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1. Introduction

Understanding of the quantum structure of space-time requires new concepts and tools for
the description of geometry and symmetries of physical theories relevant at energies and distances
where both gravity and quantum physics play roles. Attempts to combine general relativity and
quantum mechanics at the Plank scale indicate that our classical description of space-time as a
smooth manifold should be replaced by some kind of fuzzy or foam-like structure in that regime.
As a consequence, we are forced to abandon the idea of point particles as fundamental degrees of
freedom and introduce non-local excitations like strings and higher-dimensional branes. This im-
mediately raises the question of symmetries encompassing the dynamics of these non-local degrees
of freedom. In particular, one needs to rethink the idea of gauge symmetry and its interplay with
space-time symmetries in theories where space-time is dynamical.

This serves as a motivation to look for a framework that would allow for a unified treat-
ment of diffeomorphisms and gauge symmetries, and one such possibility is generalized com-
plex geometry as introduced by Hitchin [1] and worked out by Gualtieri [2]. The starting point
in the generalized geometry (GG) framework is an extension of the tangent bundle to the so-
called generalized tangent bundle TM = TM⊕T?M, the sections of which are now X ∈ Γ(TM):
X= X +η , X ∈ Γ(TM), η ∈ Γ(T?M), i.e., the sum of a vector X and 1-form η . Our interest in the
GG framework lies in the fact that the symmetries of the extended bundle include both diffeomor-
phisms and gauge transformations which are now part of O(d, d) transformations. One is reminded
that the latter is related to the T-duality group of string theory compactified on a d-dimensional
torus.

In general, duality symmetries are means to identify apparently different physical settings. We
are familiar with examples of duality in field theories, where one uses duality to relate differently
parametrized spaces of fields/solutions of the underlying theory. In this respect, it shouldn’t be
surprising that dualities in string theory (where geometric degrees of freedom are dynamical ob-
jects in the theory) can identify apparently distinct geometries. What is interesting is that T-duality
transformations uncovered the existence of string-theory backgrounds that cannot be described by
standard geometry. In particular, metric and background fluxes such as NSNS flux, torsion or ge-
ometric flux and RR fluxes after T-duality transformations (which is a symmetry of the theory)
could not be understood in terms of usual geometry [3–6]. It turned out that this new geometry
(sometimes called non-geometry) could be described with techniques from the differential geom-
etry of Lie and Courant algebroids [7–12] which are also used in the GG framework mentioned
above. In short, while the symmetries of the generalized tangent bundle naturally incorporate dif-
feomorphisms and gauge transformation, the structure of algebroid (Courant in particular) naturally
incorporates background fields of string theory.

In this short note based on Ref. [13] we would like to advocate for the usefulness of the
described framework in addressing the issue of "non-geometry" in string theory. For this purpose
we will introduce structures necessary for defining Courant algebroids. In the next section we
follow Roytenberg’s construction based on protobialgebroids [14], as it naturally includes all string-
theory fluxes. We then relate these structures with bosonic string sigma models using the result [15]
that for every Courant algebroid one can construct a topological sigma model of the type introduced
by Alexandrov, Kontsevich, Schwarz and Zaboronsky (AKSZ) [16]. Finally, we argue that one has
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to go beyond this construction to capture "non-geometry" originating in T-duality. Motivated by a
similar approach adopted in Ref. [10], we propose an extension of the sigma models with standard
target space to ones with phase space as target. The relation between our 3D/2D perspective and
the doubled formalism of string theory [17] and double field theory (DFT) [18–21] is still not clear
although there are intriguing similarities.

2. Courant algebroid in a nutshell

The Courant algebroid (CA) is a vector bundle over a manifold, with a bracket defined on its
sections, a symmetric bilinear form, an anchor map from the bundle to the tangent bundle of the
manifold with certain compatibility conditions between these structures. The precise definition is
given in the Appendix. One perhaps more illuminating construction of CAs we are following here
goes through protobialgebroids as defined in Ref. [14]. We start with a vector bundle L and its
dual L? with closed bracket and anchor map on each of them and a pair of generalized 3-forms
φ ∈ Γ(∧3L?) and ψ ∈ Γ(∧3L) such that

• [X , fY ]L = f [X ,Y ]L +(ρ(X) f )Y , and [η , f ξ ]L? = f [η ,ξ ]L? +(ρ?(η) f )ξ , f ∈C∞(M) ,

