
P
o
S
(
I
S
C
C
2
0
1
5
)
0
5
4

Fault Localization Method Based on Enhanced GA-
BP Neural Network

Bei Zhang1

Institute of Information Engineering , Capital Normal University
Beijing, 100048, China

E-mail: godandzb@163.com

Shudong Zhang
Institute of Information Engineering , Capital Normal University

Beijing, 100048, China
E-mail:zsd@.cnu.edu.cn

In the process of software development and maintenance, software debugging is the most
complicated and expensive part. In recent years, automated software fault localization
technology has attracted many scholars’ attention, various approaches have been proposed. In
this paper, a technique named EGA-BPN is proposed which can provide suspicious locations for
fault localization automatically without requiring any prior information of program structure or
semantics. EGA-BPN is a software fault localization method based on enhanced Genetic
Algorithm-Back Propagation neural network. Firstly, through processing running traces of the
program, coverage information of test cases is converted to the training samples of neural
network; secondly, the initial weights and thresholds of the neural network are computed by GA,
the training data are substituted in neural network in training orderly, and then use orthogonal
experimental design helping to adjust the parameters of the neural network; finally, test matrix is
calculated by the neural network to count the suspiciousness of each statement, and the fault is
located at the statements with higher suspicious value. Through comparative experiments
between the proposed method, GA-BPN and BPN, the experiment results show that the
enhanced GA-BP neural network-based fault localization technology has certain validity.

ISCC 2015
18-19, December 2015
Guangzhou, China

1
Speaker
 Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).http://pos.sissa.it/

http://pos.sissa.it/

P
o
S
(
I
S
C
C
2
0
1
5
)
0
5
4

Fault Localization Method Bei Zhang

1. Introduction

In the last few years, foreign and Chinese scholars have done a variety of studies about the
automation of software fault localization, and have obtained a lot of achievements. According to
the difference of principle, these theories can be divided into: methods based on program
slicing, methods based on program spectrum and methods based on program state.

Program slicing-based methods[1-3]: program slicing, as the name suggests, is to reduce
the scope of the program. The main idea of this method is to construct a collection of code in a
program that may be associated with the error outputs. The code set includes two contents: fault
statements and debugging context related to the fault statements that can help staff to understand
the program, as far as possible to narrow the scope of suspicious statements, reduce the number
of code lines to be detected, and improve the efficiency of software debugging.

Program spectrum-based methods: by locating different elements in the program, for
example, an executable statement or a statement block, a predicate and an information flow path
[4-8], obtain different program spectrum. The main idea of this method is to use the differences
of program spectrum between successful cases and unsuccessful cases to obtain the
suspiciousness of each element of the program then sort. Calculation of suspiciousness is based
on statistical data or a variety of mathematical calculation method.

Program state-based methods [9-10]: the central idea of program state-based methods is as
follows: first of all, count the running state of successful test cases and unsuccessful cases in the
execution process, draw the difference between them, and then modify the running state of
unsuccessful case based on different rules, and find out the location of the key statement by
revised test results.

In addition to the traditional fault localization methods, some scholars have applied neural
network to the field of fault localization in recent years. Such as in 2009, Wong et al proposed
BP neural network-based fault localization algorithm [11]. In this paper, a new technique based
on the idea of genetic algorithm and orthogonal experiment design is proposed -- fault
localization method based on enhanced GA-BP neural network; EGA-BPN uses genetic
algorithm to calculate the initial setting of the parameters of back propagation neural network,
and use the orthogonal experiment design method to adjust the value of parameters, in order to
achieve a better fault localization result.

2.Enhanced GA-BP Neural Network Model

2.1An Overview of the GA-BP Neural Networks and Orthogonal Experiment Design

Propagation back neural network is divided into: the input layer, the hidden layer and the
output layer. Fig. 1 shows the structure of a three-layer BP neural network [12]. It needs to train
a lot of times for the identification of nonlinear or other more complex relationships, and it can’t
rule out the local minimum points. Aiming at solving these problems of BP neural network, one
of the improved methods is using genetic algorithm’s ability “survival of the fittest” to
overcome the defects and deficiencies of the BP neural network, and thus to upgrade it.

Input Layer Hidden Layer Output Layer

.

.

.
.
.
.

.

.

.

Figure 1: Structure of a BP Neural Network

P
o
S
(
I
S
C
C
2
0
1
5
)
0
5
4

Fault Localization Method Bei Zhang
Orthogonal experiment design is a method of designing a multi factor and multi-level test.

