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1. Review of black hole thermodynamics

Bekenstein suggested in 1972 that black holes should hawérnsic entropy, proportional to
the area of the event horizon, in Planck units [] and 2 yea&es lawking succeeding in determining
the associated temperature []. For a Schwarzschild blakkiha}-dimensional space-time, with

line element 1

f(r)
wheref(r) = 1— M for example, the event horizon residesfat,) =0 = r,=2GM (we
use units withc = 1). The area of the event horizon is thiis= 161G*M? and the Bekenstein
entropy is

ds® = — f(r)dt® + —dr?+rdQ?, (1.1)

A2

e’
where(2, = hG. The surface gravity of the black holeks= ;& and the Hawking formula for the
temperature is

(1.2)

T_Kﬁ

= 1.
o (1.3)
leading to
T= _h (1.4)
- 8nGM’ '

While this is completely negligible for astrophysical tawles,e.g. for a solar mass black hole
T =6x 108K, it is nevertheless very important for the conceptual ustdeding of black holes.
Identifying the mass of the black hole with the thermodyramternal energy, a function of

entropy,M =U(S), we have

ouU
T="3s (1.5)

leading to the first law of black hole thermodynamics
dM =TdS (1.6)

With SO & = 16"%“"2 and T = g% this allows the constant of proportionality in (1.2) to be

calculated giving the Hawking formula

1A

= 1rG
More generally, when angular momentum and angular momegdtamd electric charg€) are
included, the first law reads

2.7)

dM = T dS+ QdJ + ®dQ. (1.8)

2. Smarr relation

A consistency check of the first law is provided by combinirggéndre transforms with di-
mensional analysis. In ordinary thermodynamicd oimensionsJ (S V, n;) is a function of exten-
sive variablesS, V and the number of molas, andU itself is extensive. Extensive variables scale
homogeneously as the system size is changed,

AU (SV,n) =U(A9S A%, A %), (2.1)
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Differentiating this with respect td and then settind = 1 gives the Euler relation

U U aU
u=s™, .y Y
as Vv Tan

= U = ST —VP+niy;, (2.2)

where; is the chemical potential. This allows us to write the Gibleefenergy, the Legendre
transform ofU with respect t&sandV, as

G(T,Pn)=U+VP—ST =nu, (2.3)

which is an integrated version of the Gibbs-Duhem relation.

A similar analysis can be applied to a rotating black holb space-time dimensions. Convert-
ing masses to lengths using Newton’s constant, and subsiigsettingG = 1, the mass, entropy
and angular momentum scale as

M—AP3M, S—aAP?25 3 AP2 (2.4)

(only neutral black holes are considered in this sectioargdd black holes will be considered —
adding a charge does not significantly change the conclsisidine black hole mass is a function
of SandJ so

AP3M(SJ) = M(AP25AP~2) (2.5)
= (D-3)M = (D—Z)Saa—l\g—F(D—Z)J.aa—I?JA

leading to the Smarr relation []
(D-3M=(D-2)ST+(D-2)J.Q (2.6)

which is satisfied for all known rotating black solutions ah&ein’s equations ilD space-time
dimensions which are asymptotically flat.

However the naive Smarr relation above fails in asympttyidedS space-time. The reason
for this is clear — the cosmological constant is another disienful parameter that must be in-
cluded in the dimensional analysis. Following Henneaux Bgitelboim [] we define a Legendre

transform forA

oM

The cosmological constant has length dimension -2, soliegdangths results il — A —2A
and

AP3M(SAJ) = M(AP25 A 27, AP2Y)
=  (D-3M = (D—-2)ST —20A +(D-2)J.Q, (2.8)

which is the correct modification of (2.6) in asymptoticatlg Sitter or anti-de Sitter space-time,
as first observed in [].
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3. Pressure and enthalpy

A cosmological constamh contributes a pressuti@ and energy densitg with equation of

state
A

= 5-[.
It should be expected that the energy density in a volWvll contribute to the thermal energy,
which is a function oSandV,U (S V),

g£=-P (3.1)

U=M+eV=M-PV (3.2)

implying that
M=U+PV (3.3)

is the Legendre Legendre transfoti{S V). The thermodynamic potential with this property is
the enthalpyH (S,P), a function ofSandP,

M=U+PV=H(SP), (3.4)

as first suggested in []. Within this framework we define thiine to be the thermodynamically
conjugate variable to the pressure

oM
V=— .
. @9
and the first law becomes []
dU =TdS — PdVv. (3.6)

3.1 Critical behaviour of asymptatically AdSKerr black holes

Isotherms can be plotted in thie—V plane and it transpires that black hole solution of Ein-
stein’s equations often behave remarkably like van der $\gades, with a line of first order phase
transitions between ‘large’ and ‘small’ black holes, tamating at a critical point.

