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A Lattice Calculation of Parton Distributions
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1. Introduction

It has been almost 50 years now since the inner structure of the proton was probed at SLAC
for the first time. We have learned to a large extent on how quarks and gluons combine to give
the proton its observed properties but, unfortunately, we still do not know how to calculate from
first principles its partonic substructure or, for that matter, of any other hadron. The reason being
that parton distribution functions (PDFs) are intrinsically non perturbative objects and, thus, to
have access to them we need to solve Quantum Chromodynamics (QCD) in its non perturbative
regime. The only ab initio method currently available to us to widely probe this non perturbative
region is lattice QCD. Yet, these calculations of PDF’s are severely limited because they are defined
in the light cone, and only the lowest moments of them can be computed [1]. In 2013, however,
Ji proposed [2] a way to circumvent such restriction and to, finally, compute quark distributions
directly on the lattice, through the use of so called quark quasi-distributions.

Quasi-distributions can be defined from a suitable choice of the Lorentz indices of the matrix
element of a twist-2 operator between nucleon states, 〈P|Oµ1µ2...µn |P〉= 2ãn. In the case, the choice
is µ1 = µ2 = ... = µn = 3, with the nucleon moving in the third direction only, P = (P0,0,0,P3).
Defining ãn(P3) =

∫ +∞

−∞
xn−1q̃(x,P3)dx, and applying the inverse Mellin transform, one obtains for

the case of unpolarized quarks:

q̃(x,P3) =
∫

∞

−∞

dz
4π

e−izk3〈P|ψ̄(0,z)γ3W (z)ψ(0,0)|P〉, (1.1)

where k3 = xP3 is the quark momentum in the z-direction, and W (z) = e−ig
∫ z

0 dz
′
A3(z

′
) is the Wilson

line introduced to make the quark distribution gauge invariant. The relation between the quasi-
quark distributions and the quark distributions at the renormalization scale µR, q(x,µR), can be
found, for example, in Eq. (A8) of Ref. [3].

In this contribution, we report on our latest effort to calculate the quark distributions using Ji’s
proposal for the cases of the unpolarized, helicity and transversity nonsinglet quark distributions.

2. Lattice Setup

We want to calculate the matrix elements of the following operators: γ3, for the case of the
unpolarized distributions (as written in Eq. (1.1)); γ3γ5 for the case of the helicity distributions;
γ3γ j for the case of the transversity distributions. The required matrix elements can be obtained
from the ratio of suitable two- and three-point functions. The three-point function is constructed
with the use of nucleon interpolating fields and a local operator:

C3pt(t,τ,0) =
〈

Nα(~P, t)O(τ)Nα(~P,0)
〉
, (2.1)

where 〈...〉 denotes the average over a sufficient number of gauge field configurations. A nucleon
field boosted with a three-momentum can be defined via a Fourier transformation of quark fields in
position space:

Nα(~P, t) = Γαβ ∑
~x

ei~P~x
ε

abcua
β
(x)
(

dbT
(x)C γ5uc(x)

)
, (2.2)
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where C = iγ0γ2 and Γαβ is a suitable parity projector. Here, we will use the parity plus projector
Γ = 1+γ4

2 for the unpolarized distributions, Γ = iγ3γ5
1+γ4

2 for the helicity distributions, and Γ =

iγk
1+γ4

2 (with k 6= j 6= 3) for the transversity distributions given by the operator γ3γ j. For the case
of the γ3 operator, a vanishing momentum transfer at the operator (Q2 = 0) can be obtained by
choosing O(z,τ,Q2 = 0) = ∑~y ψ(y+ z)γ3W3(y+ z,y)ψ(y), with y = (~y,τ). Similar expressions can
be written for the case of the helicity and transversity operators.

Together with the two-point function, which is constructed from the nucleon interpolating field
as in Eq. (2.1) but without the insertion of the operator, we can extract the desired matrix element

C3pt(t,τ,0;~P)
C2pt(t,0;~P)

0�τ�t
=
−iP3

E
h(P3,∆z), (2.3)

with h(P3,∆z) = 〈P|ψ̄(0,z)γ3W (z)ψ(0,0)|P〉/2P3, and E =
√

(P3)2 +M2 the total energy of the
nucleon. Similarly, one can extract the matrix elements for the helicity, ∆h(P3,∆z), and for the
transversity, δh(P3,∆z), distributions, and for both cases the pre-factor −iP3

