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Photon Self-Interaction in a Deformed U(1) Gauge Theory Jiangyang You

1. Introduction

After two decades of development, many open questions still remain in the field of the pertur-
bative quantization of the noncommutative (NC) field theories on Moyal space [2]. One of most
renowned issues is the quadratic infrared (IR) divergence in the one-loop 1-PI two point func-
tion of the gauge fields [3, 4, 5]. Actually its existence in a very large and important subcategory
of the deformed gauge theories on Moyal space, namely those defined via Seiberg-Witten (SW)
map [6,7,8,9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21], was confirmed not long ago [22, 23].
Unlike the quadratic UV/IR mixing in the scalar field theory on Moyal space [24], this quadratic
IR divergence does not have a quadratic UV divergent counterpart, and appears to be difficult to
control [26, 27, 28, 29, 2].

In [23] the one loop photon-bubble-diagram contributions to the photon polarization tensor
PBHY (p) was studied in a 6-exact SW map expanded U(1) gauge theory. Five tensor structures were
found after the loop integrals are evaluated using generalized dimensional regularization procedure:

62
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with the following divergent parts of the B;-coefficients
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One can easily observe the coexistence of both UV and quadratic IR divergences in the B;s. The
parameter k here presents the the first (¢?) order SW map amibiguity/freedom of the gauge field
strenght. This concept was originally introduced via a 6-iterative construction [30] as a coun-
termeasure to the infinite series of UV divergences there. Our formulism here follows a 6-exact
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substitute suggested in [31]. It is further shown in [23] that k¥ can provide full control over both
UV and IR divergences in the bubble diagram only when a special full rank value of the Moyal 6%/
tensor is selected.

Despite significant progresses made in [23] the result is incomplete because there also exists
four photon self-coupling induced by the second order 8-exact Seiberg-Witten map expansion,
which is, historically, largely an untouched subject due to mathematical sophistication. Following
the recent results on higher order 8-exact Seiberg-Witten map [17, 32, 18], we present here the full
0-exact four photon self-interaction in the SW mapped deformed pure U(1) gauge theory on Moyal
space and the evaluation of the resulting four-photon tadpole diagram, thus complete the one loop
corrections to the photon polarization tensor.

Our explicit computation shows that photon tadpole diagram produces the same five tensor
structures as the photon bubble diagrams. The tadpole integrals are, however, purely quadratic IR
divergent. Therefore they could be the origin of all quadratic IR divergences in noncommutative
gauge theories on Moyal space, while the absence of a UV counterpart is then explained by the
vanishing of the commutative tadpole integrals in the dimensional regularization [33]. We have
also included a series of new gauge symmetry inspired freedom parameters k;s as the second order
extension of parameter x in our model definition, which are shown to offer full control over only
the quadratic IR divergences for arbitrary values of Moyal 8/ tensor together with the first order
parameter K.

The article is structured as follows: The four photon self-interaction is defined in the Section
2. Section 3 handles the corresponding Feynman rules and the resulting tadpole diagram. The
full one loop quadratic IR divergences in the photon polarization tensor is presented in the Section
4, then follow the discussion and conclusions. Note that in this article the capital letters denote
noncommutative objects, while the small letters denote the commutative ones.

2. Model definition

We consider the formal U, (1) NC gauge theory action

1
S:—@/Fuv (e au, 0"Y) « FHY (e-ay,01") @.1)
where the formal NC gauge field strength Fy (e‘a“, 6“") is regarded as a composite operator
built-up using the commutative gauge field operator a, and the NC parameter 6"V via the SW
map procedure. The commutative coupling constant e is attached to the commutative gauge field
operator ay due to the charge quantization issue [25]. As a bonus feature it also serves as the

ordering parameter for the 6-exact SW map expansion, i.e.
Fuy (e-au,6%Y) = efuy + Fgy +Foy + 0 (¢%). 2.2)
The e? order gauge field strength Seiberg-Witten map Fﬁi, expansion is fairly universal
2 ..
F[jv = 829”(1('][‘_”' *2 fvj—ai*z ajf“\/). (23)

The structure of the 6-exact SW map of a U(1) gauge theory is summarized in [32], where two
distinct gauge field SW maps were found and analyzed up to the ¢* ~ aﬁ order.
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Expanding (2.1) to order afl gives the following general form for the photon self-interaction