For example an asymptotically AdS Kerr black hole has a sttooder phase transition [] and
this is visible in theP —V diagram in figure 1. The line of phase transitions is cleaidyble in the
phase diagram in the— T plane in figure 2.

There is a latent heat across the line of phase transition,

and one can check that the Clapeyron equation is satisfied []
dP AS
dr AV’

The critical point is in fact in exactly the same univergatitass as a van der Waals as it has

mean field critical exponents, []. The internal energy isrecfion of S,V andJ, U (SV,J) and we
can define reduced thermodynamic variables near the ¢tipkdat,

(3.8)

p= I:)_Pcrit7 V= V_Vcrit7 t— T —Tcrit.
I:)cr it Vcr it Tcr it

(3.9)

4
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Figure 1. Isotherms, in thé® —V plane, for an asymptotically AdS Kerr black hole rotatingh/\fimlgular
momentumJ. Van der Walls type behaviour is clearly visible. (What isuatly plotted isPJ versu&/é/ﬁ
at fixedJ, which are dimensionless variables).

The critical exponents are define as usual:

o for the heat capacity
oT
= T ey D -a. 1
Q=T33 v [t (3.10)
e at fixedp < 0 the jump in volume between large black holes, with reducddmrev-., and small
black holes, with reduced volume, is

Av=v. —v_ O|t|?; (3.11)
o for the isothermal compressibility
oP
-V | = aft|=Y; 3.12
(%),,0n (3.12)
e 0N the critical isotherm, whein= 0,
Ip| O |v|°. (3.13)

The critical exponents for an asymptotically AdS Kerr blécke have been calculated [] and they
are mean field

a =0, B:%, y=1 and 06=3. (3.14)
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Figure 2: Phase diagram, in the — T plane, for an asymptotically AdS Kerr black hole rotatinghwi
angular momenturd (in dimensionless variables). There is a line of first ordeage transitions separating
two black hole phases, ‘large’ black holes and ‘small’ blaokes, which coalesce at a critical point.

4. Higher dimensional black holes

In space-time dimensions greater than 4 there can be marettgangular variable character-
ising a rotating black hole. In 6-dimensions, for examphe, isometry group of a spherical event
horizon is the rank 2 groupO(5) and there are two angular momentaandJ,. It was shown in []
that the phase diagram is more complicated than the 4-diorease — it depends on the ratio
q= j—; and has three phases: corresponding to large, small amchgd@&te size black holes. There
are three lines of first order phase transitions meeting aple foint, two of which terminate at
critical points.

While there are examples of higher dimensional black hdies lhave critical points with
exponents that are not mean field, [], these are not solutbrssmple Einstein gravity with a
cosmological constant, they involve modified gravitatiosgnamics such as Lovelock gravity or
Einsein-Gauss-Bonnet gravity, with extra dimensionfulpaeters.

5. AdS/ICFT

Maldacena has conjectured an equivalence between gradtyanformal field theories (CFT's)
[] in which the CFT lives on the asymptotic boundary of argi$itter space-time. In this scenario
weak, classical, gravity in the bulk corresponds to strgpragiupled CFT on the boundary, in a
space-time of one dimension lower than the gravitationakdyics.

For example for 10- d superstring theory compactified éwS; x S° the cosmological con-
stant inAdSs is related to the radiuk of S by A = —L%. The CFT on the boundary ig” = 4
supersymmetric Yang-Mills with gauge gro® (N) in 4 space-time dimensions. The number of
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colors is determined bl and the Planck length of 10-dimensional supergra\eﬁy,: hGi, by []

N = ﬂ. (5.1)
V2t

If Gypis fixed then varying\ (or equivalentlyL) necessitates varying the number of colors and
it was suggested in [] that the variable thermodynamicatlyjegate toA\ in this context would be
a kind of chemical potential for color. This point of view waeveloped more quantitatively in [].

Here we shall adopt a different approach and Kedixed asL is varied. This requires varying
Gyp aslL is varied so as to keep the right hand side of (5.1) fixed, agesigd in []. From the point
of view of the full string theory the 10-dimensional Newtammstant is related to the string tension
a’ and the string couplings by hG1o = 87°g2(a’)#, so varyingGo can be viewed as varyings
keepinga’ fixed.

