3
i jkℓmn = q2k+ℓ+m−n+(r2−1)/2 [ j]q φ̃r1+1,r2−2,r3+1

i+1, j−1,kℓmn +

+ qk+ℓ+m−n+(r2−3)/2 [k]q φ̃r1+1,r2−2,r3+1
i j,k−1,ℓmn +

+ qk− j+2m−n+(r2−3)/2[ℓ]qφ̃r1+1,r2−2,r3+1
i+1, jk,ℓ−1,m,n+1+

+ qm−n+(r2−5)/2 [m]q φ̃r1+1,r2−2,r3+1
i jkℓ,m−1,n+1 −

− q2m−n+(r2−3)/2 λ [k]q [ℓ]q φ̃r1+1,r2−2,r3+1
i, j+1,k−1,ℓ−1,m,n+1 +

+ q(r2−1)/2 [r2]q φ̃r1,r2,r3
i jkℓmn Z23

πR(X−3 ) φ̃r1,r2,r3
i jkℓmn = qn+(r3−1)/2 [n]q φ̃r1,r2+1,r3−2

i jkℓm,n−1 + q(r3−1)/2 [r3]q φ̃r1,r2,r3
i jkℓmn Z34 (5.1)

where we have labelled the functions also with the representation parameters rs. As in the classical
case [2] the right action is taking out from the representation space Cr̄, and while some of the terms
are functions from other representation spaces (depending on which X−s is acting), there are terms
involving the Z jℓ variables which do not belong to any of our representation spaces. The terms with
Z jℓ vanish exactly when rs ∈ Z+ and we take (πR(X−s ))ms [2], ms = rs +1.

We also use q-difference operators (using notation (3.22), (3.23), (4.5)):

Î1 = − q(r1−1)/2 D̂ξ Tξ (TxTuTwTy)
−1 ,

Î2 = q(r2−3)/2
(

q M̂ξ D̂x Tu + D̂u + M̂ξ M̂η D̂w (TxTw)
−1 Ty +

+ q−1 M̂η D̂y (TuTw)
−1 − λ M̂x M̂η D̂u D̂w (TuTw)

−1 Ty

)
Tu Tw Ty T−1

η ,

Î3 = q(r3−1)/2 D̂η Tη (5.2)
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and we note (for ms ∈ N):
Îms
s = Ims

s = (πR(X−s ))ms (5.3)

Let us consider now the intertwining operators corresponding to the two non-simple non-
highest roots α12, α23 which are realized when m12 ∈ N, m23 ∈ N, resp. In these cases the inter-
twining operators (up to an overall multiplicative constant) are given by :

Im
i j =

m

∑
k=0

ak (πR(X−i ))m−k (πR(X−j ))
m (πR(X−i ))k , m = mi j , (i j) = (12),(23),

ak = (−1)k a
[mi]q

[mi− k]q

(m
k

)
q
, k = 0, . . . ,m, a ̸= 0 (5.4)

Let us illustrate the resulting intertwining operators in the cases m12 = 1, m23 = 1. We have
(after a suitable renormalization) :

I1
12|r1+r2=−1 = − [r1]q πR(X−1 ) πR(X−2 ) + [r1 +1]q πR(X−2 ) πR(X−1 ) = (5.5)

= − [r1]q Î1 Î2 + [r1 +1]q Î2 Î1

I1
23|r2+r3=−1 = − [r3]q πR(X−3 ) πR(X−2 ) + [r3 +1]q πR(X−2 ) πR(X−3 ) =

= − [r3]q Î3 Î2 + [r3 +1]q Î2 Î3

6. q - Minkowski space-time and q - Maxwell equations hierarchy from q -
conformal invariance

6.1. We start with the q = 1 situation and we first write the Maxwell equations in an index-
less formulation, trading the indices for two conjugate variables z, z̄. This formulation has two
advantages.

First, it is very simple, and in fact, just with the introduction of an additional parameter, we
can describe a whole infinite hierarchy of equations, which we call the Maxwell hierarchy .

Second, we can easily identify the variables z, z̄ and the four Minkowski coordinates with the
six local coordinates of a flag manifold of SU(2,2), or of SL(4) with the appropriate conjugation.
Thus, one may look at this as a nice example of unifying internal and external degrees of freedom.

