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In  order  to  accurately  connect  the  marginal  distribution  of  portfolio  credit  risk,  this  paper
constructs an  M-Copula  function by  using  the  linear  combination  of  Gumbel  Copula  and
Clayton Copula.  It employs GARCH (1, 1) model to fit the marginal distribution of the single
asset  logarithm  yield  sequence, uses the  KMV  model  to  calculate  single  asset  default
probability, then  connects marginal default probability distribution  of  multiple credit portfolio
risk  by  M-Copula  functions and  calculates the  joint  probability  distribution  and  the
corresponding value of  default  risk.  Through the  empirical  study  to  the four  healthy group
companies and ST companies, it proves that the M-Copula functions  can  effectively fits the
upper and lower tail  correlation structures of  credit  risk marginal  distributions,  and that  the
model is able to accurately measure the credit risk for the two groups company's portfolio. The
model provides an important reference for multiple credit portfolio risk measure. 
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1. Introduction 

Credit  Risk,  also called default  risk,  refers to  that  the counterparty cannot  perform its
obligations in accordance with the appointment which causes the risk of economic losses. Credit
risk  measurement  has  been  a  hot  issue  in  the  theory  and  practice  research,  which  have
developed a variety of risk measurement methods through the efforts of the scholars, such as Z-
score method, the credit risk measurement model based on multivariate statistics, the credit risk
measurement model based on the option theory model, the credit risk model based on artificial
intelligence methods. These models provided important references for risk measurement, but
these solutions were designed for single asset risk measurement. To the problem of diversified
portfolio credit risk measurement, the related research is still very rare. And it's important to
note, however, that when up to multiple assets portfolio credit risk measurement, the overall risk
is not equal to the simple sum of the single risks because of the certain correlation among credit
risks.

For the above conditions, early studies usually used the linear correlation coefficient to
measure the correlation between assets, but the correlation in the financial markets usually had
some  characteristics,  such  as a  nonlinear,  asymmetry,  thick  tail  distribution.  Under  this
background, the Copula functions were introduced to related researches,  and  it could connect
the marginal distribution of multiple variables to a joint distribution, and obtained default risk of
the  portfolio  through  calculating  the  default  probability  of  joint  distribution;  what’s  more,
Copula functions’ asymmetric structure solved the problem of the return’s thick tail on assets to
a  certain  extent[1].  The  foreign  and  domestic  scholars  studied  portfolio  risk  measurement
around  Copula  functions  and  achieved  fruitful  results  [2-4].  Joshua  and  Dirk  employ  a
generalization  of  the  t-copula  model  to  measure  the  risk  of  multivariate  defaults  with  an
asymmetric distribution, and show how the estimators proposed for the t-copula can be modified
to estimate the portfolio risk under the skew t-copula model [2]. Choe and Jang construct a risk
assessment model based on exchangeable Archimedean copulas and nested Gumbel copulas,
and  propose  an  appropriate  density  for  importance  sampling  by  analyzing  multivariate
Archimedean copulas[3]. Jonathan and Fernando use Copula theory to model the dependence
across default rates in a credit card portfolio of a large UK bank, and prove that , when compared
to traditional models, estimations based on asymmetric copulas usually yield results closer to
the ratio of simultaneous extreme losses observed in the credit  card portfolio[4]. These works
extend the application of Copula theory in risk management area. However, all the risk measure
models in the above studies use individual Copula function as the connection function, which is
difficult to effectively connect the marginal distributions. Kole et al.  show the importance of
selecting an accurate copula for risk management[5] . In fact, there are many different kinds of
Copula functions and categories can be divided into: ellipsoid Copula and Archimedes Copula.
Among them, the commonly used ellipsoid Copula contains multivariate normal Copula and
multivariate t-Copula. And the commonly used Archimedes Copula contains Gumbel Copula,
Clayton Copula and Frank Copula. Ellipsoid Copula functions with elliptic contour line can
construct different dependence degree’s marginal distribution Copula functions.

But there is no closed form of expression for its distribution functions and its distribution
functions  is radial  symmetry.  Archimedean  Copula functions  are generated  by a  generating
function, and it is convex, strictly decreasing continuous functions. Each Archimedean Copula
functions  have a  unique generator.  The  form of  single Copula functions  is  fixed and only
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suitable for fitting in the fixed tail distribution. And financial time series are changeful, a single
Copula functions obviously  is  difficult to perfectly fitting  its tail distribution. Recent studies
show  that  M-Copula functions  consisted of  a  linear  combination  of  the  multiple  Copula
functions which  can  depict  the more  flexible marginal  distribution  of  financial  time  series,
consequently improve portfolio risk measurement precision [6-11]. Inspired by this, This article
will be the first to adopt Gumbel Copula and Clayton Copula, which can depict upper and lower
tail correlation respectively, to build M-Copula, then use this functions to connect the portfolio’s
marginal distribution and measure credit risk combining with the classic KMV model, in order
to provide meaningful reference for portfolio risk management.

