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In  the  process  of  software  development  and  maintenance,  software  debugging  is  the  most
complicated  and  expensive  part.  In  recent  years,  automated  software  fault  localization
technology has attracted many scholars’ attention, various approaches have been proposed. In
this paper, a technique named EGA-BPN is proposed which can provide suspicious locations for
fault localization automatically without requiring any prior information of program structure or
semantics.  EGA-BPN  is  a  software  fault  localization  method  based  on  enhanced  Genetic
Algorithm-Back Propagation neural network. Firstly, through processing running traces of the
program,  coverage  information  of  test  cases  is converted  to the  training samples  of  neural
network; secondly, the initial weights and thresholds of the neural network are computed by GA,
the training data are substituted in neural network in training orderly, and then use orthogonal
experimental design helping to adjust the parameters of the neural network; finally, test matrix is
calculated by the neural network to count the suspiciousness of each statement, and the fault is
located  at  the  statements  with  higher  suspicious  value.  Through  comparative  experiments
between  the  proposed  method,  GA-BPN  and  BPN,  the  experiment  results  show  that  the
enhanced GA-BP neural network-based fault localization technology has certain validity. 
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1. Introduction

In the last few years, foreign and Chinese scholars have done a variety of studies about the
automation of software fault localization, and have obtained a lot of achievements. According to
the  difference  of  principle,  these  theories  can  be  divided  into: methods  based  on  program
slicing, methods based on program spectrum and methods based on program state.

Program slicing-based  methods[1-3]: program slicing, as the name suggests, is to reduce
the scope of the program. The main idea of this method is to construct a collection of code in a
program that may be associated with the error outputs. The code set includes two contents: fault
statements and debugging context related to the fault statements that can help staff to understand
the program, as far as possible to narrow the scope of suspicious statements, reduce the number
of code lines to be detected, and improve the efficiency of software debugging. 

Program spectrum-based  methods:  by  locating  different  elements  in  the  program,  for
example, an executable statement or a statement block, a predicate and an information flow path
[4-8], obtain different program spectrum. The main idea of this method is to use the differences
of  program  spectrum  between  successful  cases  and  unsuccessful  cases  to  obtain  the
suspiciousness of each element of the program then sort. Calculation of suspiciousness is based
on statistical data or a variety of mathematical calculation method. 

Program state-based methods [9-10]: the central idea of program state-based methods is as
follows: first of all, count the running state of successful test cases and unsuccessful cases in the
execution process,  draw the difference between  them, and then modify the running state of
unsuccessful case based on different rules,  and  find out the location of the key statement by
revised test results. 

In addition to the traditional fault localization methods, some scholars have applied neural
network to the field of fault localization in recent years. Such as in 2009, Wong et al proposed
BP neural network-based fault localization algorithm [11]. In this paper, a new technique based
on  the  idea  of  genetic  algorithm  and  orthogonal  experiment  design  is  proposed  --  fault
localization  method  based  on  enhanced  GA-BP  neural  network; EGA-BPN  uses  genetic
algorithm to calculate the initial setting of the parameters of back propagation neural network,
and use the orthogonal experiment design method to adjust the value of parameters, in order to
achieve a better fault localization result.

2.Enhanced GA-BP Neural Network Model  

2.1An Overview of the GA-BP Neural Networks and Orthogonal Experiment Design

Propagation back neural network is divided into: the input layer, the hidden layer and the
output layer. Fig. 1 shows the structure of a three-layer BP neural network [12]. It needs to train
a lot of times for the identification of nonlinear or other more complex relationships, and it can’t
rule out the local minimum points. Aiming at solving these problems of BP neural network, one
of  the  improved  methods  is  using  genetic  algorithm’s  ability  “survival  of  the  fittest”  to
overcome the defects and deficiencies of the BP neural network, and thus to upgrade it.
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Figure 1: Structure of a BP Neural Network
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Orthogonal experiment design is a method of designing a multi factor and multi-level test.

It  selects  some  representative  points  from  the  whole  test  according  to  the  orthogonal
experiment.  These  representative  points  are  "uniformly  dispersed,  neat  comparable
characteristics", scientifically arranged and analyzed by using the orthogonal table. The main
advantage is that it can be selected from a large number of test schemes, and the results of these
tests are analyzed, and the optimal scheme is deduced. It is an efficient, rapid and economical
method of test design.

