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1. Introduction

Top quarks can be produced in pairs of top quark-antiquark (tt̄), mostly via strong interactions,
or singly via electroweak interaction (single-top quark). Precision measurements in the top quark
sector allow determination of fundamental standard model parameters, like the top quark mass and
the Cabibbo-Kobayashi-Maskawa matrix element Vtb, as well as measurements of parton distribu-
tion functions and detailed modeling of Quantum Chromodynamics (QCD) interactions. Properties
of the top quark can be probed from its decay products, and allow the search to be performed for
possible effects of physics beyond standard model affecting the production or decay vertices. All
top quark processes constitute a background for beyond-standard-model physics searches.

2. tt̄ inclusive production

The dominant production mechanism for top quark pairs at LHC is gluon-gluon fusion, which
contributes for 85− 90% depending on the centre-of-mass energy. tt̄ production is a benchmark
process for the standard model of particle physics, and precise measurement of its cross section
allows for tests of perturbative QCD as well as of parton distribution functions (PDF). Top quark
production is measured at ATLAS [1] and CMS [2] in central rapidity, and at LHCb [3] in more
forward rapidity. For the most precise 7 and 8 TeV measurements, ATLAS [4] defines collision
events enriched in tt̄ by requring an electron-muon pair with opposite charge, plus one or two jets
reconstructed as coming from b-quarks. The analysis from CMS [5] has a similar selection for what
concerns leptons, but does not make any jet requirements. Instead a fit is performed to different
event categories defined according to jet and b-jet multiplicity. The cross-sections for tt̄ production
at
√

s = 7, 8 are measured by the ATLAS and CMS collaborations to be:

σ
7TeV
tt̄ = 182.9±3.1(stat)±4.2(syst)±3.6(lumi)±3.3(beam)pb (ATLAS),

σ
7TeV
tt̄ = 173.6±2.1(stat)+4.5

−4.0(syst)±3.8(lumi)pb (CMS),

σ
8TeV
tt̄ = 242.4±1.7(stat)±5.5(syst)±7.5(lumi)±4.2(beam)pb (ATLAS),

σ
8TeV
tt̄ = 244.9±1.4(stat)+6.3

−5.5(syst)±6.4(lumi)pb (CMS).

For the latest measurements at 13 TeV, ATLAS [6] and CMS [7] obtain:

σ
13TeV
tt̄ = 818±8(stat)±27(syst)±19(lumi)±12(beam)pb (ATLAS),

σ
13TeV
tt̄ = 793±8(stat)±38(syst)±21(lumi)pb (CMS).

For the latter result, CMS uses a cut-and-count approach rather than a maximum likelihood
fit in order to extract the signal cross section. The distribution of the number of b-jets after the
lepton selection is shown at

√
s = 13 TeV in Fig. 1(a) for ATLAS and in Fig. 1(b) for CMS. The tt̄

cross-section evolution with the centre-of-mass energy is presented in Fig. 2.
The LHCb collaboration has observed top quark production at

√
s = 7 and 8 TeV [8] for the

first time in forward rapidity pp collisions, obtaining a significance of 5.4σ . Events with one muon
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Figure 1: Distribution of the number of b-tagged jets in preselected opposite-sign eµ events compared to
simulation for ATLAS(a) [6] and CMS(b) [7]
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Figure 2: Cross-section for tt̄ pair production in pp collisions as a function of centre-of-mass energy com-
pared to the NNLO+NNLL theoretical predictions for ATLAS and CMS [34].

2 < η < 4.5 and pT > 25 GeV/c, and one forward b-jet with 2.2 < η < 4.2 and 25 < pT < 100
GeV/c are selected. The top-quark cross section is determined by measuring the excess over W+b
jets background yield, obtaining:

σ
7TeV
tt̄ = 239±53(stat)±33(syst)±24(theory) fb,

σ
8TeV
tt̄ = 289±43(stat)±40(syst)±29(theory) fb.
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(a) (b)

Figure 3: Distribution of the yield (a) and charge asymmetry (b) as function of the the µ and b-jet pair
transverse momentum compared to SM predictions at NLO calculated with and without the contribution
from top quark pair production [8].