• ρ([X ,Y ]L) = [ρ(X),ρ(Y )]Lie +ρ?φ(X ,Y, ·) , and
ρ?([η ,ξ ]L?) = [ρ?(η),ρ?(ξ )]Lie +ρψ(η ,ξ , ·) ,

• Jac[X ,Y,Z]L = dL?φ(X ,Y,Z)+φ(dL?X ,Y,Z)+φ(X ,dL?Y,Z)+φ(X ,Y,dL?Z) , and
[[η ,ξ ]L? ,ω]L? + c.p. = dLψ(η ,ξ ,ω)+ψ(dLη ,ξ ,ω)+ψ(η ,dLξ ,ω)+ψ(η ,ξ ,dLω).

• dLφ = 0 and dL?ψ = 0 ,

where X ,Y,Z ∈ Γ(L) and η ,ξ ,ω ∈ Γ(L?). These four properties are generalizations of familiar
properties of the tangent bundle and are realized with the aid of anchor maps. The first property
is just a Leibniz rule for each bundle, while the second one says that the anchor maps are homo-
morphisms twisted by generalized 3-forms. The third property is a twisted version of the Jacobi
identity - in general the brackets on the corresponding bundles are not Lie brackets, in particular
in presence of generalized 3-forms. The last property states that the generalized 3-forms which we
want to relate to string-theory fluxes are closed. The derivations on each bundle are again simple
generalization of the standard exterior derivative obtained with the aid of the anchor map. In par-
ticular, they are simply defined as maps dL : Γ(∧pL?)→ Γ(∧p+1L?) and dL? : Γ(∧pL)→ Γ(∧p+1L),
acting as follows [22]:

dLω(X1, . . . ,Xp+1) =
p+1

∑
i=1

(−1)i+1
ρ(Xi)ω(X1, . . . , X̂i, . . . ,Xp+1)+

+∑
i< j

(−1)i+ j
ω([Xi,X j]L,X1, . . . , X̂i, . . . , X̂ j, . . . ,Xp+1) , (2.1)

dL?Ω(η1, . . . ,ηp+1) =
p+1

∑
i=1

(−1)i+1
ρ?(ηi)Ω(η1, . . . , η̂i, . . . ,ηp+1)+

+∑
i< j

(−1)i+ j
Ω([ηi,η j]L? ,η1, . . . , η̂i, . . . , η̂ j, . . . ,ηp+1) , (2.2)
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for arbitrary generalized p-forms ω ∈ Γ(∧pL?) and Ω ∈ Γ(∧pL).
Given these data one can construct a Courant algebroid on E = L⊕L?; in particular, the bracket

of the CA is

[X +η ,Y +ξ ]E = [X ,Y ]L +LX ξ −LY η− 1
2 dL(X(ξ )−Y (η))+

+[η ,ξ ]L? +LηY −Lξ X + 1
2 dL?(X(ξ )−Y (η))−

−φ(X ,Y, ·)−ψ(η ,ξ , ·) ,

and the anchor of the CA is the sum of anchors of the dual bundles:

a(X +η) = ρ(X)+ρ?(η). (2.3)

In this construction the natural bilinear symmetric form on the CA is given by the duality relation
between the vector bundles L and L?:

〈X +η ,Y +ξ 〉E = 1
2(X(ξ )+Y (η)). (2.4)

Using these identifications and the protobialgebroid data one can easily confirm that the compati-
bility conditions for these structures as given in the Appendix are satisfied.

We choose this particular construction of CAs motivated by its apparent "doubled" structure,
having in mind physical instances of doubling like phase space, duality symmetries, double field
theory etc. Note however that although Roytenberg showed [14] that for every protobialgebroid
there exists an associated CA, it is not necessary that there exist a (proto)bialgebroid structure
underlying a generic Courant algebroid as defined in the Appendix.

