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This  paper  proposes  a  novel  model  to  address  the  problem  of  image  segmentation  with
objectness measure. Recently, many objectness measures are proposed, which aims to generate
candidate windows to localize the possible objects in the image. Consider to combine this useful
object location piror into a foreground segment model. Specifically, a Conditional Random Filed
model is constructed on superpixels graph, and it efficiently incorporates objectness measure,
color distribution and appearance similarity. Expermental results on a extended GrabCut dataset
demonstrate  that  the  proposed  model  can  yield  a  foreground  object  segmentation  of  better
quality.
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1. Introduction

Foreground object segmentation is a technique for extracting a foreground region in an image
from its  background.  The  goal  is  a  general  purpose  that  divides  an  image  into  two  segments:
“foreground ” and “ background”.  However, the fully automatic segmentation seems  not to be
perfect. For this reason, usually it is needed to impose some seeds as constraints, which indicate the
part of region belonging to foreground/background. According to the similarities between the seeds
and  other  unlabeled  regions,  they  can  easily  perform better  segmentation.  Usually,  the  object
segmentation can also be used in many tasks, including object recognition and object categorization.
As segmentation can be regarded as a  labeling problem, it ususally relys on a specific CRF/MRF to
label each pixle as foreground or background. The  CRF/MRF is a kind of  probabilistic graphical
model, which can infer the foreground likelihood under given observations.   

On the one hand, among the observations, mostly  attention is paid to describe foreground
object appearance without exploiting object location information; on the other hand, the recently
proposed objectness measure[1-3], which generates a set of scored windows to measure the object
existent extent, can exactly provide the location prior. In order to exploit this useful location prior,
we innovatively combine the objectness measure into a CRF model for a better segmentation.

2. Objectness Measure

The objectness measure is alternative framework for sliding windows, and it is widely used in
current  object  detection methods[4].  While  sliding windows need to  exhaustively search around

105
∼106  windows per image to locate foreground object, objectness measure only generates a few

number  of  windows,  as  shown  in   Fig.  1.  The  objectness  measure  is  based  on  a  reasonable
assumption that all categories of objects share some common visual properties, which can distinguish
them from the background.  The windows generated by objectness  measure  often lie  around the
foreground object with confidence scores. The confidence scores can represent how likely there is an
object in the windows. So, the density of spatial distribution for all objectness windows and the sum
of confidence scores can describe the positions of the objects.

 Figure 1: (a) Sliding Windows Search V.S. (b) Objectness Measure 

The  conception  of  “Objectness”  was  first  clarified  by  Alexe  et  al.  as  a  generic  measure,
evaluating how likely it is for a window to contain an object of any class [1]. They, at the earliest,
realized  the  measure  through  combining  multiple  cues  into  a  Bayesian  framework  to  filter  the
sampled  windows.  The  initial  windows  are  sampled  from dense  regular  grids,  according  to  the
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distribution of the saliency scores for all windows in the grids. Base on the same thought, Rahtu et al.
proposed the variation[2]. They modified the objectness features,  based on a max-margin structured
frameworkto learn feature combinations[5]. Recently, EdgeBoxesobserves that the objects are always
surrounded by complete boundary[3], and the boundary density in windows is a powerful objectness
feature to locate the objects. So, based on the characters of the continuity over boundary orientation
and the integrality of close boundary,  they extract  boundary information from the edge map.

3. Algorithm Pipline

(a).input image (c).superpixels (b).seed map

(d). edge map (e). objectness map (f). segment result

Figure 2: Algorithm Pipline

The algorithm pipline is showed in Fig. 2. Given the input image (a) and correspongding seed
map (b), first, we use the SLIC methodto oversegment the input image into several superpixels (c)[6],
instead of directly using pixels for efficiency reason. Each superpixel has uniform color distribution
and can keep good object boundaries; then, we extract the edge map (d),  and use  EdgeBoxes to
measure the objectness over input image to get an objectness map (e). According to the seed map,
estimate  the  foreground/background  color  distribution.  Adjacent  superpixels’  similarities  are
evaluated  on  the  edge  map;  finally,  combining  the  objectness  measure,  color  distribution,  and
appearance similarity into a CRF model to segment foreground object (f).