Following [] we fix N and varyA. According to the AdS/CFT conjecture the strong coupling
limit of the SUSY Yang-Mills theory is related to weak (clasg) gravity in the 5-dimensional
bulk, in particular an asymptotically AdS black hole in Srginsions translates to a finite temper-
ature thermal background in the 4-dimensional Yang-MHisary on the boundary. Including a
U (1) chargeq on the black-hole the 5-dimensional line element, in glaoabrdinates, is []

2
d?s= —f(r)dt? + Trr) +12d2Qs, (5.2)
with .
B, QT
f(N=1-5+2+5
whered?Qs is the line element o8° with unit radlus. The asymptotic boundaryAdSs atr — o
has the topology dR x S°, with constant time slices being 3-spheres of voliune 2r?L3. Varying
L in this solution is equivalent to varying the volume of tBslices.
The usual mask! (the AdS equivalent of the ADM mass) of the black hole areteeldo the

metric parametely, by

(5.3)

3mu

M=— 54
e (5.4)
and, in terms of the largest ron{ of f(r) =0,
3nrh ra q2
M= 8Ge <1+ 2 + (5.5)

The 5-dimensional Newton’s consta@s is related toGlo by the volume of the 5-sphere in the
AdS; x S solution. The 5-sphere has radiusand volumerrL®, leading to

LSS S S\

ﬁGlo - HG5 ﬁG5 N TIL3.
As written the 5-dimensional chargg, has dimensions of length squared but the chagyé the
CFT should be dimensionless, as appropriate to a chargalimdnsions. A dimensionless 4-d
charge can therefore defined as ]

(5.6)

Q= ggggq \/§N2q (5.7)
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(the 3 follows from Gauss’ law and the convention for the normdisaof the F2 term in the
action, actually—lGLnGst, but its explicit value does not really matter in the sequel)

Finally the event horizon has the topology$f with a radiusry, and the entropy i% of the
area (or 3-dimensional volume in this case). In 5-d Plandgtsun

12l o rh\8
S_Z<HGS>_HN <E) (5-8)

5.1 Quark-gluon plasma

At high temperature the Yang-Mills theory on the boundaril ia& in the deconfined phase
[. Translating from the geometric variablés,, L, q) to the thermodynamic variabl¢§,V, Q) the
mass (5.5) is equated to the internal energy,

- aN%h 2R ] , Y
M(rh,L.0) =U(SV.Q) = — (T) <><4+x +Q> (5.9)

wherex = (%)% = andy = ﬁ = 7+ are dimensionless.

Note that in the CFT the black hole mass is equated to thengitenergy of the system while
in the bulk AdSs it is interpreted as the enthalpy. This becadseelates to a volume in the CFT
while it is a pressure on the gravitational side. This haseffect of interchangind® andV in the
CFT relative to gravity in the bulk.

The temperature, pressure and electrostatic potentlaiWfdtom differentiation of (5.9),

Y | S (5.10)
IS|vq oV lso 9Q|sv
and are found to be )
ou h 1 vy
oM N2h > Y\ €
wheree = {J—, is the energy density, and
ou V3hy
P = 70 o =S (5.13)

The heat capacitfy g =T 32 vo
found by []. This is most succinctly parametrized by theicait values ofk andy

, is found to be positive and diverges at a critical point firs

1 1

2

== =___. 5.14

X =3 =135 (5.14)
ForQ =0 there is a first order phase transition, which correspamttetHawking-Page phase tran-
sition in bulk [], and this is translates to the deconfininggd transition for QCD on the boundary

[. This extends for non-zer® to a line of first order phase transitions terminating at ttigcal
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Figure 3: Phase diagrams for the boundary CFT indhe T andQ — T planes.

point. This phase structure was found in [] and the phaseraliag in thed® — T plane and the
Q— T planes were worked out there, they are sketched in figure 3.
With the pressure defined as above one can go further andrdie¢tethe adiabatic compress-
ibility
10V 3

_ Lo 3 1
SQTTV P, WP (-13)

which is positive and finite — there is no sign of the criticalm in the adiabatic compressibility.
Critical behaviour is however manifest in the isothermahpoessibility,

190V

KrQ=—y 3 (5.16)

T7Q
which vanishes at the critical point! This a reflection of the fact th@tandV in the CFT are

swapped round from their roles in the gravitational bulkd @nis the inverse of the isothermal
compressibility that diverges in the CFT.

