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Black-hole thermodynamics and the quark-gluon plasma Brian P. Dolan

1. Review of black hole thermodynamics

Bekenstein suggested in 1972 that black holes should have anintrinsic entropy, proportional to
the area of the event horizon, in Planck units [] and 2 years later Hawking succeeding in determining
the associated temperature []. For a Schwarzschild black hole in 4-dimensional space-time, with
line element

ds2 =− f (r)dt2+
1

f (r)
dr2+ r2dΩ2, (1.1)

where f (r) = 1− 2GM
r , for example, the event horizon resides atf (rh) = 0 ⇒ rh = 2GM (we

use units withc = 1). The area of the event horizon is thusA = 16πG2M2 and the Bekenstein
entropy is

S ∝
A
ℓ

2

Pl
, (1.2)

whereℓ2
Pl = h̄G. The surface gravity of the black hole isκ = 1

4GM and the Hawking formula for the
temperature is

T =
κ h̄
2π

(1.3)

leading to

T =
h̄

8πGM
. (1.4)

While this is completely negligible for astrophysical black holes,e.g. for a solar mass black hole
T = 6×10−8 K, it is nevertheless very important for the conceptual understanding of black holes.

Identifying the mass of the black hole with the thermodynamic internal energy, a function of
entropy,M =U(S), we have

T =
∂U
∂S

(1.5)

leading to the first law of black hole thermodynamics

dM = T dS. (1.6)

With S ∝ A
h̄G = 16πGM2

h̄ and T = h̄
8πGM this allows the constant of proportionality in (1.2) to be

calculated giving the Hawking formula

S =
1
4

A
h̄G

. (1.7)

More generally, when angular momentum and angular momentumJ and electric chargeQ are
included, the first law reads

dM = T dS+ΩdJ +ΦdQ. (1.8)

2. Smarr relation

A consistency check of the first law is provided by combining Legendre transforms with di-
mensional analysis. In ordinary thermodynamics ind dimensionsU(S,V,ni) is a function of exten-
sive variables:S, V and the number of molesni, andU itself is extensive. Extensive variables scale
homogeneously as the system size is changed,

λ dU(S,V,n) =U(λ dS,λ dV,λ dni). (2.1)
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Differentiating this with respect toλ and then settingλ = 1 gives the Euler relation

U = S
∂U
∂S

+V
∂U
∂V

+ni
∂U
∂ni

⇒ U = ST −V P+niµi, (2.2)

whereµi is the chemical potential. This allows us to write the Gibbs free energy, the Legendre
transform ofU with respect toS andV , as

G(T,P,ni) =U +V P−ST = niµi, (2.3)

which is an integrated version of the Gibbs-Duhem relation.

A similar analysis can be applied to a rotating black hole inD space-time dimensions. Convert-
ing masses to lengths using Newton’s constant, and subsequently settingG = 1, the mass, entropy
and angular momentum scale as

M → λ D−3M, S → λ D−2S, J → λ D−2J (2.4)

(only neutral black holes are considered in this section, charged black holes will be considered —
adding a charge does not significantly change the conclusions). The black hole mass is a function
of S andJ so

λ D−3M(S,J) = M(λ D−2S,λ D−2J) (2.5)

⇒ (D−3)M = (D−2)S
∂M
∂S

+(D−2)J.
∂M
∂J

leading to the Smarr relation []

(D−3)M = (D−2)ST +(D−2)J.Ω (2.6)

which is satisfied for all known rotating black solutions of Einstein’s equations inD space-time
dimensions which are asymptotically flat.

However the naïve Smarr relation above fails in asymptotically AdS space-time. The reason
for this is clear — the cosmological constant is another dimensionful parameter that must be in-
cluded in the dimensional analysis. Following Henneaux andTeitelboim [] we define a Legendre
transform forΛ

Θ :=
∂M
∂Λ

. (2.7)

The cosmological constant has length dimension -2, so rescaling lengths results inΛ → λ−2Λ
and

λ D−3M(S,Λ,J) = M(λ D−2S,λ−2Λ,λ D−2J)

⇒ (D−3)M = (D−2)ST −2ΘΛ+(D−2)J.Ω, (2.8)

which is the correct modification of (2.6) in asymptoticallyde Sitter or anti-de Sitter space-time,
as first observed in [].