2.2 Execution Flow of EGA-BPN Model

The central  idea of  EGA-BPN is  to  use  GA to deal  with the  connection weights  and
thresholds of each layer of the neural network, select the best individual, which is used as the
initial setting of the weights and thresholds of the neural network, and after the input values into
neural network, compare the predicted results with the expected output values; according to the
deviation continue to use OED to adjust the network parameter values, and then perform again
until the neural network training is completed. Input test data and summarize the results of the
output. Fig. 2 shows the execution flow of EGA-BPN model:
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Figure 2: Execution Flow of EGA-BPN Model

2.3 Training Process of EGA-BPN Model

EGA-BPN model training process is as follows:
 encode  to  get  the  initial  population  of  the  genetic,  each  encoded  string,  that  is,

eachchromosome contains the weights and the thresholds of each layer of a neural
network;

 determine the structure of the neural network, and calculate the possibility of gene of
the chromosomes inherited to future generations, namely the adaptive value F. F is

defined by the error between the predicted value y i and the expected value oi of the
training data. The larger the adaptive value of the chromosome, the greater the genetic
potential of the gene, and the calculation formula of F is as follows:

F=k(∑
i=0

n

ab s ( y i−oi ))  

Where n  is  the  number  of  output  nodes, and k is  the  coefficient.  After  crossover  and
mutation  operation,  the  best  chromosome  is  selected  as  the  initial  setting  value  of  neural
network weights and thresholds;
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 set the number of nodes in the input layer, the hidden layer and the output layer of the

neural network  as m,  p and  q. The connection weights  among the three layers are
w i j and  v j k , threshold of the hidden layer is  αi , threshold of the output layer is
βk ,  and  determine  learning parameters  and  neuron excitation functions ( )f x .  The

network input data is represented as a matrix:
X =[ X 1 , X 2 ,… , X m ]  

 the hidden layer output Y can be calculated by the input vector X, w i j and αi . The

output layer result Z can be calculated by Y, v j k and βk . The specific formulas are
as follows:

Y j= f (∑
i=1

m

wi j X i−αi) j=1,2 ,… , p 

Z k= f (∑
j=1

p

v j k Y j−βk)k=1,2 ,… , q 

 if  the  expected  output  value  Ok of  neuron  X i ,  the  error E  can  be  calculated
according to the formula of the mean square error function:

E=
1
2∑k

(O k−Z k )
2



 compare the error E with default values. If E is less than the default value or training
number has reached the preset number, the training is completed; on the contrary, the
error correction should be carried out according to the following formula:

(w i j ( n+1)=w i j (n)+∆ wi j

v j k (n+1 )=v j k (n)+∆v j k
) 

Where  n  represents  the  number  of  training  times  of  the  network,  ∆ wi j and  ∆ v i k

respectively represent revised weights and thresholds, and the formula is as follows:

(∆ w i j=−σ
∂ E
∂w i j

∆ v j k=−σ ' ∂ E
∂ vk j

) 

 in  the  formula  (2.7),  σ and  σ '
indicate  learning  parameters,  whose  values are

combined with OED to adjust, and the formula is as follows:

(σ ∙ 1=σ ∙+∆σ
σ ∙ 1=σ ∙−∆σ) 

Where ∆ σ is the learning parameter adjustment value, and generally is a small number
[13];

 use the modified parameters as a new network connection weights and thresholds.
Return to step 3,  until  reach the ideal  state or training number reaches the preset
number.

3. Fault Localization Method Based on EGA-BPN Neural Network

The process of software fault localization algorithm based on EGA-BPN is as follows:
 get program execution information. For a wrong program P which can run normally,

for example, the summation procedure in Table 1[14]. There are 9 statements in this

program, in accordance with the order, the statement numbers are  S 1 ,  S 2 ,…, S 9 ,

and  the error  is  in  statement  S 3 .  There are 8 test  cases  in  this program and the

numbers are t 1 , t 2 ,…, t 8 .
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Program t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 8