4. Foreground Segment Model Based on CRF

Let  X ={xi}i=1
n  be the superpixels collection of an image, with corresponding binary label

Y ={y i}i=1
n .  Each  superpixel  x i  is  either  labeled  as  foreground  or  background,  according  to

y i=0  or 1. The conditional probability of foreground labeling Y  gave an image X  as

P (Y∣X ,W )=
1
Z

e−E ( X ,Y ; W)
                                                       (4.1)

Where W  are weights, Z  is the partition function. E (Y , X ;W )  is the energy function,

which is defined as a sum of all penalization under specific labels. 

P (Y∣X , W )∝−E ( X , Y ;W )                                                   (4.2)
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The conditional probability P (Y∣X , W )  is negative correlation with energy function. In the

conditional probability, to infer the maximum a posteriori (MAP) label Y, is equivalent to minimize

the energy function. For each image, a graph G=(ν ,ε )  is created,  which has a set of nodes, ν

(  individual  superpixel)  and  edges,   ε (pairs  of  adjacent  superpixels).  The  energy  function

E (Y , X ;W )  is the  linear combination of the following three potential functions:

E (Y , X ;W )=∑i∈ν
ψ i ( y i ; x i ,wobjness)+∑i∈ν

γi ( y i ; xi ,w colo r)
+∑( i , j)∈ε

ϕi , j ( y i , y j ; x i , x j , wsimilar )
                       (4.3)

In the energy function, the first trem ψ i ( y i ; xi , wobjness )  is a objectness unary potential, which

provides the objectness measure of superpixels. The second trem γi ( y i ; x i , wcolo r)  is a color unary

potential, which according to each node’s color distribution computes the foreground/background

likelihood.  The  third  trem  ϕ i , j(l i ,l j ; x i , x j , w similar)  is  a  similarty  pairwise  potential,  which

according to appearance similarty creates the mutual relation between adjacent nodes.

4.1 Objectness Unary Potential

The objectness unary potiential evaluates the likelihood that a superpixel belongs to an object.
It is based on the objectness measure EdgeBoxes to generate a set of windows with objectness scores.
Accumulating all the scores in each superpixel, and normalizing them with maximum score in image
can get  an objectness  map.  The objectness  unary potential  is  defined on the objectness  map as
follow:

ψ i ( y i ; xi , wobjness )=wobjness ∙ f obj ( y i , x i )                                           (4.4)

where

f o b j( y i , x i )={
exp  (−α∙ s ( x i))

1+exp  (−α∙ s ( x i))
,   y i=1

   1
1+exp  (−α∙ s ( x i) )

,   yi=0

                          (4.5)

f o b j( y i , x i )  is a smooth mapping function based on the  exponent form, which builds the

relation between objectness score  s( xi )  and different  label  y i .  When  y i=1 ,  it  penalizes the

superpixel with low objectness score, which is labeled as foreground. Otherwise, when  y i=0 , it

penalizes the superpixel with high objectness score, which is labeled as background. According to

the distribution of objectness scores, the coefficient  α  can adjust the smooth of maping function.

Here we set α=2.5  as an optimal coefficient.

4.2 Color Unary Potential

The  color  unary potential  is  based  on  the  contrast  of  color  distribution  between  the  seed
superpixels  and  unlabeled  superpixels.  In  order  to  obtain  the  color  distribution  within  each

superpixel, compute the color histogram {hL , ha , hb}  in Lab color space. There, each color channel

is  quantized  as  45  bins.  First,  according  to  the  L1  distance  of  color  histograms  between  the

foreground/background seed superpixels and unlabeled superpixels x i , the foreground/background

probability distribution is defined as:
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P f ( xi )=exp (−λ ∙∑c∈{L , a ,b}
∥hc (x i )−hc (x f )∥)                                 (4.6)

Pb( xi )=exp (−λ ∙∑c∈{L , a , b}
∥hc( x i )−hc (xb)∥)                                 (4.7)

Where  λ  is a scaling factor; then the color contrast function  f colo r( yi , xi )  is based on the

probability distribution

f colo r( yi , x i )=ln  P f ( xi )−ln  Pb( x i)                                                (4.8)

And the color unary potential can be computed as:

γi ( yi ; x i , wcolo r)=w color ∙ F colo r ( y i , x i )                                                     (4.9)

Where

F color ( yi , x i)={
0
∞
∞

f colo r( y i , xi)

  

if   y i=1 ,   xi∉xb

if   y i=1 ,   xi∈xb

if   y i=0 ,  x i∈ x f

if   y i=0 ,  x i∉ x f

                   (4.10)

When the superpixel  x i  has the similar color distribution with foreground seed superpixels

x f ,  Pb( xi )  has a samll value, while  P f ( xi )  is larger, which causes the color contrast function

f colo r( y i , xi)   having a larger value. So, if this superpixel x i  is labeled as background, for y i=0 ,

the  penalization  is  larger.  As  the  foreground  seed  superpixels  are  labeled  as  background,  the
penalization is infinity.