Next we give the q - analogs using the Uq(sl(4)) apparatus of Sections 4 and 5. Thus, we
use q - Minkowski coordinates as part of the appropriate q - deformed flag manifold. Using the
corresponding representations and intertwiners of Uq(sl(4)) we can finally write down the infinite
hierarchy of q - Maxwell equations.
6.2. It is well known that Maxwell equations

∂ µFµν = Jν , ∂ µ∗Fµν = 0 (6.1)

or, equivalently

∂kEk = J0 , ∂0Ek− εkℓm∂ℓHm = Jk , ∂kHk = 0 , ∂0Hk + εkℓm∂ℓEm = 0 (6.2)

where Ek ≡ Fk0, Hk ≡ (1/2)εkℓmFℓm, can be rewritten in the following manner:

∂kF±k = J0 , ∂0F±k ± iεkℓm∂ℓF±m = Jk (6.3)

10
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where
F±k ≡ Ek± iHk (6.4)

Not so well known is the fact that the eight equations in (6.3) can be rewritten as two conjugate
scalar equations in the following way:

I+ F+(z) = J(z, z̄) , I− F−(z̄) = J(z, z̄) (6.5)

where

I+ = z̄∂++∂v − 1
2

(
z̄z∂++ z∂v + z̄∂v̄ +∂−

)
∂z (6.6)

I− = z∂++∂v̄ − 1
2

(
z̄z∂++ z∂v + z̄∂v̄ +∂−

)
∂z̄

x± ≡ x0± x3 , v≡ x1− ix2, v̄≡ x1 + ix2 (6.7)

∂± ≡ ∂/∂x±, ∂v ≡ ∂/∂v, ∂v̄ ≡ ∂/∂ v̄,

F+(z) ≡ z2(F+
1 + iF+

2 ) − 2zF+
3 − (F+

1 − iF+
2 ) (6.8)

F−(z̄) ≡ z̄2(F−1 − iF−2 ) − 2z̄F−3 − (F−1 + iF−2 )

J(z, z̄) ≡ z̄z(J0 + J3)+ z̄(J1− iJ2) + z(J1 + iJ2)+(J0− J3)

where we continue to suppress the xµ , resp., x±,v, v̄, dependence in F and J. (The conjugation
mentioned above is standard and in our terms it is: I+←→ I−, F+(z)←→ F−(z̄).)

It is easy to recover (6.3) from (6.5) - just note that both sides of each equation are first order
polynomials in each of the two variables z and z̄, then comparing the independent terms in (6.5)
one gets at once (6.3).

Writing the Maxwell equations in the simple form (6.5) has also important conceptual mean-
ing. The point is that each of the two scalar operators I+, I− is indeed a single object, namely it is
an intertwiner of the conformal group, while the individual components in (6.1) - (6.3) do not have
this interpretation. This is also the simplest way to see that the Maxwell equations are conformally
invariant, since this is equivalent to the intertwining property.

Let us be more explicit. The physically relevant representations T χ of the 4-dimensional con-
formal algebra su(2,2) may be labelled by χ = [n1,n2;d], where n1,n2 are non-negative integers
fixing finite-dimensional irreducible representations of the Lorentz subalgebra, (the dimension be-
ing (n1+1)(n2+1)), and d is the conformal dimension (or energy). (In the literature these Lorentz
representations are labelled also by ( j1, j2) = (n1/2,n2/2).) Then the intertwining properties of the
operators in (6.6) are given by:

I+ : C+ −→C0 , I+ ◦T+ = T 0 ◦ I+

I− : C− −→C0 , I− ◦T− = T 0 ◦ I− (6.9)

where T a = T χa
, a = 0,+,−, Ca = Cχa

are the representation spaces, and the signatures are
given explicitly by:

χ+ = [2,0;2] , χ− = [0,2;2] , χ0 = [1,1;3] (6.10)

11
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as anticipated. Indeed, (n1,n2) = (1,1) is the four-dimensional Lorentz representation, (carried by
Jµ above), and (n1,n2) = (2,0),(0,2) are the two conjugate three-dimensional Lorentz represen-
tations, (carried by F±k above), while the conformal dimensions are the canonical dimensions of a
current (d = 3), and of the Maxwell field (d = 2). We see that the variables z, z̄ are related to the
spin properties and we shall call them ’spin variables’. In general, a Lorentz spin-tensor G(z, z̄)
with signature (n1,n2) is a polynomial in z, z̄ of order n1,n2, resp.