S 1
read(a,b); 1 1 1 1 1 1 1 1

S 2
if (a<10&&b<10) 1 1 1 1 1 1 1 1

S 3
result=a-b;// correct: a+b 1 1 1 1 0 1 1 1

S 4
if(result>0) 1 1 1 1 0 1 1 1

S 5
  print(“positive”); 1 0 0 0 0 1 1 0

S 6
else if (result==0) 0 1 1 1 0 0 0 1

S 7
print(“zero”); 0 1 0 0 0 0 0 0

S 8
else print(“negative”); 0 0 1 1 0 0 0 1

S 9
else print(“invalid input”); 0 0 0 0 1 0 0 0

f l a g 1 1 1 1 0 0 0 0

Table 1: An Example of Coverage Information

For a test case t k=〈 i nk ,o u t k , C k , f l a g 〉 , i nk represents the input data of t k ; ou t k

represents  the  output  data  of  t k ;  C k represents  the  program coverage  information.  In  the

running process of  t k , if statement  S i is executed, set the cover identifier for the statement
C k i to 1, otherwise set it to 0;  f l a g is the program execution result identifier. If  ou t k is

equal to the expected output of i nk , set f l a g of t k to 0, otherwise set it to 1;
 encode weights and thresholds of each layer of the neural  network to form initial

population of genetic algorithm. Use crossover and mutation operator to calculate the
highest fitness chromosome, and the final result is the initial setting of the parameters
of the BP neural network;

 the next step is to train the neural network. The coverage information of each test case
are the input layer neurons of the neural network. For the example in  Table 1, the
number of EGA-BPN input layer is 9 and there are 8 sets of test cases in total. The

output value of the neural network is compared with the f l a g of each test case to
get the error. If the error value is greater than the preset error value, then OED will be
combined to adjust parameter values. Loop the process until the error value is less
than or  equal  to  the  preset  error value or the number  of  cycles has exceeded the
maximum cycle number;

 once the neural network training is completed, a good map is established between the

input  data  and the output  data.  We use a  set  of  virtual  test  cases  v1 , v2 ,…, v9 ,

whose coverage vectors are C v 1 , C v 2 ,…, C v 9 [15], where

(
C v 1

C v 2

⋮
C v 9

) = (
10⋯0
01⋯0
⋮ ⋮ ⋱ ⋮
00⋯1

) 

 the  virtual  test  case  data  are assigned to  the  input  layer  of  the  network,  and  the

prediction results are f 1 , f 2 ,…, f 9 . The value of f i is closer to 0, so the result of

the test case v i is more likely to be successful, and the covered statement si is less
likely to be wrong;

 the output of the neural network, that is, the suspiciousness of statements provides a
reference  to  the  staff.  Programmers  can  directly  begin  to  check  from  the  most
suspicious statements, thereby save a lot of time and improve work efficiency.

4.Experimental Results and Analysis
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4.1A Sample Program

The experiment of the EGA-BPN algorithm needs four elements of test cases: input data,
output data, coverage information and program execution result identifier. If the scale of the test
procedure is large, first of all, the program should be divided into code blocks, and the block is
the smallest unit of the experiment. There are many ways to bolck the program, for example, we
can set  all  statements  of  a  fuction  as  a  block,  so  the  program can  be  divided  into  blocks
according to the fuction, or we can simply set 10 statements as a block. We should record the
mapping relationship between blocks and statements, that is, the range and number of sentences
of each block, in order to position errors accurately.

Then execute test cases to get the coverage information of test cases, compare the output
data of the system with the expected value to obtain the execution result identifier ; finally, all
the information is put together to get a data file similar to Table 1. As the input data of the EGA-
BPN algorithm, the data file is assigned to the neural network which has been trained before.
The prediction results of the network are arranged in order. The higher ranking of the code
block, the more likely the block is wrong. Table 2 shows the result  of the sample program in
Table 1 executed by the EGA-BPN algorithm:

Statement Output Statement Output Statement Output

S 1 0.8356 S 4 0.35486 S 7 0.00915

S 2 0.9775 S 5 0.09429 S 8 0.0756

S 3 0.9998 S 6 0.68125 S 9 0.0996

Table 2: Execution Result of Sample Program

According to the data  in Table 2, we can see that suspiciousness of statement  S 3 is  the

highest, which suggests that S 3  is most likely to be wrong, and this is in conformity with the
actual situation.