2 1 2 2 3
S =12 / Fo FOPY +2¢ fUVES,, (2.4)

where the following distinct solutions for the e* order gauge field strength have been found and
given explicitly in [32]. The first one is resolved from Seiberg-Witten differential equation:

3 3
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+aidjard fuv],, + [Ofwvaidia], , + [araioidjfuv],

1
-5 (wdaiso]., + [madia)., )|

(2.9

2

The generalized star products are defined via the following modified Fourier transformations

(Fr28)0) = [ T F(pgla) ., (prg).
ghla(@) = [ €01 ()glq)i(0) L (pr.b). .6
[Fehlay () = [ P Fp)a @R KLy (70K,

The definitions for the momentum dependent functions f;, (p,q), fx; (P,q,k) and f., (p,q,k) are
given in the Appendix A.

In the above solutions we have included the following freedom parameters: K in Fﬁzv while

for Fﬁi we have (k, kj ») From those field strengths we have found the following two actions at the

4

H order,

a

> 2
57 == S 0904 [ (fuiea fur) (P2 £49) = ki fu) (P )

+ 2K‘1f”v[fuikafﬂ]*3’
+ 212 1Y (@i %2 9 (fuk %2 for) — [fukaiOifuil sy — laifuxdjfuilsy))
+ (a; %2 ajfuv)(ak *2 alfMV)

1
+ Ef‘w (2[ai0jar0 fuv]sy +2[0; fuvaidjar]ey, + 2[aiaxd;o) fuv]ey
—[ai0ka ;o fuvlsy — [ fuvaiokajlsy ) -

Q2.7)

It is possible to express the action (2.5) fully in terms of the commutative field strength fj,, by
applying a large number of integrations-by-part on the relevant terms. The outcomes are given



Photon Self-Interaction in a Deformed U(1) Gauge Theory Jiangyang You

below:
e e? ij nkl 2 n v n v
N 2—2919 /K (fuix2 fvj) (fx2 f1) — & (fij %2 fuv) (e %2 f)
+ 2K MY (ai %2 0 (fur*2 fi) — [fuk@iO) fuil ey — @i fukjfuiley))
+ 210 1 [ fuifor ity (2.8)
1 1
- Zf“v [fuvﬁksz]*3, t3 (" %2 fij) (fiar %2 fuv)
1

+ E01”‘7f“v [0if it fipOq fuv] My

The products ///(1), and .Z1) needed later, are defined via the momentum structures f(y )
given in Appendix A:

8ty () = [ P F ()2 @R S (.- 29)

Note that terms of order 62, 870 fy ;1 fuy and 66X f;; fi fuv, can be generated via the
O-iterative procedure [30]. We thus introduce in first model two additional freedom parameters
(x3,K4) (and (K5, k}) in model (II)), as the B-exact completion of these two freedoms. In this way

we produce the following final forms for the aﬁ-order action:

2
ol e

Sk, x1,16, i3,k = — Zeijekl/ K2 (fuixa foi) (Frex 1) = k(i fuv) (Fex2 £)
+ 2k Y (ai %2 0 (fur*2 fyi) — [furaif) fuil ey — @i fukifuiliy))
+ 210 MY [fuifvrfitl sy (2.10)
- %f”v [fuvfufil, + % (f*Y 2 £ij) (farka fuv)

*3/

1
+ 561”‘1 Juv [0ifixfip0qfuv] My

3. Vertex-diagram-loop integral

From the action (2.10) we read out the corresponding four-photon interactions in the momen-
tum space, with all four momenta p; in Fig.1 being the incoming ones

P
e
LHHISI (py po, p3, pa) = —IZ(KZFXMMM (P1,P2,P3,P4)

+ KT 55 (p1, pa, 3, pa) + 1T (b1, pa, p3, pa)
+ Kzrgluzusm (p1,p2,P3,Ps) + K3F§1“2“3”4 (pr.p2.ps,ps)  BD

g DEESH () po pa, pa) + TEMRRSR (m,pz,m,m))

+all S4 permutations over {p;} and {1, } simutaneously.

The definition of I'y, I'g, I'; and I} ’s are given in [1].
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Figure 1: Four-photon field vertex TH1H2H354 (py py . p3. p4) with all incomming momenta.

Figure 2: Four-photon-tadpole contribution to the photon two-point function TV (p).