3



P
o
S
(
C
O
R
F
U
2
0
1
5
)
1
3
6

Black-hole thermodynamics and the quark-gluon plasma Brian P. Dolan

3. Pressure and enthalpy

A cosmological constantΛ contributes a pressureP and energy densityε with equation of
state

ε =−P =
Λ
8π

. (3.1)

It should be expected that the energy density in a volumeV will contribute to the thermal energy,
which is a function ofS andV , U(S,V ),

U = M+ εV = M−PV (3.2)

implying that
M =U +PV (3.3)

is the Legendre Legendre transformU(S,V ). The thermodynamic potential with this property is
the enthalpyH(S,P), a function ofS andP,

M =U +PV = H(S,P), (3.4)

as first suggested in []. Within this framework we define the volume to be the thermodynamically
conjugate variable to the pressure

V =
∂M
∂P

∣∣∣∣
S

(3.5)

and the first law becomes []
dU = T dS −PdV. (3.6)

3.1 Critical behaviour of asymptotically AdS Kerr black holes

Isotherms can be plotted in theP−V plane and it transpires that black hole solution of Ein-
stein’s equations often behave remarkably like van der Waals gases, with a line of first order phase
transitions between ‘large’ and ‘small’ black holes, terminating at a critical point.

For example an asymptotically AdS Kerr black hole has a second order phase transition [] and
this is visible in theP−V diagram in figure 1. The line of phase transitions is clearly visible in the
phase diagram in theP−T plane in figure 2.

There is a latent heat across the line of phase transition,

L = T ∆S = Mlarge −Msmall (3.7)

and one can check that the Clapeyron equation is satisfied []

dP
dT

=
∆S
∆V

. (3.8)

The critical point is in fact in exactly the same universality class as a van der Waals as it has
mean field critical exponents, []. The internal energy is a function ofS, V andJ, U(S,V,J) and we
can define reduced thermodynamic variables near the critical point,

p =
P−Pcrit

Pcrit
, v =

V −Vcrit

Vcrit
, t =

T −Tcrit

Tcrit
. (3.9)
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Figure 1: Isotherms, in theP−V plane, for an asymptotically AdS Kerr black hole rotating with angular
momentumJ. Van der Walls type behaviour is clearly visible. (What is actually plotted isPJ versusV

1
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1
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at fixedJ, which are dimensionless variables).

The critical exponents are define as usual:

• for the heat capacity

CV = T
∂T
∂S

∣∣∣∣
V,J

∝ |t|−α ; (3.10)

• at fixedp < 0 the jump in volume between large black holes, with reduced volumev>, and small
black holes, with reduced volumev<, is

∆v = v>− v< ∝ |t|β ; (3.11)

• for the isothermal compressibility

−V

(
∂P
∂V

)

T,J
∝ |t|−γ ; (3.12)

• on the critical isotherm, whent = 0,

|p| ∝ |v|δ . (3.13)

The critical exponents for an asymptotically AdS Kerr blackhole have been calculated [] and they
are mean field

α = 0, β =
1
2
, γ = 1 and δ = 3. (3.14)
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Figure 2: Phase diagram, in theP− T plane, for an asymptotically AdS Kerr black hole rotating with
angular momentumJ (in dimensionless variables). There is a line of first order phase transitions separating
two black hole phases, ‘large’ black holes and ‘small’ blackholes, which coalesce at a critical point.

4. Higher dimensional black holes

In space-time dimensions greater than 4 there can be more than one angular variable character-
ising a rotating black hole. In 6-dimensions, for example, the isometry group of a spherical event
horizon is the rank 2 groupSO(5) and there are two angular momenta,J1 andJ2. It was shown in []
that the phase diagram is more complicated than the 4-dimensional case — it depends on the ratio
q = J1

J2
and has three phases: corresponding to large, small and intermediate size black holes. There

are three lines of first order phase transitions meeting at a triple point, two of which terminate at
critical points.

While there are examples of higher dimensional black holes that have critical points with
exponents that are not mean field, [], these are not solutionsof simple Einstein gravity with a
cosmological constant, they involve modified gravitational dynamics such as Lovelock gravity or
Einsein-Gauss-Bonnet gravity, with extra dimensionful parameters.