4.2 Siemens Suite

In  order  to  further  demonstrate  the  effectiveness  of  this  method,  the  Siemens  suite  is
introduced as a data source for further experiments. The Siemens suite is an open source which
is  provided  by Software-artifact  Infrastructure  Repository ,  and  most  of  it  is written  by C
language. Each program has a correct version, several wrong versions, and many test cases.
Specific information is shown in the following Table 3. However, not all of the wrong versions
in the Siemens suite are suitable for this experiment, such as, the wrong statement of error
version 4 of program Print_tokens exists in the head file,  and cannot get the wrong statement
coverage information; the error version 27 and error version 32 of program Replace, an error
occurs in the process of executing test cases, so as to produce abnormal program termination,
and cannot conclude the output data.

Program Number of faulty versions
Number of executable state-
ments

Number of test cases

Print_tokens 7 4130 175

Print_tokens2 10 4115 128

Replace 32 5542 216

Schedule 9 2650 121

Schecule2 10 2710 112

Teas 41 1608 55

Tot_info 23 1052 113

Table 3: Table Summary of The Siemens Suite
In order to test the effectiveness of the algorithm, the localization efficiency is introduced

as the evaluation index [16]. The localization efficiency of an algorithm is the energy spend in
the process of positioning error, that is the ratio of percentage of faulty versions where fault is
located and percentage of executable statements needs to be examined. For example, suppose A
algorithm and B algorithm, by examining less than 20% of the code, A can locate 30% of the
faults in test program whereas B can only locate 15%, or 50% of the faulty versions have been
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located fault, and A has examined 30% of the code whereas B has examined 40%. So obviously,
the localization efficiency of A is higher than thatof B, and algorithm A is more efficient than
algorithm B.  Fig. 3 shows a comparison of the localization efficiency of the EGA-BPN with
GA-BPN and BPN:
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Figure 3: Comparison of the Localization Efficiency of EGA-BPN with GA-BPN and BPN

In Fig. 3, x axis represents percentage of executable statements that needs to be examined,
and y axis represents percentage of faulty versions where fault is located. It can be seen from
the  curve  that  by examining  the  same  percent  of  code,  EGA-BPN can  locate  more  faulty
versions than GA-BPN and BPN, so EGA-BPN has the best performance.

For further details, we use the percentage Imp [17] to compare the three algorithms. The
percentage Imp represents in a single program, in the case of all the error versions being found
out, and the percentage of the total number of statements spending on the search and the total
number of statements of error versions. The lower the percentage Imp is, the less the search time
is consumed, and the higher the efficiency is. Fig. 4 shows a comparison of the percentage Imp
of the EGA-BPN with GA-BPN and BPN:

Figure 4: Comparison of the Percentage Imp of EGA-BPN with GA-BPN and BPN
In Fig. 4, x axis represents program names in the Siemens suite, and y axis represents the

value of the percentage Imp. It can be seen from the Figure that fault localization method based
on EGA-BPN can locate errors faster than fault localization method based on GA-BPN and
BPN.

5. Conclusion

In this paper, genetic algorithm, BP neural network and orthogonal experiment design are
integrated and applied to the field of fault localization. A new fault localization technique based
on  enhanced  GA-BP  neural  network  is  proposed.  Experiments  show  that  the  EGA-BPN
algorithm is better than the GA-BPN algorithm and the BPN algorithm in the efficiency and
accuracy of locating faults.

Although the fault localization algorithm has achieved good results, the algorithm also has
many shortcomings, for example,  the running results  only provide a suspiciousness rank of
statements. Programmers have to check statements one by one according to the rank, manually
modify the error and execute the program again to make sure that the error has been modified ;
furthermore,  errors  in  the  experimental  objects  used in  experiments,  the  Siemens  suite,  are
single  error,  without  considering  the  program may have  multiple  errors  or the  relationship
between the multiple errors. In addition, the accuracy of the neural network prediction has a
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great  relationship with the  training data,  the  more training data are,  and the more  accurate
prediction results. However, in actual engineering, due to the complexity of the structure or the
logic of the program, it will take a lot of time to obtain test cases, coverage information,  and
execution results of a program. These problems will continue to be optimized in the follow-up
study.
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