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Nonlinear model structure selection (MSS) is an important step in the modeling theory of the
nonlinear system. The proper model structure and model parameters estimation can be used to
reduce unnecessary computations and improve the model forecast accuracy. This paper mainly
investigates  the short-term wind speed forecasting (STWSF) by utilizing the comprehensive
MSS technique based on real data of the wind speed plant in East China. The MSS and manifold
algorithm are respectively used to design proper model structure and reduce the computational
complexity to improve the forecasting accuracy and promote the computational efficiency. The
experimental evaluation by using support vector regression based on the real data is given to
demonstrate the performance of the proposed method.
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1. Introduction

The distribution  of  wind speed  is  volatile,  intermittent  and  random so  that  its  model
structure  selection  (MSS)  is  relatively difficult.  The  wind speed forecasting  has  significant
impact for security and stability of the large-capacity wind speed connected to the grid. Most
forecasting  methods  such  as  time  series[1],  Kalman  filtering[2],  Artificial  neural  networks
(ANNs)[3],  numerical  weather  prediction[4],  fuzzy  logic  method[5]  and  support  vector
machine[6], don’t take into account the distribution characteristics of meteorological data. The
main  disadvantages  of  the  outlined  literature  include  that:  they do  not  provide  a  complex
analysis for the model  structure design and selection, such as the model variables selection,
model  variable  order  estimation as  well  as  the performance measurement  criteria,  typically,
there are plenty of available variables which can be used for modeling; however, the proper
variables with approximately model order are not provided, which results in lacking the ability
of generalization and practicability.

Manifold algorithm (MA) is  a  mature  technology,  which can be applied for  the  input
variable dimensionality reduction, automated target recognition[7] and machine intelligence [8]
etc. Bloch used MA to solve the conflictive situations throughout the information combination
based on the classification behavior [9]. Chou et al. [10] introduced the multi-scale recursive
estimation and MA for a traditional dynamical model with dyadic trees. Banerjee et al. [11] used
the sparse representation and MA for the MSS based on the maximum likelihood estimation and
implemented the memory savings methods even if the utilized the method contains more than
tens  of nodes.  Dietterich [12]  investigated five approximate statistical  tests  for  the learning
algorithm according to different types of errors, and then made the proper decision for the MSS
based on the cross-validation and MA. Although the outlined methods have proposed many
useful strategies for the practical issue, the utilized model is usually not a robust and reasonable
method because the model structure design basically depends on the subjective experience, for
instance, the dynamic characteristics of the system is not considered. In addition, the traditional
forecasting  method  of  the  numerical  weather  prediction  is  instabile  because  the  climate  of
different wind speed plants is different. In addition, the selected model is not very used for the
variables with large dimension due to high computational complexity.

Based on the above discussion, the accurate and appropriate models can be used to reflect
the  characteristics  of  the  utilized  variable,  and  the  sample  feature  extraction  benefit  the
improvement of the computational efficiency. How to select proper model structure, reduce the
computational  complexity and improve the forecast accuracy based on the characteristics of
samples is what we want to address in this paper.

2. Data Description

The power generation equipment used weak wind turbine type wind turbines--FD77 of
Dongfang Steam Turbine Co., Ltd., the diameter of wind wheel is 77m, and wheel height has 3
different heights, respectively, 57.65m, 66.25m and 81.25m. In this Section, the utilized data is
from 2011/06/01 to 2012/06/01 and the sampling frequency is 5 minutes. Based on different
heights 57.65m, 66.25m and 81.25m of the wheel height. 18 input variables are divided into
four groups based on different heights (10m, 50m and 70m):

Group 1 (G1). 10m: No1, AWS; No2, AWD; No3, SSD; No4, RTWS; No5, RTWD;
Group 2 (G2). 50m: No6, AWS; No7, AWD; No8, SSD; No9, RTWS; No10, RTWD;
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Group 3 (G3). 70m: No11, AWS; No12, AWD; No13, SSD; No14, RTWS; No15, RTWD;
Group 4 (G4). No16, 10m temperature; No17, 10m humidity; No18, Pressure.
where AWS: average wind speed; AWD: average wind direction; SSD: sample standard

deviation; RTWS: real-time wind speed; RTWD: real-time wind direction.