3. Membrane sigma model

As discussed by Roytenberg [15] we know that every Courant algebroid has an associated
(topological) sigma model of the type described by Alexandrov, Kontsevich, Schwarz and Zaboron-
sky (AKSZ) in Ref. [16]. The AKSZ master action contains fields with ghost number 0, 1, 2 and
3, but here we focus on the 0-ghost sector:

SΣ3 [X ,A,F ] =
∫

Σ3

(
Fa∧dXa + 1

2 ηIJAI ∧dAJ−Pa
I AI ∧Fa +

1
6 TIJKAI ∧AJ ∧AK

)
. (3.1)

This is a membrane topological action in 3D, and its relation with the CA can be seen as follows.
The indices I,J are Courant algebroid indices, while the index a is a curved index. Xa are the
world volume scalars on the membrane, or the components of the map X : Σ3→M, M being the
target spacetime. AI is valued in Ω1(Σ3,X?E), where X? denotes the pull back with respect to the
world volume scalar fields. Fa is an auxiliary world volume 2-form in Ω2(Σ3,X?T?M) that will be
integrated out in the reduced string model. Moreover, η is the O(d, d) invariant metric given as
symmetric bilinear form of the CA, namely

ηIJ =

(
0 1ld
1ld 0

)
, (3.2)

4



P
o
S
(
C
O
R
F
U
2
0
1
5
)
1
2
4

Sigma models & non-geometric backgrounds Larisa Jonke

and Pa
I is the anchor matrix defined through the relation

a(XI) = Pa
I (X)∂a , (3.3)

where a : E→ TM is the anchor of the CA. Finally, T ∈Ω3(Σ3,X?E) is the generalized 3-form we
introduced in the previous section.

Having in mind physical applications we assume that the manifold Σ3 has a boundary, say
∂Σ3 := Σ2, and there we add a general topological boundary term as in Ref. [8] (see also [10, 23]):

S∂Σ3,top =
∫

Σ2

1
2BIJ(X)AI ∧AJ . (3.4)

More explicitly, with the splitting AI = (qi, pi),

1
2BIJ(X)AI ∧AJ = 1

2Bi j(X)qi∧q j + 1
2Bi j(X)pi∧ p j +

1
2Bi

j(X)q j ∧ pi . (3.5)

The membrane sigma model with boundary terms comes with a set of consistency conditions.
In particular, the boundary conditions should match the equations of motion on the boundary. The
second condition imposes the vanishing of the sector of the bulk 3D action that does not reduce to
the boundary via the field equations. This condition follows from the classical master equation [23].
These bulk/boundary consistency conditions allow for a systematic characterization of fluxes and
can be identified as integrability conditions for Dirac structures. A Dirac structure is a maximal
isotropic and involutive sub-bundle of a CA; its rank is half of that of the CA and it is closed under
the CA bracket. One can find the explicit relations in Ref. [13].

Application of the above action in string theory suggests that we integrate out the auxiliary
field from the 3D action and focus on the 2D reduced theory. There one should also add dynam-
ics thus breaking the topological nature of the theory, see [13] for more details. However, the
important lesson we learn from the analysis of the 2D reduced theory, already inferred in [8, 10],
is that this approach does neither describe all non-geometric solutions obtained through T-duality
transformation on geometric ones nor genuine non-geometric backgrounds.

4. One step beyond

In order to motivate the generalization of the framework described above here we recall the
example worked out in Ref. [10]1. Consider the following membrane sigma model on a torus and
choose T = R as only generalized 3-form with R a constant 3-vector. The topological 3D action is

SR[X ,A,F ] =
∫

Σ3

(
Fa∧dXa +qa∧dpa−qa∧Fa +

1
6 Rabc pa∧ pb∧ pc

)
, (4.1)

where we used only early Latin indices as we refer to the flat torus. Integrating out the auxiliary
2-form Fa one obtains

SR[X ,A,F ] =
∫

Σ2

pa∧dXa +
∫

Σ3

1
6 Rabc pa∧ pb∧ pc . (4.2)

1Attention should however be paid to the fact that there is no underlying CA behind the membrane action for this
example.
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The equation of motion for Xa is simply

dpa = 0 . (4.3)

This means that the 1-form pa may be written locally as

pa = dX̃a , (4.4)

where X̃a ∈C∞(Σ3,X?T?M) play role similar to dual coordinates in DFT. As suggested in Ref. [10],
these coordinates can be seen as defining an augmented embedding of the 2-dimensional boundary
theory on Σ2 in the full cotangent bundle of the target manifold M. So, from the equation of motion
of the sigma model we obtained generalized (or doubled) target space coordinates (XI) = (Xa, X̃a)

which correspond to a map X= (XI) : Σ3→ T?M.
The above doubling could be also understood in the spirit of the topological approach to T-

duality [24, 25], which was explained via Courant algebroids in Refs. [26–28]. In this approach
there is a product manifold M× M̃ of original and dual spaces and T-duality corresponds to an
isomorphism of twisted K-theories [24, 25]. In [27] it was shown that this can be extended to
an isomorphism between the corresponding CAs. Here we want to associate XI to the product
manifold M× M̃. Although the precise correspondence needs to be worked out, we propose that
the membrane sigma models for CAs over this extended target space should correspond to the ones
we will consider below.