2. Construction of the Risk Measurement Model 

2.1 Construction of the M-Copula Function

The theory of Copula originated in 1959 when Sklar proposed the Sklar theorem in which
the joint distribution and Copula function are combined, and it was noted that a joint distribution
can  be  divided  into  a  Copula  function  and  n  marginal  distributions  and  the  correlation  of
variables can be described by the Copula function. Therefore, the Copula function is essentially
a function that connects a plurality of marginal distribution functions and their joint distribution

function together. The  N-dimension Copula function is considered to be a function  ( ), ,C g L g

having the following three properties:

 The domain of function ( ), ,C g L g is NI ,that is [0,1]N ;

 The function ( ), ,C g L g has zero base and increases byN-dimension;

 The marginal distribution ( )n
C g of function ( ), ,C g L g , 1,2, ,n N= L  meets

( ) ( )1, ,1, ,1, ,1
n n n n
C u C u u= =L L , where un∈[0,1] , 1,2, ,n N= L .

In  order  to  characterize  the  complex  relationship  in  financial  markets  better,  it  can
combine a variety of Copula functions to construct a more flexible mixed Copula:  M-Copula

function. I select a linear combination of Gumbel Copula and Clayton Copula to construct a N -

dimension M-Copula function.
The formula of distribution function of Gumbel Copula is as follows:

              C (u1, u2,⋯, un)=exp {−[∑
i=1

n

(−ln ui)
α
]

1
α }  ,                           (2.1) 

And Gumbel Copula processes the character that its upper tail is higher than other parts.
The formula of distribution function of Clayton Copula is as follows:

         C (u1, u2,⋯, un)=[∑
i=1

n

u i
−α−n+1]−

1
α ,α>1,                                  (2.2) 

Different from Gumbel Copula,  Clayton Copula has the character  that  its  lower tail  is
higher than other parts, which is shown in Fig. 2. 

According to  the  formula of  the  above two Copula  functions,  it  is  easy to  obtain  the
specific expression of M-Copula as follows:                                           
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CM (u1, u2,⋯, un ;θ )=ω exp {−[∑
i=1

n

(−ln u i)
α ]

1
α }+(1−ω)exp {−[∑

i=1

n

(−ln u i)
α ]

1
α },

(2.3)

where ( )1
, , ;

G N
C u u aL and ( )1

, , ;
C N
C u u qL  are  N-dimension  Gumbel  Copula and Clayton

Copula respectively; α ∈(0,1)  , θ∈(0,∞) .  M-Copula function has three parameters in

which a and q characterize the degree of correlation among variables; the weight parameters w

and 1 w-  characterize  the  correlation form among variables  and different  combinations  of

weight parameters can characterize different correlation forms.

2.2 Fitting the Marginal Distribution 

In the  security market,  return-loss  distribution  exist  the  severe  phenomenon of  excess
kurtosis and heavy tail. Some models are created to fit finance time series, and a lot of empirical
studies have shown GARCH family models can effectively describe the above behaviors of
financial time series. So in this paper, I use GARCH (1, 1) model to fit the marginal distribution
of financial time series. The GARCH (1, 1) proposed by Bollerslev [12] can be expressed as:

    

, ,

, , ,

2 2 2
, ,0 , 1 , 1

,

e ,

,

i t i i t

i t i t i t

i t i i i t i i t

x

h

h a a b h

m e

e

e - -

= +

=

= + +

                                               (2.4)

where i ,tx is the return series of financial asset i, , 1( | )i i t tE xm -= W   ，and 1t-W  denotes the

information  set  before  1t -  moment.  ib  is  the  coefficient  of  GARCH item and  ia  is  the

coefficient of ARCH item, ( )2e 0i ,t ~ N ,s , 1, 2, ,i n= L .

2.3 Calculation of the Default Frequency of Credit Risk

This paper makes use of the KMV model to measure the default frequency of single asset’s
credit risk, and it can carry out the method following three steps: First, estimate the market

value V and volatility v
s ; second, calculate the DD (Distance to Default); third, calculate the

EDF (Expected Default Frequency).
In  the  KMV model,  the  volatility  of  market  value  of  equity  is  calculated  by  using

GARCH(1,1) model, and the risk-free interest rate r  is seen as the one-year deposit interest rate
announced by the central bank. If the risk-free interest rate has changes in the year, then the
final  risk-free  interest  rate  is  the  weighted average of  these rates.  According to  the  existed
research experience, I use the following formula to calculate the company's default point:

0.75DP LD SD= +                                                       (2.6)

where SD  represents short-term debt and LD  represents long-term debt.