We can illustrate the above occurrence with the following diagrams of intertwining operators:

✲✛ / /

✲✛ / /

φ Φ

Aµ Jµ

F[λ,µ]

∂µ ∂ µ

∂[λ,·] ∂λ

❄

✻

✻❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅❅❘

Fig. 1. Simplest example of diagram with conformal invariant operators

(arrows are differential operators, dashed arrows are integral operators)

∂µ = ∂
∂ xµ

, Aµ electromagnetic potential, ∂µ φ = A0
µ

F electromagnetic field, ∂[λAµ] = ∂λAµ − ∂µAλ = F 0
λµ

Jµ electromagnetic current, ∂λFλµ = J0
µ, ∂µJµ = Φ0

superscript ’0’ indicates that the mapping is not onto
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✲✛ / /

✲✛ / /

/ / ✲✛

φ Φ

Aµ Jµ ∼= χ0

χ− ∼= F−

[λ,µ] F+
[λ,µ]

∼= χ+

∂µ ∂ µ

I+ I+I−I−

❄

❄

✻

✻❅
❅

❅
❅

❅
❅

❅
❅

❅
❅
❅

❅
❅

❅
❅❅❘�

�
�

�
�

�
�

�
�

�
�

�
�

�
��✒

Fig. 2. More precise showing of the simplest example,

using also notations from the text above
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✲✛ / /

✲✛ / /

/ / ✲✛

Λ
−

pνn Λ
+
pνn

Λ
′−

pνn Λ
′+
pνn

Λ
′′−

pνn Λ
′′+
pνn

dν1 d′ν1

dn2 dn2d
p
3d

p
3

❄

❄

✻

✻❅
❅

❅
❅
❅

❅
❅
❅
❅

❅
❅
❅
❅

❅
❅❅❘�

�
�
�
�

�
�
�
�

�
�
�
�

�
��✒

Fig. 3. The general classification of invariant differential operators valid for

so(4, 2), so(5, 1) and so(3, 3).

p, ν, n are three natural numbers, the shown simplest case is when p = ν = n = 1,

dν
1

is a linear differential operator of order ν, similarly d′ν
1
, dn

2
, d

p

3

14
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From the last figure we can derive the fact that the Maxwell equations (6.9), (6.10) are part
of an infinite hierarchy of couples of first order invariant equations (that would be obtained for
p = n = 1). Explicitly, instead of (6.9), (6.10) we have [8]:

I+ν : C+
ν −→C0

ν , I+ν ◦T+
ν = T 0

ν ◦ I+ν
I−ν : C−ν −→C0

ν , I−ν ◦T−ν = T 0
ν ◦ I−ν (6.11)

where T a
ν = T χa

ν , Ca
ν =Cχa

ν , and the signatures are:

χ+
ν = [ν +1,ν−1;2] , χ−ν = [ν−1,ν +1;2] , χ0

ν = [ν ,ν ;3] , ν ∈ N (6.12)

while instead of (6.5) we have:

I+ν F+
ν (z, z̄) = Jν(z, z̄) , I−ν F−ν (z, z̄) = Jν(z, z̄) (6.13)

where

I+ν =
ν +1

2

(
z̄∂++∂v

)
− 1

2

(
z̄z∂++ z∂v + z̄∂v̄ +∂−

)
∂z , ν ∈ N (6.14)

I−ν =
ν +1

2

(
z∂++∂v̄

)
− 1

2

(
z̄z∂++ z∂v + z̄∂v̄ +∂−

)
∂z̄ , ν ∈ N

while F+
ν (z, z̄), F−ν (z, z̄), Jν(z, z̄), are polynomials in z, z̄ of degrees (ν + 1,ν − 1), (ν − 1,ν + 1),

(ν ,ν), resp., as explained above.
Remark: If we want to use the notation with indices as in (6.1), then F+

ν (z, z̄) and F−ν (z, z̄) corre-
spond to Fλ µ ,α1,...,αν−1 which is antisymmetric in the indices λ ,µ , symmetric in α1, . . . ,αν−1, and
traceless in every pair of indices, while Jν(z, z̄) corresponds to Jµ,α1,...,αν−1 which is symmetric and
traceless in every pair of indices. Note, however, that the analogs of (6.1) would be much more
complicated if one wants to write explicitly all components. The crucial advantage of (6.13) is that
the operators I±ν are given just by a slight generalization of I± = I±1 . ♢

We shall call the hierarchy of equations (6.13) the Maxwell hierarchy . The Maxwell
equations are the zero member of this hierarchy.