5. AdS/CFT

Maldacena has conjectured an equivalence between gravity and conformal field theories (CFT’s)
[] in which the CFT lives on the asymptotic boundary of anti-de Sitter space-time. In this scenario
weak, classical, gravity in the bulk corresponds to strongly coupled CFT on the boundary, in a
space-time of one dimension lower than the gravitational dynamics.

For example for 10− d superstring theory compactified onAdS5× S5 the cosmological con-
stant inAdS5 is related to the radiusL of S5 by Λ = − 4

L2 . The CFT on the boundary isN = 4
supersymmetric Yang-Mills with gauge groupSU(N) in 4 space-time dimensions. The number of

6
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colors is determined byL and the Planck length of 10-dimensional supergravity,ℓ8
Pl = h̄G10, by []

N =
π2L4
√

2ℓ4
Pl

. (5.1)

If G10 is fixed then varyingΛ (or equivalentlyL) necessitates varying the number of colors and
it was suggested in [] that the variable thermodynamically conjugate toΛ in this context would be
a kind of chemical potential for color. This point of view wasdeveloped more quantitatively in [].

Here we shall adopt a different approach and keepN fixed asL is varied. This requires varying
G10 asL is varied so as to keep the right hand side of (5.1) fixed, as suggested in []. From the point
of view of the full string theory the 10-dimensional Newton constant is related to the string tension
α ′ and the string couplinggs by h̄G10 = 8π6g2

s (α ′)4, so varyingG10 can be viewed as varyinggs

keepingα ′ fixed.
Following [] we fix N and varyΛ. According to the AdS/CFT conjecture the strong coupling

limit of the SUSY Yang-Mills theory is related to weak (classical) gravity in the 5-dimensional
bulk, in particular an asymptotically AdS black hole in 5-dimensions translates to a finite temper-
ature thermal background in the 4-dimensional Yang-Mills theory on the boundary. Including a
U(1) chargeq on the black-hole the 5-dimensional line element, in globalco-ordinates, is []

d2s =− f (r)dt2+
dr2

f (r)
+ r2d2Ω3, (5.2)

with

f (r) = 1− µ
r2 +

q2

r4 +
r2

L2 , (5.3)

whered2Ω3 is the line element onS3 with unit radius. The asymptotic boundary ofAdS5 at r → ∞
has the topology ofR×S3, with constant time slices being 3-spheres of volumeV = 2π2L3. Varying
L in this solution is equivalent to varying the volume of theS3 slices.

The usual massM (the AdS equivalent of the ADM mass) of the black hole are related to the
metric parameter,µ , by

M =
3πµ
8G5

, (5.4)

and, in terms of the largest rootrh of f (r) = 0,

M =
3πr2

h

8G5

(
1+

r2
h

L2 +
q2

r4
h

)
. (5.5)

The 5-dimensional Newton’s constantG5 is related toG10 by the volume of the 5-sphere in the
AdS5×S5 solution. The 5-sphere has radiusL, and volumeπ3L5, leading to

π3L5

h̄G10
=

1
h̄G5

⇒ 1
h̄G5

=
2N2

πL3 . (5.6)

As written the 5-dimensional charge,q, has dimensions of length squared but the charge,Q, in the
CFT should be dimensionless, as appropriate to a charge in 4-dimensions. A dimensionless 4-d
charge can therefore defined as []

Q =

√
3πL

2h̄G5
q =

√
3N2 q

L2 (5.7)

7
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(the 3π follows from Gauss’ law and the convention for the normalisation of theF2 term in the
action, actually− 1

16πG5
F2, but its explicit value does not really matter in the sequel).

Finally the event horizon has the topology ofS3, with a radiusrh, and the entropy is14 of the
area (or 3-dimensional volume in this case). In 5-d Planck units,

S =
1
4

(
2π2 r3

h

h̄G5

)
= πN2

(rh

L

)3
. (5.8)

5.1 Quark-gluon plasma

At high temperature the Yang-Mills theory on the boundary will be in the deconfined phase
[]. Translating from the geometric variables(rh,L,q) to the thermodynamic variables(S,V,Q) the
mass (5.5) is equated to the internal energy,

M(rh,L,q) =U(S,V,Q) =
3N2h̄

4

(
2π2

V

) 1
3
(

x4+ x2+
y2

x2

)
(5.9)

wherex =
(

S
πN2

) 1
3 = rh

L andy = Q√
3N2 =

q
L2 are dimensionless.