The generalized embedding proposed in Ref. [10] is naturally extended in such a way as to al-
low all the fields that appear in the model to depend both on Xa and X̃a. In that case the formulation
(3.1) for the sigma model looks rather restrictive. From the viewpoint of physics, Eq. (3.1) does not
contain dX̃a at all, which should not be the case in general. Thus, returning to the general case, we
propose the following. First, we allow B,β ,h,a and T to depend on both Xa and X̃a. Second, we
introduce another auxiliary world volume 2-form F̃a ∈ Ω2(Σ3,X?TM) with a vector index. Then
we write the 3-dimensional action

SΣ3 =
∫

Σ3

(
Fa∧dXa + F̃a∧dX̃a +

1
2 ηIJAI ∧dAJ−Pa

I AI ∧Fa− P̃aIAI ∧ F̃a + 1
6 TIJKAI ∧AJ ∧AK

)
.

(4.5)
In more compact notation, writing PJ

I = (Pa
I , P̃aI) and F I = (Fa, F̃a) for F I ∈Ω2(Σ3,X?E), we get

SΣ3 =
∫

Σ3

(
δIJF I ∧dXJ + 1

2 ηIJAI ∧dAJ−δJKPJ
I AI ∧FK + 1

6 TIJKAI ∧AJ ∧AK
)
. (4.6)

The boundary action has the same form as before, namely

SΣ2 =
∫

Σ2

1
2BIJAI ∧AJ , (4.7)

but now B =B(X , X̃). Furthermore, we introduced the object P̃aI , which was absent before. These
are the components of a map P̃ : E → T?M that maps elements of the Courant algebroid to the
cotangent bundle. Examples of such a map is the unit map on 1-forms and the map B] : TM→ T?M
that acts simply as B](Xi) = Bi jη

j.
In Ref. [13] we have examined the bulk/boundary consistency conditions and showed how one

can solve them in an example. Moreover, one can integrate out both auxiliary two-forms and obtain
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a reduced 2D action, which now has non-trivial dependence on both sets of coordinates. We suggest
that this is the framework within which one could describe genuine non-geometric backgrounds of
string theory.

5. Outlook

In this note we presented a membrane sigma model that could provide a consistent world-sheet
approach to realizing new geometries appearing in string theory. We have shown that at the level
of the world-sheet sigma model action one is naturally lead to an apparent doubling of degrees of
freedom by careful analysis of equation of motion. Furthermore, the bulk/boundary consistency
condition provide a well-defined procedure for obtaining the 2D reduced theory with background
fluxes. We have shown that in general this reduced theory depends on both set of coordinates.

Of course, this proposal should be further investigated and two main questions should be
answered. The first one is the question of the geometric interpretation of the 3D sigma model
and its precise relation to work on topological T-duality. An interesting question in particular is
how one can "reduce" the notion of T-duality as isomorphisms of CAs to T-duality on 2D world-
sheet. There are results indicating that 2D gauged sigma models might offer a valuable input in
this respect [29–31].

Furthermore, one needs to understand better the physical aspects of the reduced 2D theory;
here we need to analyze appropriate string backgrounds and compare with results obtained in other
approaches, DFT in particular. Our analysis so far would suggest that there is a relation between
the section condition/strong constraint of DFT and the integrability condition for Dirac structures
of a CA. However, the precise relation is still unclear to us and should be worked out.

Acknowledgment. This work is based on a collaboration with A. Chatzistavrakidis and O. Lecht-
enfeld [13]. I would like to thank the organizers of Corfu Summer Institute 2015 for providing me
with an opportunity to present these results, and R. Szabo for discussion. This work was supported
in part by the Action MP1405 QSPACE from the Europe an Cooperation in Science and Technol-
ogy (COST). The work of L.J. was supported in part by Croatian Science Foundation under the
project IP-2014-09-3258.