To proceed further we rewrite (6.14) in the following form:

I+ν = 1
2

(
(ν +1)I1I2− (ν +2)I2I1

)
, I−ν = 1

2

(
(ν +1)I3I2− (ν +2)I2I3

)
(6.15)

where
I1 ≡ ∂z , I2 ≡ z̄z∂++ z∂v + z̄∂v̄ +∂− , I3 ≡ ∂z̄ (6.16)

We note in passing that group-theoretically the operators Ia correspond to the three simple roots
of the root system of sl(4), while the operators I±ν correspond to the two non-simple non-highest
roots [2].

This is the form that we generalize for the q - deformed case. In fact, we can write at once the
general form of the intertwining operators which follows from (5.5) (cf. also (5.2)) :

qI+ν = 1
2

(
[ν +1]qÎ1Î2− [ν +2]qÎ2Î1

)
, qI−ν = 1

2

(
[ν +1]qÎ3Î2− [ν +2]qÎ2Î3

)
(6.17)

It is our task (using the previous Sections) to make this form explicit by introducing the ap-
propriate variables and functions.
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6.3. The variables x±,v, v̄,z, z̄ have definite group-theoretical meaning, namely, they are six
local coordinates on the flag manifold Y = SL(4)/B, where B is the Borel subgroup of SL(4)
consisting of all upper diagonal matrices. Under the natural conjugation (cf. also below) this is
also a flag manifold of the conformal group SU(2,2).

We know from Sections 3. and 4. what are the properties of the non-commutative coordinates
on the q - deformed SL(4) flag manifold. We make the following identification:

x+ = w = Y41 , x− = u = Y32 , v = x = Y31 , v̄ = y = Y42

z = ξ = Y21 , z̄ = η = Y43 (6.18)

for the q-Minkowski space-time coordinates and for the spin coordinates, which we denote as their
classical counterparts. Thus, we obtain for the commutation rules of the q-Minkowski space-time
coordinates (cf. (4.2)) :

x±v = q±1vx± , x±v̄ = q±1v̄x± , x+x−− x−x+ = λvv̄ , v̄v = vv̄ (6.19)

As expected, relations (6.19) coincide with the commutation relations between the translation
generators Pµ of the q-conformal algebra [9].

It is also easy to notice that these relations are as the GLq(2) commutation relations [7], if we
identify our coordinates with the standard a,b,c,d generators of GLq(2) as follows:

M =

(
a b
c d

)
=

(
x+ v
v̄ x−

)
(6.20)

Thus, the q-Minkowski length is defined as the GLq(2) q-determinant :

ℓq
.
= detq M = ad−qbc = x+x−−qv̄v (6.21)

and hence it commutes with the q-Minkowski coordinates. It has the correct classical limit ℓq=1 =

x2
0− x⃗2.

We know from (4.3) that for q phase (|q|= 1) the commutation relations (6.19) are preserved
by an anti-linear anti-involution ω acting as :

ω(x±) = x± , ω(v) = v̄ (6.22)

from which follows also that ω(ℓq) = ℓq .
The commutation rules of the spin variables z̄,z between themselves, with the q-Minkowski

coordinates and with the q-Minkowski length are (cf. (4.2)) :

x+z = q−1zx+ , x−z = qzx−−λv , z̄x+ = qx+z̄ , z̄x− = q−1x−z̄+λ v̄
vz = q−1zv , v̄z = qzv̄−λx+ , z̄v = q−1vz̄+λx+ , z̄v̄ = qv̄z̄
z̄z = zz̄ , zℓq = ℓqz , z̄ℓq = ℓqz̄ (6.23)