It selects some representative points from the whole test according to the orthogonal
experiment. These representative points are "uniformly dispersed, neat comparable
characteristics", scientifically arranged and analyzed by using the orthogonal table. The main
advantage is that it can be selected from a large number of test schemes, and the results of these
tests are analyzed, and the optimal scheme is deduced. It is an efficient, rapid and economical
method of test design.

2.2 Execution Flow of EGA-BPN Model

The central idea of EGA-BPN is to use GA to deal with the connection weights and
thresholds of each layer of the neural network, select the best individual, which is used as the
initial setting of the weights and thresholds of the neural network, and after the input values into
neural network, compare the predicted results with the expected output values; according to the
deviation continue to use OED to adjust the network parameter values, and then perform again
until the neural network training is completed. Input test data and summarize the results of the
output. Fig. 2 shows the execution flow of EGA-BPN model:

Encode

Produce initial
population

Calculate adaptive
value

Selection , Crossover
and Mutation

Choose the best
individual

Determine
network structure

Initialization
network

Set initial weights ,
thresholds

BP network algorithm
processing

Output value

Satisfy the end
condition?

prediction
results

Satisfy the end
condition ?

Yes

No

OED

Yes

Genetic algorithm BP neural network

Figure 2: Execution Flow of EGA-BPN Model

2.3 Training Process of EGA-BPN Model

EGA-BPN model training process is as follows:
 encode to get the initial population of the genetic, each encoded string, that is,

eachchromosome contains the weights and the thresholds of each layer of a neural
network;

 determine the structure of the neural network, and calculate the possibility of gene of
the chromosomes inherited to future generations, namely the adaptive value F. F is

defined by the error between the predicted value y i and the expected value oi of the
training data. The larger the adaptive value of the chromosome, the greater the genetic
potential of the gene, and the calculation formula of F is as follows:

F=k(∑
i=0

n

ab s (y i−oi))

Where n is the number of output nodes, and k is the coefficient. After crossover and
mutation operation, the best chromosome is selected as the initial setting value of neural
network weights and thresholds;

P
o
S
(
I
S
C
C
2
0
1
5
)
0
5
4

Fault Localization Method Bei Zhang
 set the number of nodes in the input layer, the hidden layer and the output layer of the

neural network as m, p and q. The connection weights among the three layers are
w i j and v j k , threshold of the hidden layer is αi , threshold of the output layer is
βk , and determine learning parameters and neuron excitation functions ()f x . The

network input data is represented as a matrix:
X =[X 1 , X 2 ,… , X m]

 the hidden layer output Y can be calculated by the input vector X, w i j and αi . The

output layer result Z can be calculated by Y, v j k and βk . The specific formulas are
as follows:

Y j= f (∑
i=1

m

wi j X i−αi) j=1,2 ,… , p

Z k= f (∑
j=1

p

v j k Y j−βk)k=1,2 ,… , q

 if the expected output value Ok of neuron X i , the error E can be calculated
according to the formula of the mean square error function:

E=
1
2∑k

(O k−Z k)
2

 compare the error E with default values. If E is less than the default value or training
number has reached the preset number, the training is completed; on the contrary, the
error correction should be carried out according to the following formula:

(w i j (n+1)=w i j (n)+∆ wi j

v j k (n+1)=v j k (n)+∆v j k
)

Where n represents the number of training times of the network, ∆ wi j and ∆ v i k

respectively represent revised weights and thresholds, and the formula is as follows:

(∆ w i j=−σ
∂ E
∂w i j

∆ v j k=−σ ' ∂ E
∂ vk j

)

 in the formula (2.7), σ and σ '
indicate learning parameters, whose values are

combined with OED to adjust, and the formula is as follows:

(σ ∙ 1=σ ∙+∆σ
σ ∙ 1=σ ∙−∆σ)

Where ∆ σ is the learning parameter adjustment value, and generally is a small number
[13];

 use the modified parameters as a new network connection weights and thresholds.
Return to step 3, until reach the ideal state or training number reaches the preset
number.

3. Fault Localization Method Based on EGA-BPN Neural Network

The process of software fault localization algorithm based on EGA-BPN is as follows:
 get program execution information. For a wrong program P which can run normally,

for example, the summation procedure in Table 1[14]. There are 9 statements in this

program, in accordance with the order, the statement numbers are S 1 , S 2 ,…, S 9 ,

and the error is in statement S 3 . There are 8 test cases in this program and the

numbers are t 1 , t 2 ,…, t 8 .

