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Modern parton distribution functions (PDFs) [1, 2, 3, 4, 5, 6] with trustworthy estimates

of uncertainties serve as main inputs for numerous theoretical predictions and measurements at

hadron colliders. Cumulative uncertainties on the PDFs can be estimated using several techniques,

including the Hessian [7], Monte Carlo(MC) [8, 9], Lagrange multiplier [10] and offset meth-

ods [11]. While the Hessian method is very efficient for propagating PDF uncertainties assuming

the Gaussian approximation, the Monte-Carlo replica method is very general and can be used for

powerful statistical applications, such as inclusion of new experimental data sets into the PDF

fits by Bayesian reweighting [8, 13, 14] and combination of PDF ensembles obtained in different

approaches [15, 16]. Sometimes it is necessary to convert the PDF error sets obtained via the Hes-

sian eigenvector analysis, such as CT14 or MMHT14 error PDFs, into a large ensemble of MC

replica PDFs. Watt and Thorne [12] proposed a procedure for doing this, sufficient for reproducing

symmetric uncertainties of the input PDFs in well-constrained {x,Q} regions. To retain more fea-

tures of the Hessian ensemble, the procedure needs an extension beyond the linear approximation

adopted by the Watt-Thorne approach. For instance, the CTEQ parametrizations are constructed

to be non-negative in order to guarantee positive physical cross sections. In Ref. [17], we outlined

a general method for constructing an MC replica ensemble that reproduces the asymmetric un-

certainties and positivity constraints of the input Hessian ensemble. We will now summarize this

method.

Figure 1: Contours of the constant χ2 in planes of physical (ai) and orthonormal (Ri) PDF parameters.

The solid and dashed contours are for the exact χ2 and its Gaussian approximation, respectively. The red

(round) and blue (square) dots indicate extreme displacements along the eigenvector directions and diagonal

directions.

Recall that the uncertainty estimation in the Hessian method with D PDF parameters is done

by introducing an ensemble of 2D eigenvector sets that delineate the boundary of the uncertainty

region around the best-fit combination of the PDF parameters, at a given confidence level (c.l.).

These eigenvector sets allow one to calculate the PDF uncertainty on a QCD observable using one

of the available master formulas [7, 18, 19]. If we notice that the probability distribution in a typical

PDF fit is close to a Gaussian one near the minimum of the log-likelihood, one can write

Probability({R}) ∼ e−∑D
i=1 R2

i /2, (1)
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where we introduced independent PDF parameters Ri (i = 1, ...,D) such that each Ri varies along

the i-th eigenvector direction and takes the values of zero at the minimum χ2
0 of χ2, and ±1 at the

boundary of the confidence region. The log-likelihood χ2 is an approximately quadratic function

of Ri in this representation:

χ2 ≈ χ2
0 +

D

∑
i=1

R2
i . (2)

The transformation from the physical PDF parameters ai to the parameters Ri is illustrated in

Fig. 1. We can parametrize the exact (“true”) χ2 returned by the global fit so that the confidence

region boundary, indicated by the solid contour, is essentially a sphere of a unit radius in space of

the R parameters. This representation holds even if the true χ2 is not perfectly symmetric, e.g., if it

deviates from the symmetric Gaussian approximation for χ2, corresponding to the dashed contour

of the constant χ2 in the figure.

The PDF uncertainty on a QCD function X , such as a PDF or a cross section, is usually

estimated from the maximal variation of X(R) within the 68% (or 90%) c.l. region for the true χ2.

We can expand X in a Taylor series around its value X({0})≡ X0 at the minimum of χ2,

X({R}) = X({0})+
D

∑
i=1

∂X

∂Ri

Ri +
1

2

D

∑
i=1

∂ 2X

∂Ri∂R j

RiR j + ..., (3)

and approximate the derivatives of X by finite-difference formulas [17] in terms of the X val-

ues on the boundary, i.e., on the solid contour in Fig. 1. To compute the first-order deriva-

tives ∂X/∂Ri and second-order diagonal derivatives ∂ 2X/∂R2
i , it suffices to know X for R at

the red circles, that is, to perform 2D evaluations of X±i ≡ X(0,0, ...,Ri = ±1, ...0). The non-

diagonal derivatives ∂ 2X/(∂Ri∂R j) require 2D(D− 1) additional evaluations of X (or PDFs) for

{Ri,R j} = {±2−1/2,±2−1/2} at the blue squares, and these are usually not provided by the Hes-

sian error PDFs. We can nevertheless get an idea about the asymmetry of X(R) by including the

diagonal derivatives ∂ 2X/∂R2
i into the PDF uncertainty formulas.