3. Model Structure Selection

3.1 Model Variable Selection

Model Variable Selection (MVS) is an essential step for the modeling with plurality of
available  variables.  The  proper  variables  applied  as  inputs  should  be  highly  penetrated
information system with appropriate number,  independent  with each other and used for  the
output representation. Taking the neural network as an example, MIV can be used to measure
the weight matrix changes of the neural network to determine the impact selection index related
to the output and input neurons. The independent variable feature of the relevant sample by
increasing and decreasing 10% (empirical values proposed by the original author) respectively
to formulate the new training sample set ISI1 and ISI2 which are defined by

                                       (3.1)

1,..., , 1,...,i k j n= = . IS1 and IS2 are respectively used as the new input variables for the
neural network testing, then the impact value about the input variable to the output variable is
derived by the difference between S1 and IS1, S2 and IS2, respectively.

3.2 Model Order Estimation

Usually, the model variable order has the essential connections associated with the current
output  variables,  which reflects the dynamical  system’s maximum time-delay.  Typically,  the
larger the system’s dynamics persistence is, and then the higher the model variable order will
be.

4. Data Dimensionality Reduction

4.1 Manifold Algorithm

Many methods had been developed for that issue in recent years although these methods
came from many different disciplines [13]. Many well-known methods, such as the principal
components analysis (PCA) [14], the multidimensional scaling (MDS) [15], the independent
component  analysis  (ICA) [16]  and the factor  analysis  [17],  can model  the  linear subspace
(manifolds)  for  a  given  high  dimensional  observation;  however,  these  methods  have  one
common drawback: they only focus on the data characteristics in linear subspace; therefore,
many excellent methods, such as kernel PCA [18,19], locally linear embedding (LLE) [20,21],
Laplacian eigenmaps (LEM) [22], Hessian eigenmaps (Hessian LLE) [23], locality preserving

3



P
o
S
(
I
S
C
C
2
0
1
5
)
0
2
7

Short-term Wind Speed Forecasting Haijian Shao

projections (LPP) [24] and Landmark isomap [25] can be used to solve the dimensionality
reduction problem in the nonlinear space.

4.2 Intrinsic Dimensionality Estimation

Christopher  [26]  figured  out  that  the  intrinsic  dimension  can  be  defined  via  a  scale-
dependent quantity method. For instance, the Nystrom method is a typically technique used for
the  numerical  approximation  in  the  manifold  algorithm.  In  this  section,  the  correlation
dimension  is  used  for  the  intrinsic  dimension  estimation,  which  is  similar  to  the  fractal

dimensions used in fractal geometry. If the finite set { }1 2, ,...,n nx x xz =  in metric space,

 (4.1)
where ,  is the corresponding index set. The integral is given by

( ) ( )
0

lim nr
C r C r= for a countable subset { }1 2, ,...S x x= X . If C(r) can be derived, then the

correlation dimension of  nz  is defined by
0

log ( )
lim

logcorr
r

C r
CD

r
= . Assume the distribution of the

data  at  the  high-dimensional  manifold  is  uniform,  the  corresponding  intrinsic  correlation
dimension is defined by

2 1

2 1

log ( ) log ( )ˆ
log log

corr

C r C r
CD

r r

-
=

-

                                                     (4.2)

Thus, the intrinsic dimension is estimated before the nonlinear mapping is established.

5. Support Vector Regression and Performance Criteria

5.1 Support vector regression

The mainly task of SVM for regression is to give the nonlinear function

                                                                                 (5.1)
So that the variable x could be mapped into a higher dimensional feature space related to

the samples set  ( ){ }
1

,
N

i i i
S x y

=
= , where  { } 1

N

i i
w

= and b are the coefficients to be calculated by (5.1),

{ } 1
( )

N

i i
xj

= is the feature set. The nonlinear regression is mapped into a linear regression via a

lower dimension input space to a higher dimensional space.

                        (5.2)
where “s. t.” denotes the “subject to”, C is a penalty factor, λ is a regularization constant,

*,i ih h are relaxation factors.
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5.2 Performance Criteria

The fitting performance indicators are measured by the following formulas,

             (5.3)
where RMSE and RMAE are respectively the root mean square error and relative average

absolute error associated to forecasting data W
tf  

and real data W
tr
, n is the length of test sample.

6. Experimental Evaluation

In order to illustrate clearly the main proposed approach of this paper, the following flow
chart is given to demonstrate each processing steps of this paper.
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Figure 1: Main Processing Block.