5.2 Critical exponentsin theP—V plane

Define the reduced temperature

(5.17)

evaluated at fixe® (L cancels in the ratid and plays no role ity g). One finds that the heat
capacity diverges at the critical point as

Cvo~ It @ (5.18)

with o = 2.
3
At first sight this is a little surprising as the critical bef@ur of charged black holes was
examined in [] and found to be mean field, and mean field expgenveould givea = 0.
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To understand what is happening here it is useful to use diifoeless variables for the pres-
sure and the volume. To study isothermal properties onetraiggh

. R 26+ —y?\°
. 3_
V:=VT = <7X5 > (5.19)

and

P 28 (XY
— N2T4 - ﬁ3 (2X6+X4—y2)4
A plot of P againstV for various values of/ is shown in figure 4. The critical point is & =

384/3 D _ 875 .
oy N 1.694,P, = T5206 ~ 0.156.

P:

(5.20)

P
1.0
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0.2

0.0 T o
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Figure4: Curves of constar® in theP —V plane P/T* plotted agains T3). The critical curve is red and
the critical point is indicated by a black dot. The green eusQ = 0.

We see thal% . diverges to+ at the critical point so, as mentioned earlier, the isottarm
compressibility (5.16) vanishes there. But if we are irtarggingP andV relative to their roles
in the bulk, the critical point should be expected to maniftself as a divergence in theverse
isothermal compressibility, not in the compressibilityeif, and this is indeed the case.

Normally other critical exponents follow by defining a reddgressure and volume,

p=— =,  v=—, (5.21)

but conformal invariance causes a complication here inttaatlv are not independent, rather

(14+v) = (1+1)% (5.22)

10
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This is because the finite temperature theorySiis equivalent to a theory with Euclidean time
periodically identified which is topologicallg x S. In a conformally invariant theory the physics
is only sensitive only to the ratio of the radii 8f to S* not to each of the radii separately. We can
use eithet or v to probe the physics, but not both.

Better is to fix one, let us choosgand varyv. The curves in figure 4 are at fixed charge, so we
shall use charge as the control parameter, rathertthanexplore the physics in theé—V plane.
We define the reduced chargeas

n=(y—Y)/Ys (5.23)

From figure 4 we see that, at a fixed charge in the two phase eggimy, (to the right of
the critical point), there is a jump in the pressure at a fixedme. This implies that pressure
should be viewed as the order parameter and, witis the control parameter, the exponéris
then obtained from Maxwell's equal area law, applied/(tp) rather thanp(v), at constantQ and
T. The jump in pressure is parametrized by

Ap=p-—p-Onlk. (5.24)

With pis the order parameter amdas the control parameter is obtained from the divergence of
Cpo ~ [n|~%, which is actually finite at the critical point, and so= 0.
The inverse isothermal compressibility

(krQ) " ~In|™ (5.25)
does diverge, while on the critical curye=0
v O |pl°. (5.26)
Explicit evaluation reveals that, 3, y andd are again mean field exponents

y=1 and 0o6=3. (5.27)

6. Conclusions

It has been argued that, in gravitational theories with @tde cosmological constant, the
black hole mass should identified wighthalpy,

M=H=U+PV, (6.1)

and not the more usual internal energy. This allows the diefimof a “thermodynamic volume”

_oH
- 0P

and/\ = —8nP # 0 implies that there should beRxdV term in the first law of black hole thermo-
dynamics which is modified to read

V (6.2)

dU = TdS— PdV + QdJ + dQ. (6.3)

11
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This PdV term in the first law affects the efficiency of Penrose proggsshich can be up to 75%
efficient for a charged black hole in asymptotically AdS sptime, as opposed to 50% for an
asymptotically flat charged black hole [].

There are critical points in the black hole phase diagramadinkhown asymptotically AdS
black hole solutions of Einstein’s equations exhibit meadfiexponents. Various well known
thermodynamic relations, such as the Clapeyron equat@nbe verified in black hole thermody-
namics. The adiabatic compressibility of a black hole caddfeed and in any dimension this is
positive and non-singular € ksp < o, at least for asymptotically AdS Myers-Perry black holes.

Within the framework of the AdS/CFT correspondence thertfoetynamics of asymptotically
AdS black holes in the bulk gives us information about thertteelynamic behaviour of the confor-
mal field theory in the boundary. The mass there is identifighl imternal energy and, in global
co-ordinates, the cosmological constant can be transtatadinite volume for the CFT. This in
turn leads to the calculation of the pressure in the @I‘—_T—g—\lj.

For AdS; x S compactification of 10-dimensional superstring theory arged black hole in
AdS; corresponds to” = 4 SUSY Yang-Mills in 4 space-time dimensions, with a spajedmetry
which is S®. There is a line of first order phase transitions, which teatés in a critical point
which has mean field exponents, with pressure and volumechdeged from the usual van der
Waals case.
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