Under the premise of having determined the default point, the distance to default can be
given by the following equation:

                          ( ) /
v

DD V DP Vs= -                                                          (2.7)

Then,  assuming the  return  on  assets  of  the  company obey normal  distribution,  it  can
calculate the expected default frequency for the company:
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( ) ( )Pr (V) ( (V)) / (V)
v

EDF E DP N DP E E N DDs= < = - = -                         (2.8)

After calculating the default probability of a single asset, I adopt the M-Copula function to
connect  each  marginal  distribution  of  default  probability,  calculate  the  joint  distribution  of
portfolio’s default probability, and calculate the value at risk of combined credit risk in the final.

3. Empirical Analysis 

3.1 Sample Selection and Statistical Description 

I select 8 listed corporations as our study objects, among which four companies are in
normal credit status: GNKJ, SHGF, HMQC, XALY, and others are under special treatment: ST-
SD, ST-SW, ST-HH, ST-AG. Then I download stock closing prices of these public companies
from the Resset Database (www.resset.cn) since January 4th 2011 to March 31st 2014， and
obtain 614 valid samples. Then logarithmic treatment can be conducted with these stock yield
sequences as follows:

                      ( ) ( )1
ln ln

t t t
r p p

+
= -  .                                                (3.1)

Then I obtain the statistical descriptions for these corporations’ logarithmic yields as Table
I shows. It’s not hard to see from the table that GNKJ, SHGF, HMQC and ST-AG deviate to the
right, and the others to the left. As we know, if a sample obeys normal distribution, then the
sample kurtosis is supposed to be 3. However, I find it from the form that kurtosis coefficients
of XALY, ST-SD and ST-AG are more than 3, especially ST-AG even reaches 10.55. Actually,
further examinations for these statistics  in table II and table III  prove that they do not obey
normal distribution but obey student-t distribution.

3.2 Estimation of M-Copula Function Parameters

Firstly,  I  perform Kendall  rank  test  with  portfolio  samples  and discover  that  all  their
correlation coefficients are not zero, which reveals their pertinence indeed. Secondly, I apply M-
Copula  function  established  in  this  paper  to  connect  these  companies’  credit  default

distributions.  As  M-Copula  function  has  parameters  w , q ,a ,  it  needs  to  use  maximum

likelihood method to estimate  them.  And default  probabilities  1 2 3 4
, , ,u u u u  can be solved by

KMV model at the same time. Then I divide 8 listed corporations into two groups as well-being
listed companies and special-treated ones. While using maximum likelihood method to estimate
parameters on the basis of those two groups’ logarithmic yield time series, it needs to implement
the following steps.

GNKJ SHGF HMQC XALY ST-SD ST-SW ST-HH ST-AG

mean 0.0001 0.0000 -0.0007 -0.0008 -0.0002 -0.0020 -0.0014 -0.0017
viation 0.0290 0.0350 0.0252 0.0276 0.0247 0.0294 0.0271 0.0179
Kurtosis 2.9653 2.7202 2.8467 3.2439 4.8666 2.2396 2.7238 10.5473
Skewness 0.0277 0.3274 0.0795 -0.5970 -0.8356 -0.1376 -0.2967 0.8223

Table 1:Statistical descriptions for 8 corporations’ logarithmic yield
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Kolmogorov-Smirnova Shapiro-Wilk
Statistic df Sig. Statistic df Sig.

GNKJ .095 613 .000 .932 613 .000
SHGF .069 613 .000 .959 613 .000
HMQC .048 613 .002 .972 613 .000
XALY .079 613 .000 .948 613 .000
ST-SD .106 613 .000 .934 613 .000
ST-SW .063 613 .000 .971 613 .000
ST-HH .066 613 .000 .962 613 .000
ST-AG .081 613 .000 .909 613 .000

Table 2:The test of Norm distribution

Test Value = 0                                       

t df Sig. (2-tailed) Mean Difference
95% Confidence Interval of the Difference
Lower Upper

ST-SW -1.716 613 .087 -.002036095 -.00436661 .00029442
ST-SD -.158 613 .874 -.00015608726 -.0020939363 .0017817617
ST-HH -1.264 613 .207 -.001383074 -.00353119 .00076504
ST-AG -2.262 613 .024 -.0016334922 -.003051556 -.000215428
GNKJ .096 612 .923 .000113359 -.00219406 .00242078
SHGF -.017 612 .986 -.000024245 -.00280284 .00275435
HMQC -.616 613 .538 -.000627792 -.00262899 .00137340
XALY -.750 613 .454 -.000835808 -.00302434 .00135273