P
o
S
(
I
S
C
C
2
0
1
5
)
0
5
4

Fault Localization Method Bei Zhang
Program t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 8

S 1
read(a,b); 1 1 1 1 1 1 1 1

S 2
if (a<10&&b<10) 1 1 1 1 1 1 1 1

S 3
result=a-b;// correct: a+b 1 1 1 1 0 1 1 1

S 4
if(result>0) 1 1 1 1 0 1 1 1

S 5
 print(“positive”); 1 0 0 0 0 1 1 0

S 6
else if (result==0) 0 1 1 1 0 0 0 1

S 7
print(“zero”); 0 1 0 0 0 0 0 0

S 8
else print(“negative”); 0 0 1 1 0 0 0 1

S 9
else print(“invalid input”); 0 0 0 0 1 0 0 0

f l a g 1 1 1 1 0 0 0 0

Table 1: An Example of Coverage Information

For a test case t k=〈 i nk ,o u t k , C k , f l a g 〉 , i nk represents the input data of t k ; ou t k

represents the output data of t k ; C k represents the program coverage information. In the

running process of t k , if statement S i is executed, set the cover identifier for the statement
C k i to 1, otherwise set it to 0; f l a g is the program execution result identifier. If ou t k is

equal to the expected output of i nk , set f l a g of t k to 0, otherwise set it to 1;
 encode weights and thresholds of each layer of the neural network to form initial

population of genetic algorithm. Use crossover and mutation operator to calculate the
highest fitness chromosome, and the final result is the initial setting of the parameters
of the BP neural network;

 the next step is to train the neural network. The coverage information of each test case
are the input layer neurons of the neural network. For the example in Table 1, the
number of EGA-BPN input layer is 9 and there are 8 sets of test cases in total. The

output value of the neural network is compared with the f l a g of each test case to
get the error. If the error value is greater than the preset error value, then OED will be
combined to adjust parameter values. Loop the process until the error value is less
than or equal to the preset error value or the number of cycles has exceeded the
maximum cycle number;

 once the neural network training is completed, a good map is established between the

input data and the output data. We use a set of virtual test cases v1 , v2 ,…, v9 ,

whose coverage vectors are C v 1 , C v 2 ,…, C v 9 [15], where

(
C v 1

C v 2

⋮
C v 9

) = (
10⋯0
01⋯0
⋮ ⋮ ⋱ ⋮
00⋯1

)

 the virtual test case data are assigned to the input layer of the network, and the

prediction results are f 1 , f 2 ,…, f 9 . The value of f i is closer to 0, so the result of

the test case v i is more likely to be successful, and the covered statement si is less
likely to be wrong;

 the output of the neural network, that is, the suspiciousness of statements provides a
reference to the staff. Programmers can directly begin to check from the most
suspicious statements, thereby save a lot of time and improve work efficiency.

4.Experimental Results and Analysis

P
o
S
(
I
S
C
C
2
0
1
5
)
0
5
4

Fault Localization Method Bei Zhang
4.1A Sample Program

The experiment of the EGA-BPN algorithm needs four elements of test cases: input data,
output data, coverage information and program execution result identifier. If the scale of the test
procedure is large, first of all, the program should be divided into code blocks, and the block is
the smallest unit of the experiment. There are many ways to bolck the program, for example, we
can set all statements of a fuction as a block, so the program can be divided into blocks
according to the fuction, or we can simply set 10 statements as a block. We should record the
mapping relationship between blocks and statements, that is, the range and number of sentences
of each block, in order to position errors accurately.

Then execute test cases to get the coverage information of test cases, compare the output
data of the system with the expected value to obtain the execution result identifier ; finally, all
the information is put together to get a data file similar to Table 1. As the input data of the EGA-
BPN algorithm, the data file is assigned to the neural network which has been trained before.
The prediction results of the network are arranged in order. The higher ranking of the code
block, the more likely the block is wrong. Table 2 shows the result of the sample program in
Table 1 executed by the EGA-BPN algorithm:

Statement Output Statement Output Statement Output

S 1 0.8356 S 4 0.35486 S 7 0.00915

S 2 0.9775 S 5 0.09429 S 8 0.0756

S 3 0.9998 S 6 0.68125 S 9 0.0996

Table 2: Execution Result of Sample Program

According to the data in Table 2, we can see that suspiciousness of statement S 3 is the

highest, which suggests that S 3 is most likely to be wrong, and this is in conformity with the
actual situation.