Certainly, the commutation relations (6.23) are also preserved (for q phase) by the conjugation
ω which acts (cf. (4.3)) by : ω(z) = z̄. Thus, with this conjugation Yq becomes a flag manifold
of SUq(2,2).
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We know the normally ordered basis of the q - deformed flag manifold Yq considered as an
associative algebra :

φ̂i jkℓmn = zi v j xk
− xℓ+ v̄m z̄n , i, j,k, ℓ,m,n ∈ Z+ (6.24)

Let us denote by Z , Z̄ , and Mq the associative algebras with unity generated by z, z̄, and
x±,v, v̄, resp. These three algebras are subalgebras of Yq, and we notice the following structure of
Yq :

Yq ∼= Z x⊂Mq x⊃ Z̄ (6.25)

where A x⊂ B denotes the tensor product of A and B with A acting on B.
We introduce now the representation spaces Cχ , χ = [n1,n2;d] . The elements of Cχ ,

which we shall call (abusing the notion) functions, are polynomials in z, z̄ of degrees n1,n2, resp.,
and formal power series in the q - Minkowski variables. (In the general Uq(sl(n)) situation the
signatures n1,n2 are complex numbers and the functions are formal power series in z, z̄ too, cf.
(3.21b).) Namely, these functions are given by:

φ̂n1,n2(Ȳ ) = ∑
i, j,k,ℓ,m,n∈Z+

i≤n1 , n≤n2

µn1,n2
i jkℓmn φ̂i jkℓmn (6.26)

where Ȳ denotes the set of the six coordinates on Yq . Thus the analogs of F±ν , Jν , cf. (6.13), are :

qF+
ν = φ̂ν+1,ν−1(Ȳ ) , qF−ν = φ̂ν−1,ν+1(Ȳ ) , qJν = φ̂ν ,ν(Ȳ ) (6.27)

Next, analogously to the operators M̂ jℓ , Tjℓ , D̂ jℓ , from (3.22), (??), (3.23), we introduce
operators M̂κ , Tκ , D̂κ . We use these to write down explicitly the operators qI±ν in (6.17). We have:

qI+ν =
q2

2
[ν +1]q

(
q D̂v T− + M̂z̄ D̂+ (TvT+)−1 Tv̄

)
T 2

z (TvTz̄)
−1 − (6.28)

− 1
2 q−ν−1

(
q M̂z D̂v T− + D̂− + M̂z M̂z̄ D̂+ (TvT+)−1 Tv̄ + q−1 M̂z̄ D̂v̄ (T−T+)−1 −

− λ M̂v M̂z̄ D̂− D̂+ (T−T+)−1 Tv̄

)
D̂z Tz (TvTz̄)

−1

qI−ν =
q
2
[ν +1]q

(
q−1 D̂v̄ (T−T+)−1 + M̂z D̂+ (TvT+)−1 Tv̄ −

− λ M̂v D̂− D̂+ (T−T+)−1 Tv̄

)
T− T+ Tv̄ Tz̄ + 1

2 qν+2
(

q M̂z D̂v T− + D̂− +

+ M̂z M̂z̄ D̂+ (TvT+)−1 Tv̄ + q−1 M̂z̄ D̂v̄ (T−T+)−1 −

− λ M̂v M̂z̄ D̂− D̂+ (T−T+)−1 Tv̄

)
D̂z̄ T− T+ Tv̄

With this the final result for the q - Maxwell hierarchy of equations is (cf. (6.27)) :

qI+ν qF+
ν = qJν , qI−ν qF−ν = qJν (6.29)

The final Figure below shows the place of the Maxwell hierarchy.
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✲✛ / /

✲✛ / /

/ / ✲✛

Λ
−

1ν1 Λ
+
1ν1

Λ
′−

1ν1 Λ
′+
1ν1

∼= qJν

qF
−

ν
∼= Λ

′′−

1ν1 Λ
′′+
1ν1

∼= qF
+
ν

dν1 d′ν1

qI
+
ν qI

+
νqI

−

νqI
−

ν

❄

❄

✻

✻❅
❅

❅
❅
❅

❅
❅
❅
❅

❅
❅
❅
❅

❅
❅❅❘�

�
�
�
�

�
�
�
�

�
�
�
�

�
��✒

Fig. 4. The special case p = n = 1 containing the Maxwell hierarchy
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