6.1 Data Preprocessing

Daubechies wavelet, and the parameter related to the support and vanishing moments of
the wavelets set 3. The parameter for low frequency cutoff for shrinkage is 5, and the noise
estimation level is normalized to be 1. State trajectories of part of original variables and filtered
variables after interpolation by QMF are shown in Fig. 2

Figure 2: Trajectory of 10m AWD and Corresponding Power.

Trajectories of variables regard to 10m AWS and corresponding power are selected to be
displayed in Fig. 2, respectively.

6.2 Model Variable Selection and Order Estimation

The main purpose of the MVS is to select the proper input variable for the modeling, so
the MIV is calculated based on the real data from a wind farm of East China. 70m AVS is
selected as the output variable because it is the nearest observation point in the wind tower and
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the  influence  from the  ground  friction  is  small.  Our  previous  work  [3]  indicated  that  the
correlation of the same variable with different heights in different groups was relative large,
such  as  the  correlation  coefficient  between  the  wind  speed  at  different  heights  and  the
corresponding standard deviation was large while the correlation between the wind speed and
temperature or humidity was weak. It is noted that the cosine and sine of wind direction should
be selected as the input variable at the same time because the wind direction around zero angle
is  generally  the  same  with  each  other.  The  obtained  mean  impact  value  about  the  Model
Variable Selection (MVS_MIV) is listed as Table 1.

MIV Six months Nine months
x1 0.0039 0.0050
cos(x2) -0.0048 -0.0065
sin(x2) -0.0050 -0.0059
x3 0.0012 0.0015
x4 0.0032 0.0045
cos(x5) -0.0050 -0.0061
sin(x5) -0.0048 -0.0061
x6 0.0074 0.0060
cos(x7) -0.0050 -0.0060
sin(x7) -0.0048 -0.0062
x8 7.6983e-04 0.0030
x9 0.0068 0.0060
cos(x10) -0.0050 -0.0060
sin(x10) -0.0049 -0.0063
x11 0.0080 0.0062
cos(x12) -0.0052 -0.0062
sin(x12) -0.0048 -0.0057
x13 5.3146e-05 0.0033
x14 0.0077 0.0062
cos(x15) -0.0051 -0.0062
sin(x15) -0.0049 -0.0060
x16 -0.0031 -0.0054
x17 -0.0029 -0.0057
x18 -0.0044 -0.0056

Table 1: MVS_MIV Wind Farm of East China

The calculation results about the MVS_MIV are derived based on the RBF neural network,
the convergence goal is 0.001 and the spread selection utilized the default value. The changes of
the  neural  network  weight  matrix  can  be  used  to  measure  whether  the  input  variable  has
potential  influence  to  the  outputs.  The  new  training  sample  is  obtained  by  increasing  or
decreasing the original input variable by 10% then used to calculate the impact value based on
the difference between the original inputs and new ones. Sine and cosine of the wind direction is
simultaneously for the input variable in order to reflect its characteristics fully. Based on Table
1,  50m AWS, 70m AWS and RTWS have relatively larger  MVS_MIV than other  available
variables, the value of which remains more than 0.0074. This also indicates that the previous
correlation analysis about the available input variables is correct. It is noting that the absolute
value of the MVS_MIV (nor positive and negative original value) is the index to measure if the
input variable has potential influence for the outputs.

6.3 Model Order Estimation

Essentially,  the most influential variable for the power is wind speed, for instance, the
absolute value of correlation between power and G2: No.6 (AWS), G3: No.11 (AWS) and No14
(RTWS) are more than 0.9; in this sense, in order to investigate the best input variable for the
power  forecasting,  each  wind will  be  forecasted  and used  to  predict  the  power;  moreover,
different combinations of variables will be selected as the input variable then the best variables
for the wind forecasting will be derived.

6
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6.4 Intrinsic Dimension Estimation

The  intrinsic  dimension  estimation  is  critical  for  the  input  variable  dimensionality
reduction because the improper dimension cannot reflect the variable information accuracy. The
dimensionality estimation is calculated according to four different information criteria and listed
in Table 2.