4.2 Siemens Suite

In order to further demonstrate the effectiveness of this method, the Siemens suite is
introduced as a data source for further experiments. The Siemens suite is an open source which
is provided by Software-artifact Infrastructure Repository , and most of it is written by C
language. Each program has a correct version, several wrong versions, and many test cases.
Specific information is shown in the following Table 3. However, not all of the wrong versions
in the Siemens suite are suitable for this experiment, such as, the wrong statement of error
version 4 of program Print_tokens exists in the head file, and cannot get the wrong statement
coverage information; the error version 27 and error version 32 of program Replace, an error
occurs in the process of executing test cases, so as to produce abnormal program termination,
and cannot conclude the output data.

Program Number of faulty versions
Number of executable state-
ments

Number of test cases

Print_tokens 7 4130 175

Print_tokens2 10 4115 128

Replace 32 5542 216

Schedule 9 2650 121

Schecule2 10 2710 112

Teas 41 1608 55

Tot_info 23 1052 113

Table 3: Table Summary of The Siemens Suite
In order to test the effectiveness of the algorithm, the localization efficiency is introduced

as the evaluation index [16]. The localization efficiency of an algorithm is the energy spend in
the process of positioning error, that is the ratio of percentage of faulty versions where fault is
located and percentage of executable statements needs to be examined. For example, suppose A
algorithm and B algorithm, by examining less than 20% of the code, A can locate 30% of the
faults in test program whereas B can only locate 15%, or 50% of the faulty versions have been

P
o
S
(
I
S
C
C
2
0
1
5
)
0
5
4

Fault Localization Method Bei Zhang
located fault, and A has examined 30% of the code whereas B has examined 40%. So obviously,
the localization efficiency of A is higher than thatof B, and algorithm A is more efficient than
algorithm B. Fig. 3 shows a comparison of the localization efficiency of the EGA-BPN with
GA-BPN and BPN:

0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1
0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

1 0 0

P e r c e n t a g e o f e x e c u t a b l e s t a t e m e n t s t h a t n e e d t o b e e x a m i n e d

P
er

ce
nt

ag
e

of
 fa

ul
ty

 v
er

si
on

s
w

he
re

 fa
ul

t i
s

lo
ca

te
d

(%
)

E G A - B P N

G A - B P N

B P N

Figure 3: Comparison of the Localization Efficiency of EGA-BPN with GA-BPN and BPN

In Fig. 3, x axis represents percentage of executable statements that needs to be examined,
and y axis represents percentage of faulty versions where fault is located. It can be seen from
the curve that by examining the same percent of code, EGA-BPN can locate more faulty
versions than GA-BPN and BPN, so EGA-BPN has the best performance.

For further details, we use the percentage Imp [17] to compare the three algorithms. The
percentage Imp represents in a single program, in the case of all the error versions being found
out, and the percentage of the total number of statements spending on the search and the total
number of statements of error versions. The lower the percentage Imp is, the less the search time
is consumed, and the higher the efficiency is. Fig. 4 shows a comparison of the percentage Imp
of the EGA-BPN with GA-BPN and BPN:

Figure 4: Comparison of the Percentage Imp of EGA-BPN with GA-BPN and BPN
In Fig. 4, x axis represents program names in the Siemens suite, and y axis represents the

value of the percentage Imp. It can be seen from the Figure that fault localization method based
on EGA-BPN can locate errors faster than fault localization method based on GA-BPN and
BPN.

5. Conclusion

In this paper, genetic algorithm, BP neural network and orthogonal experiment design are
integrated and applied to the field of fault localization. A new fault localization technique based
on enhanced GA-BP neural network is proposed. Experiments show that the EGA-BPN
algorithm is better than the GA-BPN algorithm and the BPN algorithm in the efficiency and
accuracy of locating faults.