Note that in the CFT the black hole mass is equated to the internal energy of the system while
in the bulkAdS5 it is interpreted as the enthalpy. This becauseΛ relates to a volume in the CFT
while it is a pressure on the gravitational side. This has theeffect of interchangingP andV in the
CFT relative to gravity in the bulk.

The temperature, pressure and electrostatic potential follow from differentiation of (5.9),

T =
∂U
∂S

∣∣∣∣
V,Q

, P =− ∂U
∂V

∣∣∣∣
S,Q

, Φ =
∂U
∂Q

∣∣∣∣
S,V

, (5.10)

and are found to be

T =
∂U
∂S

∣∣∣∣
Q,V

=
h̄

2πL

(
2x+

1
x
− y2

x5

)
, (5.11)

P =− ∂M
∂V

∣∣∣∣
S,Q

=
N2h̄

8π2L4

(
x4+ x2+

y2

x2

)
=

ε
3
, (5.12)

whereε = U
V is the energy density, and

Φ =
∂U
∂Q

∣∣∣∣
S,V

=

√
3h̄

2L
y
x2 . (5.13)

The heat capacity,CV,Q = T ∂U
∂T

∣∣∣
V,Q

, is found to be positive and diverges at a critical point, first

found by []. This is most succinctly parametrized by the critical values ofx andy

x2
∗ =

1
3
, y2

∗ =
1

135
. (5.14)

ForQ= 0 there is a first order phase transition, which corresponds to the Hawking-Page phase tran-
sition in bulk [], and this is translates to the deconfining phase transition for QCD on the boundary
[]. This extends for non-zeroQ to a line of first order phase transitions terminating at the critical

8
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Figure 3: Phase diagrams for the boundary CFT in theΦ−T andQ−T planes.

point. This phase structure was found in [] and the phase diagrams in theΦ− T plane and the
Q−T planes were worked out there, they are sketched in figure 3.

With the pressure defined as above one can go further and determine the adiabatic compress-
ibility

κS,Q =− 1
V

∂V
∂P

∣∣∣∣
S,Q

=
3

4P
(5.15)

which is positive and finite – there is no sign of the critical point in the adiabatic compressibility.
Critical behaviour is however manifest in the isothermal compressibility,

κT,Q =− 1
V

∂V
∂P

∣∣∣∣
T,Q

, (5.16)

which vanishes at the critical point! This a reflection of the fact thatP andV in the CFT are
swapped round from their roles in the gravitational bulk, and it is the inverse of the isothermal
compressibility that diverges in the CFT.

5.2 Critical exponents in the P−V plane

Define the reduced temperature

t =
T −T∗

T∗
(5.17)

evaluated at fixedV (L cancels in the ratiot and plays no role inCV,Q). One finds that the heat
capacity diverges at the critical point as

CV,Q ∼ |t|−α (5.18)

with α = 2
3.

At first sight this is a little surprising as the critical behaviour of charged black holes was
examined in [] and found to be mean field, and mean field exponents would giveα = 0.

9
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To understand what is happening here it is useful to use dimensionless variables for the pres-
sure and the volume. To study isothermal properties one might use

Ṽ :=V T 3 =
h̄3

4π

(
2x6+ x4− y2

x5

)3

(5.19)

and

P̃ :=
P

N2T 4 =
2π2x18

h̄3

(
x6+ x4+ y2

)

(2x6+ x4− y2)
4 . (5.20)

A plot of P̃ againstṼ for various values ofy is shown in figure 4. The critical point is at̃V∗ =
384

√
3

125π ≈ 1.694,P̃∗ = 875π2

55296 ≈ 0.156.

0 1 2 3 4
V0.0

0.2

0.4

0.6

0.8

1.0
P

Figure 4: Curves of constantQ in theP−V plane (P/T4 plotted againstV T 3). The critical curve is red and
the critical point is indicated by a black dot. The green curve isQ = 0.