3. Associated production tt̄+jets

The production of extra jet radiation in association with top quark pairs provides an important
handle to study strong interactions. The normalised differential cross-sections of top-quark pair
production as a function of the multiplicity of additional jets is measured by both ATLAS [9]
and CMS [10][11] using the latest pp collision data at a centre-of-mass energy of 13 TeV with
a luminosity of 3.2 fb−1 and 2.3 fb−1 respectively. The measurements from both experiments are
presented at particle-level fiducial phase space in order to reduce the model dependent uncertainties.
CMS also extended the results at the parton level. ATLAS and CMS measure differential cross-
sections of top quark production as a function of addtional jet multuplicity, in the dilepton channel,
in the ATLAS case, and in the dilepton and semi-leptonic channels for CMS. The cross section is
normalised in order to exclude the uncertainties on the extrapolation from the total phase space to
the observed phase space. The absolute differential cross section is measured by CMS, and found
to be consistent with the standard model predictions. Some tension between data and prediction
can be seen in the high jet multiplicity bins. Different tunes are used in ATLAS and CMS and that
may reflect in opposite trends observed in each experiment, reported in Fig. 4.

4. Differential tt̄ production cross section

The tt̄ differential cross section at 13 TeV with the 2015 data set was measured by CMS at
13 TeV, in both the semi-leptonic [10] and in the dilepton channel [11], in the first case selecting
events with exactly one high energy lepton, at least four high transverse momentum jets, and at
least one b-tagged jet, in the second selecting events with two leptons and at least two b-jets. The
same measurement is performed by the ATLAS collaboration at 8 TeV [12]. The event selection
and analysis strategy is similar for the two cases, allowing for independent but comparable results,
shown in Fig. 5. For both analyses, MC predictions overestimate what is found in data, especially
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(a) (b)

Figure 4: tt̄ production cross section as a function of the number of additional jets from CMS (a) [10] and
ATLAS (b) [9].
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Figure 5: tt̄ production cross section as a function of the hadronic top quark pT in the boosted regime from
CMS at 13 TeV(a) [10] and ATLAS at 8 TeV(b) [12].

at high energies. A better agreement is found when using the new NNLO QCD predictions [13, 14].

5. tt̄ charge asymmetry

A potential deviation from the standard model could manifest as an asymmetry in the rapidity
distribution of top quarks with respect to antiquarks. The measurement of the asymmetry, defined
as:

AC =
N(∆|y|> 0)−N(∆|y|< 0)
N(∆|y|> 0)+N(∆|y|< 0)

, (5.1)

is performed at both the ATLAS [15][16] and CMS [17] experiments with LHC data at 8 TeV.
The analyses are performed in the lepton-plus-jets channel and in both the resolved and boosted
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kinematic regime. All results are compatible with the standard model predictions within in two

CA
0.1− 0 0.1

2−

8

ATLAS dilepton  0.009± 0.015 ±0.024 

ATLAS dilepton  0.017± 0.025 ±0.021 

ATLAS l+jets  0.005± 0.010 ±0.006 

CMS dilepton  0.006± 0.010 ±0.009 

CMS dilepton  0.008± 0.017 ±-0.010 

CMS l+jets  0.011± 0.010 ±0.004 

ATLAS+CMS l+jets  0.006± 0.007 ±0.005 

 0.0005  ±0.0123 Theory (NLO+EW)
PRD 86, 034026 (2012)

 0.0003  ±0.0070 Theory (NLO+EW)
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Figure 6: (a) Charge asymmetry observable AC measured at 7 TeV in ATLAS and CMS and (b) observed
charged asymmetry comared with SM and BSM predictions [15].

standard deviations, as shown in Fig. 6(a), and provide constraints on several extensions of the SM,
as shown in Fig. 6(b).

6. Top quark polarization

Measurements of angular properties of top quark decay products might indicate the presence of
anomalous spin correlations amongst the top quarks in production, or a top quark polarisation[18][19].
Different observables are used to probe top quark polarisation and spin correlation, depending also
on the decay channel of the top quarks: the angle θl∗ between the lepton and its originating top
quark in the top rest frame is used in semileptonic tt̄ decay channels, while the φ angle between
the two leptons is used for the dilepton tt̄ decay channels. The measured top quark polarization
and the spin correlation observables are compared to theoretical predictions in Fig. 7, allowing to
set constraints to beyond SM theories. Top quark polarisation has been probed in single-top-quark
events as well by CMS [20].