Appendix

For completeness of presentation here we give the definition of a Courant algebroid according to
Ref. [32].

A Courant algebroid is a quadruplet (E, [·, ·]E ,〈·, ·〉E ,a) of the following data:

• a vector bundle E over M,

• a skew-symmetric bracket on Γ(E),

• a non-degenerate symmetric bilinear form on E,

• and an anchor map a : E→ TM,
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such that for Xi ∈ Γ(E):

1. [[X1,X2]E ,X3]E + c.p. = DN (X1,X2,X3) , 3N = 〈[X1,X2]E ,X3〉E + c.p. ,

2. a([X1,X2]E) = [a(X1),a(X2)]Lie ,

3. [X1, fX2]E = f [X1,X2]E +(a(X1) f )X2−〈X1,X2〉ED f , f ∈C∞(M) ,

4. 〈D f ,Dg〉E = 0 , f ,g ∈C∞(M) ,

5. a(X)〈X1,X2〉E = 〈[X,X1]E +D〈X,X1〉E ,X2〉E + 〈X1, [X,X2]E +D〈X,X2〉E〉E ,

where D : C∞(M)→ Γ(E) is a map such that 〈D f ,X〉E = 1
2 a(X) f .

References

[1] N. Hitchin, “Generalized Calabi-Yau manifolds,” Quart. J. Math. 54 (2003) 281
[math/0209099 [math-dg]].

[2] M. Gualtieri, “Generalized complex geometry,” DPhil thesis, math/0401221 [math.DG].

[3] C. M. Hull, “A Geometry for non-geometric string backgrounds,” JHEP 0510 (2005) 065
[hep-th/0406102].

[4] A. Dabholkar and C. Hull, “Generalised T-duality and non-geometric backgrounds,” JHEP 0605
(2006) 009 [hep-th/0512005].

[5] C. M. Hull and R. A. Reid-Edwards, “Gauge symmetry, T-duality and doubled geometry,” JHEP 0808
(2008) 043 [arXiv:0711.4818 [hep-th]].

[6] C. M. Hull and R. A. Reid-Edwards, “Non-geometric backgrounds, doubled geometry and
generalised T-duality,” JHEP 0909 (2009) 014 [arXiv:0902.4032 [hep-th]].

[7] N. Halmagyi, “Non-geometric String Backgrounds and Worldsheet Algebras,” JHEP 0807 (2008) 137
[arXiv:0805.4571 [hep-th]].

[8] N. Halmagyi, “Non-geometric Backgrounds and the First Order String Sigma Model,”
arXiv:0906.2891 [hep-th].

[9] R. Blumenhagen, A. Deser, E. Plauschinn and F. Rennecke, “Bianchi Identities for Non-Geometric
Fluxes - From Quasi-Poisson Structures to Courant Algebroids,” Class. Quant. Grav. 29 (2012)
135004 [arXiv:1202.4934 [hep-th]].

[10] D. Mylonas, P. Schupp and R. J. Szabo, “Membrane Sigma-Models and Quantization of
Non-Geometric Flux Backgrounds,” JHEP 1209 (2012) 012 [arXiv:1207.0926 [hep-th]].

[11] R. Blumenhagen, A. Deser, E. Plauschinn, F. Rennecke and C. Schmid, “The Intriguing Structure of
Non-geometric Frames in String Theory,” Fortsch. Phys. 61 (2013) 893 [arXiv:1304.2784 [hep-th]].

[12] A. Chatzistavrakidis, L. Jonke and O. Lechtenfeld, “Dirac structures on nilmanifolds and coexistence
of fluxes,” Nucl. Phys. B 883 (2014) 59 [arXiv:1311.4878 [hep-th]].

[13] A. Chatzistavrakidis, L. Jonke and O. Lechtenfeld, “Sigma models for genuinely non-geometric
backgrounds,” JHEP 1511 (2015) 182 [arXiv:1505.05457 [hep-th]].