Although the fault localization algorithm has achieved good results, the algorithm also has
many shortcomings, for example, the running results only provide a suspiciousness rank of
statements. Programmers have to check statements one by one according to the rank, manually
modify the error and execute the program again to make sure that the error has been modified ;
furthermore, errors in the experimental objects used in experiments, the Siemens suite, are
single error, without considering the program may have multiple errors or the relationship
between the multiple errors. In addition, the accuracy of the neural network prediction has a

P
o
S
(
I
S
C
C
2
0
1
5
)
0
5
4

Fault Localization Method Bei Zhang
great relationship with the training data, the more training data are, and the more accurate
prediction results. However, in actual engineering, due to the complexity of the structure or the
logic of the program, it will take a lot of time to obtain test cases, coverage information, and
execution results of a program. These problems will continue to be optimized in the follow-up
study.

References

[1] C. D. Sterling, R. A. Olsson. Automated bug isolation via program chipping [J]. Software: Practice
and Experience, 2007, 37(10): 1061-1086.

[2] X. Zhang, N. Gupta, R. Gupta. Locating faulty code by multiple points slicing [J]. Software:
Practice and Experience, 2007, 37(9): 935-961.

[3] W. E. Wong, Y. Qi. Effective program debugging based on execution slices and inter-block data
dependency [J]. Journal of Systems and Software, 2006, 79(7): 891-903.

[4] R. Abreu, P. Zoeteweij, A. J. C. Van Gemund. On the accuracy of spectrum-based fault localization
[C]. Testing: Academic and Industrial Conference Practice and Research Techniques Mutation,
ACM, USA, 2007: 89-98.

[5] J. A. Jones, M. J. Harrold, J. Stasko. Visualization of test information to assist fault localization[C].
Proceedings of the 24th international conference on Software engineering, ACM, USA2002: 467-
477.

[6] W. Masri. Fault localization based on information flow coverage [J]. Software Testing: Verification
and Reliability, 2010, 20(2): 121-147.

[7] S. S. Murtaza, N. Madhavji, M. Gittens and et al. Diagnosing new faults using mutants and prior
faults (NIER track)[C]. IEEE 33rd International Conference on Software Engineering, IEEE, USA,
2011: 960-963.

[8] K. Yu, M. Lin, Q. Gao and et al. Locating faults using multiple spectra-specific models[C].
Proceedings of the 2011 ACM Symposium on Applied Computing, ACM, USA , 2011: 1404-1410.

[9] X. Zhang, N. GuPta, and T. GuPta. Locating Faults through Automated Predicate Switching[C]. In
the 28th International Conference on Software Engineering (ICSE.06), ACM/IEEE , USA, May
2006:272-281.

[10] H. Cleve and A. Zeller. Locating Causes of Program Failures[C].In the 27th International
Conference on Software Engineering (ICSE.05), ACM/IEEE , USA, 2005:342-351.

[11] W. E. Wong and Y. Qi. BP neural network-based effective fault localization [J]. International
Journal of Software Engineering and Knowledge Engineering, 2009,19(4):573–597.

[12] Z. ZZ. Shi. Neural Nerwork. Beijing. Higher Education Press, 2009:43-45.(In Chinese)

[13] K. Zhang, D. P. Zhang, and S. Wang. Fault localization method based on enhanced radial basis
function neural network. [J]. Appication Research of Computers. 2015, 32, 3.(In Chinese)

[14] W. Eric Wong, Vidroha Debroy and et al. The DStar Method for Effective Software Fault
Localization [J]. IEEE Transactions on Reliability, 2014, 63(1): 290-308.

[15] W. E. Wong, Debroy V, Thuraisingham B and et al. RBF Neural Network-based fault location [J].
Technical report UTDCS-20-10, Department of Computer Science, University of Texas at Dallas,
2010.

[16] Y. Lei, X. G. Mao, Z. Y. Dai and et al. Effective statistical fault localization using program slices
[C]. IEEE 36th International Conference on Computer Software and Applications, IEEE,
USA,2012.pp:1-10

[17] V. Debroy, W. E. Wong, X. Xu and et al. A Grouping-Based Stategy to Improve the Effectiveness of
Fault Localization Techniques[C]. In the 10th International Conference on Quality Software,
Zhangjiajie, China, 2010, pp: 13-22.

	1. Introduction
	2.Enhanced GA-BP Neural Network Model
	2.1An Overview of the GA-BP Neural Networks and Orthogonal Experiment Design
	2.2 Execution Flow of EGA-BPN Model
	2.3 Training Process of EGA-BPN Model
	3. Fault Localization Method Based on EGA-BPN Neural Network
	4.Experimental Results and Analysis

	4.1A Sample Program
	4.2 Siemens Suite
	5. Conclusion