4.3 Similarity Pairwise Potential

The similarity pairwise potential  ϕi , j  models the intersection between the two labels y i and

y j  of two neighboring superpixels based on the appearance similarity, and this pairwise term has a

spatial smooth effection on the labels of neighboring superpixels. To measure the similarity between

the siperpixels, we compute a kind of normalized histogram descriptor h . The histogram descriptor

is composed of color and texture histograms hc  and  h t . Using the histogram intersection distance,

we can extract the similarity between a pair of adjacent superpixels x i  and  x j :

f similar ( x i , x j )={min  (hc (x i ) , hc (x j )) ,min  (h t ( x i) , ht (x j ))}                (4.11)

The  color  histogram is  the  same  as  the  color  unary  potential  computed,  and  the  texture
histogram is a SIFT-like feature. The similarty pairwise potential is defined as follow:

ϕ i , j( y i , y j ; xi , x j , w similar)={w similar ∙ f similar (x i , x j)

0
  if  yi≠ y j

if  yi= y j

        (4.12)

The  pairwise  term  penalizes  the  assigment  of  different  labels  to  similar  neighboring
superpixels.

4.4 Inference and Learning

As for the inference of CRF model, because the similarity pairwise potential is a metric, the
energy function can be solved by the min-cut/max-flow algorithm[7]. 
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The energy function defined as above has the weights W ={wob j ne s s ,w co l o r ,w s i mi l a r} . We

learn them from a dataset to optimize the segmentation performance by a max-margin structured
framework[5].  

5. Experiments

We perform the experiments on an extended version of the GrabCut dataset[8].  The dataset
contains 151 images,  user-defined foreground/background seeds and ground truth segmentations.
However, the scale of dataset is not enough for testing. So, we extend the original dataset with 200
images from more challenge Pascal VOC 2007 Object Segmentation dataset[9].  The original dataset
doesn't provide the foreground/background seeds, so we manually annotate the seeds in the images
which have normal size objects.  

we employ overlap rate as a measure to evaluate the segment result over one image:

ov (s , g )=
∣s∩g∣

∣s∪g∣
                                                   (5.1)

The overlap rate is defined as a ratio of  intersection and union between the segmentation s
and ground truth g . And we compute the average overlap rate over all images. In order to evaluate

the usefulness of objectness unary potiential, we compare the proposed CRF model with/without
objectness measure.

Method Without Objectness With Objectness

Avg. overlap rate 0.687 0.796

Table 1 : Comparison on the Average Overlap Rate

As Table 1 shows, the foreground segment model with objectness measure can reach a higher
average overlap rate,  which means the objectness  providingthe useful  object  location prior does
really help to get a better segmentation. We also provide some segmentation results in Fig. 3.

We also analyze the object-level characteristics’ impact on the proposed segmentation model.
Specifically, the model is evaluated on five different categories of objects including  Person,  Cat,
Horse, Car and Sheep. The experimental result is shown in  Table 2:

Method Without Objectness With Objectness

Person 0.635 0.723

Cat 0.754 0.834

Horse 0.663 0.754

Car 0.697 0.807

Sheep 0.651 0.767

Table 2 : Comparison of  Different Categories 

As Table 2 shows, different categories have different impacts on the final segmentation result.
Among the five categories, all segmentations of Cat reach the best performance.  Our interpretation
for  such  result  is  that  the  category  of   Car  tends  to  have  large  homogeneous  foreground  or
background or is highly contrasted. However, Person objects, often containing large deformation and
thin  structures,  are  difficult  to  segment.
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Figure 3: Some Segmentation Results  in the Dataset,  and the Overlap Rates are Labeled in the
Center 

6. Conclusion

This paper presents a novel foreground segment model with objectness measure. Because the
objectness measure can provide an object location prior, that makes the model especially useful for
high accuracy foreground object segmentation. In addition, we also show that the method used in the
object detection task can also serve for foreground object segmentation. In the future, we should put
forward a better manner to incorporate the objectness measure, and try to find other effective prior
information.
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