7. Single top quarks

Single-top-quark production happens via electroweak charged-current interaction, through vir-
tual exchange of W bosons in the t,s channels or via associated production with a real W boson
(tW). All three channels allow measurement to be made of the modulus squared of the Cabibbo-
Kobayashi-Maskawa matrix element Vtb, and are sensitive to anomalous couplings in the tWb ver-
tex, providing a complementary route to study top quark properties with respect to strong tt̄ pro-
duction. Single-top-quark cross-section measurements at LHC are summarized in Fig 8(a), while
|Vtb| measurements are shown in Fig. 8(b).

The single-top-quark t channel production is the most abundant, and precise measurements
were performed at 7 [21, 22],8 [23, 24], and 13[25, 26] TeV by both the ATLAS and CMS collab-
orations, resulting in:
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(a) (b)

Figure 7: Distributions of the top polarization angles cos(θ∗) (a) [19] and φl (b) [18].

σ
7TeV
t−ch. = 68.2±2(stat)±8(syst+ lumi)pb (ATLAS),

σ
7TeV
t−ch. = 67.2±3.7(stat)±4.6(syst)±1.5(lumi)pb (CMS),

σ
8TeV
t−ch. = 82.6±1.2(stat)±11.8(syst)±2.3(lumi)pb (ATLAS),

σ
8TeV
t−ch. = 87.2±2.3(stat)±7.4(syst+ lumi)pb (CMS).

for the Run-I measurements, and for the Run-II at 13 TeV:

σ
13TeV
t−ch. = 229±48(stat+ syst+ lumi)pb (ATLAS),

σ
13TeV
t−ch. = 227.8±9.1(stat)±31.5(syst)±6.2(lumi)pb (CMS).

The 13 TeV analyses make use of multivariate discriminants to separate the t channel signal from
the backgrounds, shown in Fig. 9(a), 9(b) for ATLAS and CMS respectively.

Another peculiar feature of t channel production is the difference in production cross section
of top quark over top antiquark, which stems from the u and d parton distribution functions. This
asymmetry can be used as a handle in the PDF fits. The measurements of σt−ch.,t/σt−ch.,t̄, also
called Rt/t̄ , at 7,8, and 13 TeV are compared with different PDF prediction in Fig. 10(a), 10(b),
and 10(c) for the three energies [22, 23, 25]. The production of single top quarks in association
with W bosons was first observed in 2014 by CMS [27], and subsequently by ATLAS in 2015 [28],
in events with two leptons, either electrons or muons. Multivariate discriminants, displayed in
Fig. 11, are used in both analyses to discriminate signal from backgrounds, yielding measured tW
cross sections at 8 TeV of 23.0 ± 3.6 pb (ATLAS) and 23.4± 5.4 (CMS) pb.
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Figure 8: Single-top-quark production cross-section measurements at LHC as a function of the centre-of-
mass energy(a) and measurements of |Vtb| from inclusive single-top-quark cross section(b) [34].

σ
8TeV
s−ch. = 4.8±0.8(stat)+1.6

−1.3(syst)pb (ATLAS),

σ
8TeV
s−ch. = 13.4±7.3(stat+ syst)pb (CMS),

σ
7TeV
s−ch. = 7.1±8.1(stat+ syst)pb (CMS).
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Figure 9: Discriminating observable used for t channel single-top-quark production cross section extraction
for ATLAS, the output discriminator of a boosted decision tree Method(a) [26], and for CMS, the output
discriminator of a neural network(b) [25], at 13 TeV.

8. Top quark mass measurements

The mass of the top quark is one of the fundamental parameters of the standard model and is
measured with high precision from top quark decay products. The most precise single measure-
ments come from the LHC Run-I at 8 TeV, profiting from the latest detector calibrations. The most
precise CMS measurement[31] exploits the semi-leptonic decay channel, requiring one lepton and
at least four jets, hadronically decaying top quark from three jets. A kinematic fit is performed to
each jet permutation forming the hadronically decaying top quark. The goodness of fit probability
for all possible permutations is used to construct an event-by-event likelihood and to measure the
top quark mass. The most precise ATLAS[32] measurement exploits the dileptonic decay chan-
nel, requiring two leptons and two b-jets, retaining the permutation with the lowest invariant mass
possible of the two lepton-b-jet pair. Both ATLAS and CMS extract simultaneously the top quark
mass together with the jet energy scale from tt̄ . The resulting measured top quark mass is for the
two cases:

mtop = 172.99±0.41(stat)±0.74(syst)GeV/c2 (ATLAS),

mtop = 172.35±0.16(stat+ jsf)±0.48(syst)GeV/c2, (CMS).