Table 3:The Test of T-Student Distribution

Stock GNKJ SHGF HMQC XALY ST-SD ST-SW ST-HH

The total value (Billion Yuan) 1.172 1.997 6.267 1.315 1.624 1,600 2.712

The volatility of total value 0.46 12.98 12.70 12.23 12.73 12.39 4.51

Default  distance 1.9645 0.0351 0.0256 0.0731 0.0561 -0.1220 -0.0578

Default probability 0.0247 0.4859 0.4897 0.4708 0.4776 0.5485 0.5230

Table 4:Default Probability And Default Distance Of List Companies 

Calculate the partial derivatives for 1 2 3 4
, , ,u u u u  in sequence, thus it can obtain the model’s

density function.
Invoke  the  historical  default  probabilities  to  acquire  relevant  maximum  likelihood

function:

      L(ω ,θ ,α )=∑
i=1

n

ln c (u i1 , u i2 , ui3 , u i4 ,ω ,θ ,α ) ,                              (3.2)

The alphabet T means amounts of samples.
Solve parameters’ values when the likelihood function reaches its maximum. And these

values are their estimators.
Based on historical  default  probabilities of the  healthy listed companies, I calculate the

parameter values as follows: 0.0001w = , 2.4134a = , 0.5715q = . As for special-treated group, I

get  different  parameter  values: 0.0001w = ,  14.4411a = ,  23.4666q = .  From  the  results  of

parameter estimation, it can conclude that the coefficient of Gumbel Copula function is nearly
zero, representing that the upper tail correlation for these corporation default  probabilities is
weak.

3.3 Portfolio Default Probability Calculation

In this part,  I first  apply KMV model to calculate default probability for each company,
and  the results  are shown in Table IV, and then  measure the credit  risk of the two groups’
portfolio.
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At the beginning,  the default  probability values calculated by KMV model for  healthy
companies and special-treated group are as follows：

1 2 3 4
0.0247, 0.4859, 0.48[ 9, , , 7, 0] 4[ ]. 708u u u u =                                      (3.3)

1 2 3 4 ST
0.4776, 0.5485, 0.52[ 30, 0.54 ]5, , ] [ 9,u u u u =                                   (3.4)

Then I substitute the two groups’ default probability values and estimated parameter values
into Formula (1), and I will acquire the M-Copula function for these two groups.

C (u1, u2, u3, u4)=0.0001exp {−[∑
i=1

4

(−ln u i)
2.4134

]
1

2.4134}+0.9999 [∑
i=1

4

u i
−0.5715

−3]
−1

0.5715

(3.5)

C (u1, u2, u3, u4)=0.0001exp {−[∑
i=1

4

(−ln u i)
14.4411

]
1

14.4411 }+0.9999[∑
i=1

4

u i
−23.4666

−3]
−1

23.4666  .

(3.6)
From the above M-Copula functions, it is easy to find the weight of  Clayton Copula  is

larger than that of Gumbel Copula. It implies that the four companies are more likely to crash
together rather than boom together, because the shape of the cross-sectional plot of the Clayton
Copula resembles the letter “L”. 

At last, through using Copula function expression above and combining the probability
distribution of single asset default for each portfolio, I solve VaR value of the portfolio credit
risk for well-being and special-treated group. And the value is 0.01148 and 0.4738, respectively.

The results disclose that value of default probability for well-being group is far less than
special-treated ones, indicating that credit risk for well-being group is less than ST group’s. In
addition, comparing credit default probability of portfolios with single company, it is easy to
find that value of the former is less than that of the latter, which also indicates portfolios’ credit
risk can be dispersed.  Generally summarized, M-Copula function can be used to connect each
default probability distribution of portfolio risk effectively, and fatherly lays a solid foundation
of portfolio credit risk measurement.

4. Conclusion 

In practice, Gumbel Copula and Clayton Copula can respectively connect the upper tail
correlation structure and the lower correlation structure. To get more precise connection effect,
this paper which aims at studying M-Copula function’s feasibility applied to measure portfolio
credit risk combines two types of Copula into M-Copula function linearly. By dividing object
corporations  into well-being and special-treated group,  utilizing GARCH(1,1)-t  model  to fit
yield sequence for each asset,  applying KMV model to calculate default probability density of
each company, and using M-Copula function to connect credit portfolios’ marginal distribution,
I work out the joint default probability density and relative VaR..

According to the study above, it can draw some conclusions from the empirical results.
Firstly,  portfolio credit  risk’s upper and lower tail  correlation structure can be connected by
using M-Copula. What’s more, for each portfolio, single asset credit  risk obviously exceeds
portfolios’, which reveals that portfolios can play a part of dispersing risk. Besides, portfolio
credit  risk  values  of  well-being  public  companies  are  a  great  deal  less  than  those  of  ST
companies.  So  in  general,  the  model  proposed  in  this  paper  can  measure  VaR of  multiple
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portfolio credit risk accurately and offer valuable reference for credit risk measurement in this
area.
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