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1. Motivation

The goal of the project [1] is to provide for the first time quark and gluon collinear and trans-
verse momentum dependent (TMD [2]) parton distribution functions (PDFs) from a Monte Carlo
solution of the QCD DGLAP evolution equations, by performing fits to the precision DIS data [3].

In Ref. [4] the TMD gluon density was determined from DIS fits based on high-energy fac-
torization [5] and CCFM evolution equations. This article is based on a different approach, in
which we start from fully coupled quark and gluon DGLAP equations, solve these by Monte Carlo
method [6], and determine from this both collinear and TMD PDFs. It is close in spirit to the works
of Refs. [7] and [8]. To perform the fit to DIS data we use an updated version of the program [9]
within the xFitter open-source QCD platform [10].

2. Introduction to the method

The starting point of the discussion is the DGLAP evolution equation for momentum weighted
parton density x f (x,µ2) = f̃ (x,µ2)

d f̃a(x,µ2)

d ln µ2 = ∑
b

∫ 1

x
dz Pab

(
αs(µ

2),z
)

f̃b

(
x
z
,µ2
)

(2.1)

where a,b are quark (2N f flavours) or gluon, x- longitudinal momentum fraction of the proton
carried by a parton a, z = xi/xi−1 is the splitting variable and µ is the evolution mass scale. The
splitting functions Pab have the following structure

Pab
(
αs(µ

2),z
)
= Dab

(
αs(µ

2)
)

δ (1− z)+Kab
(
αs(µ

2)
) 1
(1− z)+

+Rab
(
αs(µ

2),z
)

(2.2)

where Dab
(
αs(µ

2)
)
= δabda

(
αs(µ

2)
)
, Kab

(
αs(µ

2)
)
= δabka

(
αs(µ

2)
)

and Rab
(
αs(µ

2),z
)

con-
tains logarithmic terms in ln(1− z) and has no power divergences (1− z)−n for z→ 1 . With that
eq. (2.1) can be written in a form

d f̃a(x,µ2)

d ln µ2 = ∑
b

∫ 1

x
dz PR

ab
(
αs(µ

2),z
)

f̃b

(
x
z
,µ2
)
− f̃a

(
x,µ2)∫ 1

0
dz PV

a
(
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2),z
)

(2.3)

where the real part of the splitting function is PR
ab

(
αs(µ

2),z
)
=Rab

(
αs(µ

2),z
)
+Kab

(
αs(µ

2)
)

1/(1−
z) and the virtual part is PV

a
(
αs(µ

2),z
)
= ka

(
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2)
)

1/(1− z)−da
(
αs(µ

2)
)

δ (1− z). The inte-
grals in eq.(2.3) are divergent near z→ 1 and a method to regularize them is needed. It will be
described in section (3). Thanks to the momentum sum rule ∑c

∫ 1
0 dzzPca

(
αs(µ

2),z
)
= 0, eq.(2.3)

can be written with PR
ab

(
αs(µ

2),z
)

also in the second term on the right hand side. This can be
obtained by subtracting from eq.(2.3) the term proportional to momentum sum rule
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(2.4)
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This trick is possible only with momentum weighted parton densities. An additional advantage of
using momentum weighted parton densities is that the convergence of the integrals is improved by
removing 1/z terms in Pgg and Pgq. Defining now the Sudakov form factor as

∆a(µ
2) = exp

(
−
∫ ln µ2

ln µ2
0

d
(
ln µ

′2)
∑
b

∫ 1

0
dzzPR

ba
(
αs(µ

′2),z
))

(2.5)

eq.(2.4) can be rewritten

d f̃a(x,µ2)

d ln µ2 = ∑
b

∫ 1

x
dzPR

ab
(
αs(µ

2),z
)

f̃b

(
x
z
,µ2
)
+ f̃a

(
x,µ2) 1

∆a(µ2)

d∆a(µ
2)

d ln µ2 . (2.6)

This equation has an iterative solution which can be easily implemented in a MC method. The
details of the MC solution can be found in [1].