This brings us to the asymmetric PDF uncertainties, given in terms of predictions for the

Hessian eigenvector sets by [19]

δ H,>
68 X =

√

∑
i

(

max[X+i −X0,X−i −X0,0])2, δ H,<
68 X =

√

∑
i

(

max[X0 −X+i,X0 −X−i,0])2. (4)

To construct Nrep MC replicas X (k) that reproduce these asymmetric uncertainty bands, we generate

them by

X (k) = X({0})+d(k)−∆, (5)

d(k) =
D

∑
i=1

X+i −X−i

2
R
(k)
i +

1

2

D

∑
i=1

(X+i +X−i−2X0)(R
(k)
i )2, (6)

using random numbers R
(k)
i sampled from a standard normal distribution. By setting X = f or

X = ln( f ), we produce two ensembles of PDF replicas from the CT14 Hessian PDFs, designated

as CT14 MC1 and MC2. The second one satisfies positivity, as the Hessian CT14 PDFs do. All the
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Figure 2: The mean values and asymmetric standard deviations of the CT14 NNLO MC1 (short-dashed)

and MC2 (long-dashed) PDFs, compared to the mean and 68% c.l. uncertainty (solid) of the CT14 NNLO

Hessian PDF. The PDFs are shown as ratios to the central CT14 fit.

Figure 3: 68% c.l. asymmetric uncertainties of the gg and qq̄ luminosities for the CT14 NNLO Hessian

(solid) and MC2 (dashed) ensembles, computed at
√

s = 13 TeV with a constraint |y|< 5 on the rapidity of

the heavy state.

replica sets are shifted by a constant amount ∆ in order to set the average 〈X〉=
(

∑
Nrep

i=1 X (k))
)

/Nrep

of the replicas to coincide with the best-fit value X0 of the Hessian ensemble, regardless of Nrep.

As the distribution of the replicas is no longer symmetric with respect to X0, the uncertainties

are given by the standard deviations that are constructed separately from the positive and negative

displacements of X (k) from 〈X〉:

δ MC,>
68 X =

√

〈(X −〈X〉)2〉X>〈X〉, δ MC,<
68 X =

√

〈(X −〈X〉)2〉X<〈X〉. (7)

Fig. 2 illustrates on the example of the g(x,Q) and d(x,Q) distributions that the asymmetric stan-

dard deviations (7) of both the CT14 MC1 and MC2 NNLO ensembles reproduce well the 68%

c.l. asymmetric uncertainties (4) of the CT14 Hessian ensemble. In the same spirit, the CT14 MC

parton luminosities obtained are very close to the Hessian ones across the LHC kinematic range,

cf. Fig. 3.

In the presented approach, the MC ensemble samples the probability distribution in the D−di-

mensional parameter space that is reconstructed under the Gaussian assumption from the distri-

bution of the Hessian error PDFs on the (D − 1)-dimensional boundary of a confidence region
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Figure 4: The χ2 distribution of the 1000 CT14 NNLO MC replicas for the total χ2 (left) and χ2 of the

combined HERA-I data (right).

enclosing the best fit. When the PDF uncertainties are small, we observe good agreement between

the CT14 Hessian, MC1, and MC2 error bands. In the extrapolation regions, where the linear ap-

proximations cease to be adequate, differences between the Hessian, MC1 and MC2 error bands

are more pronounced and reveal intrinsic ambiguities in the replica generation methods. The pos-

itivity constraint on CT14 MC2 yields more physical behavior in poorly constrained x intervals.

A C++ code MCGEN to generate MC replicas with or without positivity constraints is published

on HepForge. Finally, we notice that individual replicas tend to be poor fits to the hadronic data

used in the global analysis; however, their averages and standard deviations provide excellent ap-

proximations for the Hessian central PDF set and 68% c.l. uncertainties. This is demonstrated in

Fig. 4, showing histograms of χ2 values for the global data (3174 data points; left panel) and for

the combined HERA-1 data (579 data points [22]; right panel), for the 1000 replicas in the CT14

NNLO MC1 and MC2 ensembles. The vast majority of replicas yield very large χ2 values for the

global data, and even for the single experiment. The random fluctuations of the individual replicas,

which result in large χ2 values for any single replica, will largely cancel in the ensemble averages.
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