3.1 Photon two-point function: Four-photon-tadpole diagram

The photon-loop computation involves a single 4-photon-tadpole-loop integral contribution
to the photon polarization tensor in D dimensions and as a function of deformation freedom K’s
ambiguity corrections. Following the general procedure of dimensional regularization in comput-
ing one-loop two-point functions, we first give the loop-integral with respect to general integration
dimension D, then in the following we discuss the behavior in the specific D — 4 limits.

Out of the above vertices we can read out from Fig.2 the following loop-integrals

1 dPl —i
T (p) =P [ TR (., 1)

2 (2m)P 2
2 d—D dDg 62 2 d—D dDg EPEG 2 (32)
v — Voo —
=e~th" /(Zﬂ)Dgz—i_e TP /(ZE)D 02 f*z(p7€)-

Since the first integral in the above equation (3.3) vanishes according to the dimensional regulariza-
tion prescription [33], the only remaining integral is the second one. The tensors " and .7HVP°
are given in Appendix B.

3.2 Four-photon-tadpole contributions in the limit D — 4 — ¢

The single tadpole integral

daPre ey
uv __
! / (m)b 2’ 3-3)
left in (3.3) boils down to
1 - (6p)*(6p)”
JHY 4. v _g . 4
D—4 67[2 (ep) <g (Gp)z (3 )
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at the D — 4 limit [1]. Combining the partial tensor reduction with the master integral at D — 4
we obtain

™" (p) = ;; {[g‘”pz p’"‘p“} ( ggi; +4((99113)62> %(m— 1)
1

L (267 — 4K+ 6k + 21, — 23+ Ky — 1)

+ |84 (6p)* — (00)"p? + plt(66p) "}

+(6p)*(6p)"

1
o) (2K* — 2Kk + K| + k) (3.5)

[ee Y (9p)2+ (60p)H(66p) }(z") (K2 = 2K + K1 + K2)

6
21( K — K> }

+(6p)(866p)") (;’p)

where we immediately notice the absence of UV and logarithmic divergent terms contrary to the
photon-bubble-diagram results [23].

4. Summing over the bubble and the tadpole diagramsin D — 4 — ¢

In this section we present the full quadratic IR divergences in thew 1-loop corrections to the
photon polarization tensor by summing up the photon-tadpole contributions (3.5) and those from
the photon bubble diagrams result (1.2).

Working out the arithmetics we get the following photon-bubble plus photon-tadpole sum for
the photon polarization tensor in the IR regime:

e (p)| = %“V( )| +7 )| @.1)

IR IR

= an {[ w2 P#Pv}Blsum(P)+(9P)“(9P)v32wm(p)
+ {g —(00)""p 2+P{”(99p)v}}B3sum( )
[

00)(6p)? + (007)4(997)" | Ba.. (1) + (6)* (6667 Bs,, 1) |.

A summation over the leading UV/IR mixing terms in the bubble and tadpole diagrams provides
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results for overall UV/IR mixing (i.e. quadratic IR divergence):

Bl (P) ~ —3(9]))4 (1r00 +4((9$)22) (20— 12+ x 1),
By (D) ~ +§(6;)4 (K2+2K+12m +4K2—4;<3+2,<4_5>
2 2
+136(:p>6 (tr99+6((990pl;)2 >(K_1)2’ 4.2)
Bs,,(p) ~ —:(9;)4 (92— 264+ 1~ 4 — 415 ) '
By (p) ~ —%6 (:;)6 (51(2 —2Kk+1-2K —21<2>,
Seum (P) ™~ +1§6 (;;)6 (4K2 —4K+2— K — K‘z).

It is then straightforward to find that k = ky = (k; + k»)/2 = 1 and k3 = 2K} + 2 sends all B
to zero. Thus the quadratic IR divergence is fully controllable in the sum over one loop photon

isum S

self-interacting bubble and tadpole diagrams.

5. Discussion and conclusions

We present our results on four photon self-interaction in the SW mapped noncommutative U(1)
gauge theory and its physical effect through one-loop photon self-interaction tadpole diagram Our
results show that the NC massless tadpole integrals are solely quadratically IR divergent, which
makes it the potential origin of all quadratic IR divergence as the bubble diagram contains tadpole
integrals too.