Technically, two different evolution grids are defined: for processes initiated by a quark, quark
grid is filled, and for processes initiated by a gluon, gluon grid is filled. Kernels for the evolution ini-
tiated by gluons and by quarks are calculated separately only once per run and combined at the end.
Thanks to that the fitting procedure in xFitter is fast. To get the final pdf, the evolution kernel
is folded with starting distribution as x f (x, t)g = x

∫
dx0

∫
dz( f0g(x0)Kgg + f0q(x0)Kgq)δ (zx0− x).

3. Integrated PDFs from TMD evolution using MC method

Some of the splitting functions are divergent for z→ 1. To avoid divergences, a cut off must
be introduced and the upper limit in the integral over z in eq. (2.6) as well as in the Sudakov form
factor eq.(2.5) is put to zmax instead of 1. It can be shown that the net effect of the skipped terms∫ 1

zmax is of order O(1− zmax). There are different choices of zmax possible: zmax can be fixed or can
change dynamically with the scale, for example like in angular ordering: zmax = 1− (Q0/Q). In
this paper we present results for fixed zmax.

In the fig.(1) we show results for integrated distributions for sea-quarks and gluon coming from
the MC solution and from QCDNUM [11]. The initial distributions are taken from QCDNUM. We
obtain a very good agreement between these two methods.

The differences between MC and QCDNUM at large x are an artefact of the histogram binning.

4. Results for TMDs

In the presented MC method Q is generated for every branching so the information about
kT is available for every branching. kT contains the whole history of the evolution. When we
want to calculate kT,n at a given step n then we have to perform a vectorial sum of kT,n−1 and
Q:
−→
k T,n =

−→
k T,n−1 +

−→
Q T,n−1. In this method kT is treated properly from the beginning of the

evolution- no extra reshuffling at the end is required.
In the fig.(2) we present results for TMDs for sea-quarks and gluon. We observe kT tails,

which can be larger than the evolution scale.
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Figure 1: Left: sea quarks, right: gluon. First row: x f (x, t) vs Log10(x) after evolution up to 100000 GeV2,
second row: ratios MC/QCDNUM vs Log10(x) at 100000 GeV2. Red: QCDNUM, blue dotted: 1− zmax =

10−9

Figure 2: Left: sea TMD after evolution up to 100 GeV2 for x = 0.001, right: gluon TMD after evolution
up to 100 GeV2 for x = 0.001. 1− zmax = 10−9

5. First fit of full integrated TMDs to HERA DIS data with xFitter

As a consistency check, we performed the fit of integrated TMDs from MC solution to F2.
This is also a check of the flavour decomposition with MC method.

In the past a gluon TMD pdf was fitted within xFitter [10] to F2 from H1/Zeus data for
Q2 > 5GeV2 and x < 0.01 [4]. Now we present the first fit of full (gluon, valence and sea) inte-
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grated TMDs to HERA H1 and Zeus data using xFitter. Results are presented in the fig.(3).

Figure 3: Results of the first fit of the full (gluon, valence and sea) integrated TMDs to HERA H1 and Zeus
data.

The fit works reasonably well for the whole x range and Q2 > 5GeV2(χ2/nd f ≈ 1).

6. Summary

A new approach to solve the coupled gluon and quark DGLAP evolution equation with a
MC method was presented. The full TMD pdf evolution including gluon, sea and valence quarks
over the full range in x and Q2 with the kT dependence in the whole kinematically available range
(not limited to the small kT ) is obtained. Results coming from the MC solution reproduce semi-
analytical results (QCDNUM) and they can be used in PS matched calculation.

Moreover, TMDs are implemented in the preliminary version of xFitter. New results of
fitting integrated TMD pdfs to F2 with xFitter were shown: gluon and quark are fitted for
Q2 > 5GeV2 for all x with χ2/nd f ≈ 1.
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