We see that∂ P̃
∂Ṽ

∣∣∣
T,Q

diverges to+∞ at the critical point so, as mentioned earlier, the isothermal

compressibility (5.16) vanishes there. But if we are interchangingP andV relative to their roles
in the bulk, the critical point should be expected to manifest itself as a divergence in theinverse
isothermal compressibility, not in the compressibility itself, and this is indeed the case.

Normally other critical exponents follow by defining a reduced pressure and volume,

p =
P̃− P̃∗

P̃∗
, v =

Ṽ − Ṽ∗
Ṽ∗

, (5.21)

but conformal invariance causes a complication here in thatt andv are not independent, rather

(1+ v) = (1+ t)3. (5.22)

10
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This is because the finite temperature theory onS3 is equivalent to a theory with Euclidean time
periodically identified which is topologicallyS1×S3. In a conformally invariant theory the physics
is only sensitive only to the ratio of the radii ofS1 to S3 not to each of the radii separately. We can
use eithert or v to probe the physics, but not both.

Better is to fix one, let us chooset, and varyv. The curves in figure 4 are at fixed charge, so we
shall use charge as the control parameter, rather thant, to explore the physics in theP−V plane.
We define the reduced chargeη as

η = (y− y∗)/y∗. (5.23)

From figure 4 we see that, at a fixed charge in the two phase regime y < y∗ (to the right of
the critical point), there is a jump in the pressure at a fixed volume. This implies that pressure
should be viewed as the order parameter and, withη as the control parameter, the exponentδ is
then obtained from Maxwell’s equal area law, applied tov(p) rather thanp(v), at constantQ and
T . The jump in pressure is parametrized by

∆p = p>− p< ∝ |η |β . (5.24)

With p is the order parameter andη as the control parameterα is obtained from the divergence of
CP,Q ∼ |η |−α , which is actually finite at the critical point, and soα = 0.

The inverse isothermal compressibility

(κT,Q)
−1 ∼ |η |−γ (5.25)

does diverge, while on the critical curveη = 0

|v| ∝ |p|δ . (5.26)

Explicit evaluation reveals thatα , β , γ andδ are again mean field exponents

α = 0, β =
1
2
, γ = 1 and δ = 3. (5.27)

6. Conclusions

It has been argued that, in gravitational theories with a variable cosmological constant, the
black hole mass should identified withenthalpy,

M = H =U +PV, (6.1)

and not the more usual internal energy. This allows the definition of a “thermodynamic volume”

V =
∂H
∂P

(6.2)

andΛ = −8πP 6= 0 implies that there should be aPdV term in the first law of black hole thermo-
dynamics which is modified to read

dU = T dS−PdV +ΩdJ+ΦdQ. (6.3)

11
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This PdV term in the first law affects the efficiency of Penrose processes which can be up to 75%
efficient for a charged black hole in asymptotically AdS space-time, as opposed to 50% for an
asymptotically flat charged black hole [].

There are critical points in the black hole phase diagram andall known asymptotically AdS
black hole solutions of Einstein’s equations exhibit mean field exponents. Various well known
thermodynamic relations, such as the Clapeyron equation, can be verified in black hole thermody-
namics. The adiabatic compressibility of a black hole can bedefined and in any dimension this is
positive and non-singular 0≤ κS,P < ∞, at least for asymptotically AdS Myers-Perry black holes.

Within the framework of the AdS/CFT correspondence the thermodynamics of asymptotically
AdS black holes in the bulk gives us information about the thermodynamic behaviour of the confor-
mal field theory in the boundary. The mass there is identified with internal energy and, in global
co-ordinates, the cosmological constant can be translatedto a finite volume for the CFT. This in
turn leads to the calculation of the pressure in the CFTP =− ∂U

∂V .
For AdS5×S5 compactification of 10-dimensional superstring theory a charged black hole in

AdS5 corresponds toN = 4 SUSY Yang-Mills in 4 space-time dimensions, with a spatialgeometry
which is S3. There is a line of first order phase transitions, which terminates in a critical point
which has mean field exponents, with pressure and volume interchanged from the usual van der
Waals case.

Acknowledgment: This article is based upon work from COST Action MP1405 QSPACE, sup-
ported by COST (European Cooperation in Science and Technology).
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