The successful implementation of a large variety of gauge symmetry inspired freedom param-
eter K, K;—. 4 enables us to control all the quadratic IR divergences using an unique set of these
parameters

K=Kky=(K+Kk)/2=1, K3 =2K +2. (5.1

This choice leaves considerable UV divergences in the bubble diagram on the other hand, which
would require an unknown number of gauge-invariant yet nonlocal counter-terms. Thus the authors
consider any UV divergence cancellation highly plausible.

Simultaneous elimination of UV plus log and IR divergences can be obtained in a slightly
different model [1].
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A. Generalized star products

The generalized star-products based on the constant Moyal deformation parameter 6%/ bear a
relatively common form in momentum space

ddpl

i /H 2ndﬁf’ (pi exP["(i ) ] (P, pi07).  (AD)

The examples relevant to this paper are

()0 = [ T IF ) (p.0)

(F28)x) = [ €T (D)0 (pra).
Fehlo) = [ P TF gL (.08, (a2)
Fehley () = [ P00 F(p)glq)hlR) (0. 0),
[F&h).t (X) = / e P F ()3 (q)h(k) fum (ps k)
with
0 sin 224
f(p,Q):exp(%>, f*z(paQ): ng )
7
pOk pOq pOk - g0k - _pOg q6k
[diig £=7 _l’_ [diig 1= £-4 17"
fo 0100 = g 2o+ o L Ty T a3)
(F+5) (7 +57) (F-F)EF+5%)
o (g ) cos(%—k%ek—%ak)—l _cos pTeq+pTek+#)—l
*3 = 6 0k Ok ¢6 2] Ok Ok\qOk
* 5T R W 3

el
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and
fio (.a:) :
M\P:9:K) = o pbk  q0k~ pBq . pbk Bk, pBq . pbk . bk
(=7 -5 - )F +5 +%)
pbqg pbk bk pbqg , pbk  qbk
cos(F' — 5 ) cos(F' + 5 )
pOq  pOBq g0k~ r pOq pOk q0k q0k /1 pOq g0k~ r pOq pOk q0k
2 H-)IEF -5 %) 2HFE-E AT %)
o as
p9q 40k (pOq | pOk | qBky’
25 (R )
sin (%W_%@k) s1np79k sin &—FPTQ]{) squek

f(H) (paq’k) =

B. Tensor reduction and integration results

The partial 7(.7)-tensor reduction results are listed bellow

™ =— %{ (8" p* = p*p"] (r66) (13 — 1)
+ [84(0p)* — (66)" p? + pl#(60p) | 4(6p)* (11 — K2) (B.1)

+ (ep)“(ep)v(4+ (1—13)D(D—1) — 16K+ 8Kk> +8(D — 1) (K — k2) +4,<4) }

1
T10e = — ~{ (8" () ()7 + 0P p* (6p)7 + 6" p* (6p)° + 646" p?)

-2<(D—3)K2—2K+ K‘1—|—K‘2)
+ (2g“vp”(99p)" —g"Pp"(06p)? —g"Ppt(06p)°
— p"(86)"Pp® — p¥(00)HP p© + gHP ¥ p? +gv”9”°p2> 2k — K — k)
+ (g“”(Gp)V(Gp)G +8"P(6p)"(6p)° +6"P(6p)"p% + 9””(917)“19")
'(—1—2K3+K4+(2+D)K1+(D—2)(K2—2K‘)+4K2>
+ (g“vg”"(ep)2 +(80)* (pP p° — p*gP°) + (p"(60p)* + p" (66 ) )gP°
~ 848" (6p)* — g7 (00p)" b7 ~ " (66p)" p° ) - 24
+(6p)H(6p)'gl° -4(1(1 +1i0—2k+ (D — 1)1<4)

— [¢"p? = pMp"] (00)°% (ku — 1)}-

(B.2)

C. Model (IT)

C.1 Interaction

A second type of Moyal deformed four photon self-coupling can be obtained by inverting the

10
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known field strength solution for the inverted SW map [10, 32]:

Fivay g = 0709 [ (fuixa (fex2 fiv) + ivea (fie fu) = Uiffiv],)
— K3 (@i %2 9 fux) %2 fvi + (@i %2 9 fvr) %2 fuk — [@i0; (furfvi)lss)
— Ka;*2 0; (fuk*2 fvi) + (ai*2 9jar) x2 0 fuv