8



P
o
S
(
C
O
R
F
U
2
0
1
5
)
1
2
4

Sigma models & non-geometric backgrounds Larisa Jonke

[14] D. Roytenberg, “Courant algebroids, derived brackets and even symplectic supermanifolds,” Ph.D.
thesis, math/9910078 [math.DG];
—"—, “A Note on quasi Lie bialgebroids and twisted Poisson manifolds,” Lett. Math. Phys. 61
(2002) 123 [math/0112152 [math.QA]]

[15] D. Roytenberg, “AKSZ-BV Formalism and Courant Algebroid-induced Topological Field Theories,”
Lett. Math. Phys. 79 (2007) 143 [hep-th/0608150].

[16] M. Alexandrov, M. Kontsevich, A. Schwartz and O. Zaboronsky, “The Geometry of the master
equation and topological quantum field theory,” Int. J. Mod. Phys. A 12 (1997) 1405
[hep-th/9502010].

[17] A. A. Tseytlin, “Duality Symmetric Formulation of String World Sheet Dynamics,” Phys. Lett. B 242
(1990) 163;
—"—, “Duality symmetric closed string theory and interacting chiral scalars,” Nucl. Phys. B 350
(1991) 395.

[18] W. Siegel, “Two vierbein formalism for string inspired axionic gravity,” Phys. Rev. D 47 (1993) 5453
[hep-th/9302036];
—"—, “Superspace duality in low-energy superstrings,” Phys. Rev. D 48 (1993) 2826
[hep-th/9305073];
—"—, “Manifest duality in low-energy superstrings,” In *Berkeley 1993, Proceedings, Strings ’93*
353-363, and State U. New York Stony Brook - ITP-SB-93-050 (93,rec.Sep.) 11 p. (315661)
[hep-th/9308133].

[19] C. Hull and B. Zwiebach, “Double Field Theory,” JHEP 0909 (2009) 099 [arXiv:0904.4664 [hep-th]].

[20] O. Hohm, C. Hull and B. Zwiebach, “Background independent action for double field theory,” JHEP
1007 (2010) 016 [arXiv:1003.5027 [hep-th]].

[21] O. Hohm, C. Hull and B. Zwiebach, “Generalized metric formulation of double field theory,” JHEP
1008 (2010) 008 [arXiv:1006.4823 [hep-th]].

[22] K. C. H. Mackenzie and P. Xu, “Lie bialgebroids and Poisson groupoids,” Duke Math. J. 73 (1994)
415.

[23] N. Ikeda, “Lectures on AKSZ Topological Field Theories for Physicists,” arXiv:1204.3714 [hep-th].

[24] P. Bouwknegt, J. Evslin and V. Mathai, “T duality: Topology change from H flux,” Commun. Math.
Phys. 249 (2004) 383 [hep-th/0306062].

[25] P. Bouwknegt, J. Evslin and V. Mathai, “On the topology and H flux of T dual manifolds,” Phys. Rev.
Lett. 92 (2004) 181601 [hep-th/0312052].

[26] H. Bursztyn, G. R. Cavalcanti and M. Gualtieri, “Reduction of Courant algebroids and generalized
complex structures,” Adv. Math. 211 (2007) 726 [math/0509640 [math.DG]].

[27] G. R. Cavalcanti and M. Gualtieri, “Generalized complex geometry and T-duality,” A Celebration of
the Mathematical Legacy of Raoul Bott (CRM Proceedings & Lecture Notes) American
Mathematical Society (2010) 341-366. [arXiv:1106.1747 [math.DG]].

[28] P. Ševera, “Poisson-Lie T-duality and Courant algebroids,” Lett. Math. Phys. 105 (2015) 1689
[arXiv:1502.04517 [math.SG]].

[29] A. Chatzistavrakidis, A. Deser and L. Jonke, “T-duality without isometry via extended gauge
symmetries of 2D sigma models,” JHEP 1601 (2016) 154 [arXiv:1509.01829 [hep-th]].

9



P
o
S
(
C
O
R
F
U
2
0
1
5
)
1
2
4

Sigma models & non-geometric backgrounds Larisa Jonke

[30] A. Chatzistavrakidis, “Non-isometric T-duality from gauged sigma models,” arXiv:1604.03739
[hep-th].

[31] I. Bakas, D. Lüst and E. Plauschinn, “Towards a world-sheet description of doubled geometry in
string theory,” arXiv:1602.07705 [hep-th].

[32] Z. J. Liu, A. Weinstein and P. Xu, “Manin Triples for Lie Bialgebroids,” J. Diff. Geom. 45 (1997)
no.3, 547 [dg-ga/9508013].

10