Fig. 13(a), 13(b), show the observables used for the top quark mass extraction respectively for
ATLAS and CMS. Top quark mass measurements with different techniques were performed to im-
prove on the systematic uncertainty. The LHCTopWG has performed a combination of measure-
ments from the LHC and Tevatron experiments [33], and an overview of the LHC measurements is
shown in Fig. 14.
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Figure 10: Ratio of top quark over top antiquark t-channel cross section at 7 TeV for ATLAS(a) [22], at 8
TeV for CMS(b) [21], and at 13 TeV for CMS(c) [25].

9. Conclusions

Measurements of the inclusive cross sections for production at the LHC of top quarks, pro-
duced either singly or in pairs, have been presented for 7,8 and 13 TeV centre of mass energies.
All cross sections confirm the standard model predictions. Differential production cross sections
of top quark pairs, measured as a function of additional jet multiplicity as well as of top quark pair
kinematic properties, have been displayed, allowing the modeling of Quantum Chromodynamics
interactions to be probed in detail. Measurements of top quark properties, sensitive to potential
beyond standard model physics, have been reported, and no evidence of such models was found.
The most precise measurements of top mass have also been shown.
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Figure 11: Discriminating observable used for W associated single-top-quark production cross section ex-
traction for CMS(a) [27] and ATLAS(b) [28] at 8 TeV). In both cases it is the output discriminator of a
boosted decision tree.
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Figure 12: Discriminating observable used for s channel single-top-quark production cross section extrac-
tion for ATLAS at 8 TeV, a Matrix Element Method output discriminator(a) [29], and CMS at 7 TeV, a
boosted decision tree output discriminator(b) [30].

[2] V. Khachatryan et al. [CMS Collaboration], JINST, 3 (2008) S08004

[3] R. Aaij et al. [LHCb Collaboration], JINST, 3 (2008) S08005

[4] G. Aad et al. [ATLAS Collaboration], Eur. Phys. J. C 74, no. 10, 3109 (2014)
doi:10.1140/epjc/s10052-014-3109-7 [arXiv:1406.5375 [hep-ex]].

[5] V. Khachatryan et al. [CMS Collaboration], [arXiv:1603.02303 [hep-ex]].

[6] M. Aaboud et al. [ATLAS Collaboration], Phys. Lett. B 761 (2016) 136,
doi:10.1016/j.physletb.2016.08.019. [arXiv:1606.02699 [hep-ex]].

[7] V. Khachatryan et al. [CMS Collaboration], CMS-PAS-TOP-16-005.

10



P
o
S
(
D
I
S
2
0
1
6
)
0
1
0

Top quark measurements

 [GeV]reco
lbm

40 60 80 100 120 140 160

E
ve

n
ts

 /
 2

 G
e
V

0

100

200

300

400

500

600
Data =172.5 GeV

top
, mtt

Uncertainty Correct match
Wrong / no match Single top
NP/fake leptons Z+jets
WW/WZ/ZZ

ATLAS
-1=8 TeV, 20.2 fbs

 [GeV]reco
lbm

40 60 80 100 120 140 160

D
a
ta

/M
C

0.8
1

1.2

(a)
 [GeV]fit

tm

100 200 300 400D
a

ta
/M

C

0.5

1

1.5

 P
e

rm
u

ta
tio

n
s 

/ 
5

 G
e

V

2000

4000

6000

8000

10000

12000
 correcttt
 wrongtt

 unmatchedtt
Data

Single t
W+jets
Z+jets
QCD multijet
Diboson

 (8 TeV)1Lepton+jets, 19.7 fbCMS

 selection
gof

After P

(b)

Figure 13: Mass of the lepton-b-jet pair from ATLAS [32], mass of the three jets from the best permutation
from CMS [31].
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