Data Length CorrD NearND MLE GMST
1000 1 1 1 2
6000 1 1 1 2
9000 1 1 1 2

Table 2: Dimensionality Estimation

where CorrD represents the computing method in the section of Intrinsic Dimensionality
Estimation, NearND, MLE and GMST represents the nearest neighbor dimension, maximum
likelihood estimator and Geodesic minimum spanning tree, receptively.

6.5 Model Variables Dimensionality Reduction

Without loss of the generality, the Kernel principal component analysis (KPCA), isomap,
Locally Linear Embedding (LLE) and Local Preserving Projection (LPP) techniques are used to
the corresponding data fusion of AWS and RTWS. Trajectories of 10AWS, 50AWS and 70AWS
with corresponding data fusion are given in Fig. 3

Figure 3: Dimensionality Reduction via Isomap for AWS.

As the number of nearest neighbors in a neighborhood graph is 3, the size of new variable
based on the data reduction technique is one third compared to the original data. The elapsed
times with respect to Isomap, KPCA, LLE and LPP are given in Table 3,

Item Isomap KPCA LLE LPP
AWS 8621.2727 965.5666 52.4120 45.0961
AWD 8580.9896 1504.7523 59.5469 48.0975
SSD 8795.1781 961.1593 56.9572 55.2840
RTWS 8850.2988 1022.3562 62.3404 55.3235
RTWD 8698.6513 965.3235 62.1589 50.9132

Table 3: Elapsed time in Seconds

6.6 Error Analysis and Evaluation

In this section, SVR technique is used to verify the performance of power forecasting.
“Numerical meshgrid search” method is used to optimize the parameters of kernel function,
which is to try every possible parameters pairs (c, g) values, where c and g are respectively
penalty factor  and  kernel  function  parameters.  60% (54760/91226),  20% and 20% of  each
subset are respectively defined as the training, verification and testing sample about 12 steps
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ahead predict (i.e. 1h). STWSF using MSS in combination with four methods of DR are given
in Table 4 and Fig.4.
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F o r e c a s t i n g  v a l u e  ( K P C A )
A s s o c i a t e d  e r r o r  ( K P C A )
F o r e c a s t i n g  v a l u e  ( L L E )
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F o r e c a s t i n g  v a l u e  ( L P P )
A s s o c i a t e d  e r r o r  ( L P P )

Figure 4: STWSF Using Four DR Methods.

Item BC BG RMSE RMAE ET
TRA 0.8362 3.20 1.7303 0.2506 2848e+04
Isomap 0.3125 3.20 1.5469 0.2096 2330.32
KPCA 0.6250 3.15 0.6598 0.1750 2220.25
LLE 0.3165 3.20 0.7294 0.1779 2144.22
LPP 0.2265 3.80 1.7916 0.2162 2070.32

Table 4: Error Analysis and Parameters Estimation

BC: Best C; BG: Best G; TRA: traditional approach with no MSS; RMSE: root mean
square error; RMAE: relative average absolute error; MSS-KPCA: kernel principal component
analysis; MSS-LLE: Locally Linear Embedding; MSS-LPP: Local Preserving Projection; ET:
Elapsed time for testing sample in seconds. 1000*9 data (about 3.5 days) for 24 steps-ahead
prediction is shown in Fig. 6. As a result, we can draw a conclusion as follows:

(1) MSS has significant impact for the forecasting accuracy because it can not only select
significant  variables  for  STWSF  but  also  reduce  the  dimensionality,  the  computational
complexity while increase the prediction efficiency.

(2) The forecasting accuracy of KPCA is general better than other data fusion techniques
and its forecasting accuracy is improved by about 11.74%, 1.54% and 14.43% respectively.

7. Conclusion

As  the  weather  fluctuations  as  well  as  the  seasonal  changes  can  affect  the  power
forecasting  accuracy,  accurate  forecasting  will  improve  the  security  and  stability  of  power
systems. MSS has significant reference value for the STWSF. Firstly, in order to guarantee the
quality of  the  data  for  the  further  analysis,  the  missing  value,  noisy data  and extreme  are
handled by the numerical interpolation, QMF and normalization, respectively; secondly, MSS
which constitutes of model variable selection and order estimation is proposed in order to derive
the  model  with  proper  structure;  thirdly,  the input  variables  dimensionality  reduction  is
implemented via four different  manifold techniques to obtain MSS with high computational
efficiency; finally, the performance evaluation of MSS and error analysis is given to illustrate
that the proposed method is a successful method for STWSF.
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