+aix2 (djarx2 Iy fuv) +aixa (ax*2 90 fuv) — [aidjard) fuv]x

1
- = (Cli *2 (Okaj*2 ) fuv) + (ai*2 aj) x2 Oy fuy — [aiOka;0) fuv ] + [aiakajalf/.tv]ﬂ)} ,

2
(C.1)

which yields the following interaction

2 .
Sty =— %Gljekl/ i (fuixa foi) (Frex £) = k(i fuv) (Fx2 £Y)

+ 2K (2fui*2 (fir*2 fiv) = [fuifixfiv)e )

— 416 ((ai %2 9j fuk) *2 for — @i0; fuifvilss)

1

- Zf”v (3fik*2 (fjt %2 fuv) =2 [ﬁkfjlfuv]*3>

1
+ gf”v (2fij*2 (furx2 fuv) — [ﬁjszfuv]*3>

1
— 191"16” [akfriajflpaqasfuv + aiarfjkas(flpaqf#v)]’///(H) .

After the same manipulation as in the first model we have

(C2)

2 .
S0 g, = %euekl/ K (fuixa fo)) (Fxa £17) = K (fij %o fuv) (F2 £)
+2K7 (2fui*2 (Fir*2 fiv) = fuififiv]es)
— 416 ((ai %2 9j fuk) *2 fvr — [ai0) fuifvilss)

/ C3
- %f”v (3fik*2 (fjr %2 fuv) =2 [fikfjlfuv]*3) €

+ %f“v (2fij *2 (fuxo fuv) = [fijfafuv] *3>

1
— 19”49” [akfrigjflpaqasf,uv + aigrf/kas‘(ﬁp3qfuv)]//;(m .

Note that k-terms are identical to the model (I) in the main text, as they should be, giving in
momentum space the following Feynman rule for the model (II):

1—# Mo 3 s

1 2 M1 Mo 3 Ha
(1) Ky (

2
e
(P17P27P37P4)=—lz( P1,P2,P37P4)

+ Krgluzusm (Pl,P27P37p4) + K{F//itlﬂwzm (pl,P27P3aP4)
i Kérzguuzuzm (p1,p2,P3,P4) + Kér’é‘l#zmm (p1,P2,P3,P4) (C4)

+ AT (p1, pa, pa, pa) + TR (p17P2aP3,P4))
+all S4 permutations over {p;} and {1;} simutaneously.

Details of these vertices are given in [1].

11
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C.2 Four-photon-tadpole contributions in the limit D — 4 — ¢

The exact tadpole diagram evaluation procedure given in the main text gives following result
for the model (II)

o2 ro0 06p)>\ 1
= s { e ] (G -4 ) a3

+(0p)"(0p)" (91)4 (K~ 2 +2K] +25 — )
n |:g,uv —(60)"p 2+p{u(99p)v}} @y (2K2—2K+2K§) (C.5)
Y v] 207 [ 5 /
[ (00)V(6p)*+ (66p)* (00p) ](9p)6(;< —2K+2K))

2
+(0p)#(060p)" (Zf,)é (r— Ké)}-

Tensor structure remain exactly the same as for the photon-bubble-diagram in Fig 2 from
[23], as one would expect. Due to the absence of UV and logarithmic divergent terms the tadpole
contribution from the first model (3.5) can be made equal to that of the model (II) when setting

K +K = 2K,
4Ky —2k3 = 4K — 4K — K +3,
Ky = 2K5 + Ky — 2, (C.6)

and in particular T#Y(p) = T(‘Ill‘)’ (p), for x; = x/ = 1,Vi.
Summing up (1.2) and (C.5) we obtain the Model (II) coefficients:

4 (99p>2 2 / /

8 1
B (P) ~ 3 577 (K2+21<—3+81<{ +8K5—4Kg>

16 p (00p)? 2

+ = tré06 +6 Kk—1),

3 (910)6< (6p)? )( ) o

4 1 :
B3sum(II)(p) ~ _g Gp 4(9’(2_2’(4‘1_8’(&)7

1 2

1 2

Note that IR divergence in the first model of the coefficients B3 4 5 from (4.2) depends on ki + K,
while here only on Ké. Like in the first model (5.1), model (II) also has a choice of freedom
parameters

k=1 =1, K§=2K+2, k,=3—2kKj, (C.8)

which ensures full quadratic IR divergence cancellation for any 6%/,
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