E is absent.
We use a 323×64 ensemble from an ETMC (European Twisted Mass Collaboration) produc-

tion ensamble [4], with N f = 2+ 1+ 1 flavours of maximally twisted mass fermions, with a bare
coupling β = 1.95, corresponding to a lattice spacing of a≈ 0.082 fm. The twisted mass parameter
is aµ = 0.0055, which gives a pion mass of mPS ≈ 370 MeV. For the computation of the matrix
elements themselves, we employ 1000 gauge configurations, each with 15 point source forward
propagators and 2 stochastic propagators, resulting in total 30000 measurements, which are about
6 times more measurements than our previous results Ref. [3]. As an example, we show in Fig.
1 the matrix elements for the helicity operator for the first 3 lowest momenta, where 5 steps of
HYP smearing [5] of the Wilson lines were used. We employ HYP smearing because we still do
not have renormalized our operators, and it is expected that such procedure brings the value of the
renormalization constants close to their tree-level values.
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Figure 1: Real (left) and Imaginary (right) parts of the matrix elements for the case of the helicity operator.

3. Results

Once we have the matrix elements we perform the Fourier transform as written in Eq. (1.1)
and obtain the quasi-distributions q̃(x,P3). The quasi-distributions are then corrected to take into
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account that the momentum of the nucleon is finite, in which case the matrix elements in Eq.
(1.1) contains a series in M2/P2

3 . The relation between the corrected and non corrected quasi-
distributions are given by q̃(x,Pz) = q̃(0)(ξ ,Pz)/(1+ µξ 2), where ξ = 2x/(1+

√
1+4µx2) is the

Nachtmann variable, and superscript (0) means that the nucleon mass corrections have been taken
into account. In Ref. [6], a different prescription has been given to take into account theses cor-
rections. However, the difference between the two approaches are already negligible for a nucleon
with momentum 6π/L. Finally, the matching to the quark distributions q(0)(x) are done according
to Refs. [7] and [3]. The results for the unpolarized distributions are shown in Fig. 2, where we
plot the curves for the case of nucleon momentum P3 = 4π/L on the left, and for P3 = 6π/L on the
right. The shaded area around x = 0 expresses the fact that for a parton carrying momentum xP3,
one has in general that x > ΛQCD/P3, a restriction that is imposed from the uncertainty principle.
Although we are still away from the phenomenological results, we see that there is a clear trend to
approach those results as the momentum increases. Most remarkably, we see that we have a qual-
itative agreement with the observed d(x)− u(x) asymmetry in the antiquark sector when we use
the crossing relation q(x) =−q(−x) to relate the quark distributions in the negative x region to the
antiquark distributions in the positive x region.
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Figure 2: u(x)−d(x) distributions at Q2 = 6.25 GeV2. The parameterizations for the distributions are from
MSTW [8], CJ12 [9], and ABM11 [10].

In Fig. 3 we present the results for the helicity distributions again for 2 and 3 units of lattice
nucleon momentum. The same trend observed in the unpolarized sector is seen here, that is, there
is a tendency for the calculated distributions to approach the phenomenological curves as the mo-
mentum increases. For the helicity distributions, however, the crossing relation is ∆q(x) = ∆q(−x),
which implies that ∆u > ∆d according to our calculation.

Finally, in Fig. 4 we show the results for the δu(x)− δd(x) transversity distributions, and in
this case we do not show phenomenological parameterizations because the current ones have errors
too large for the quark sector and are non existing for the antiquark sector. In any case, using the
crossing relation δq(x) =−δq(−x) we predict that the transversity antiquark distributions have an
asymmetry similar to that of the unpolarized sector, that is, δd > δu. Similar results to ours on this
matter have also been obtained in Ref. [6].
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Figure 3: ∆u(x)−∆d(x) distributions at Q2 = 6.25 GeV2. The parameterizations for the distributions are
from DSSV08 [11] and JAM15 [12]
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Figure 4: δu(x)−δd(x) distributions

4. Perspectives

Our lattice simulations indicate that we can reliably extract the matrix elements of the relevant
operators for the complete set of the nucleon parton distributions, in the case of nonsinglet quark
distributions, for a nucleon momentum up to 6π/L in lattice units. Although we have a qualitative
agreement with the phenomenological curves, it is clear that we need to go to higher values of
nucleon momentum if we want the lattice calculations to reproduce, and even predict, the physical
results. Along with higher momentum, we also need to address the problem of renormalizability
of these objects, and finally to extend these computations to the physical pion mass. These are de-
manding tasks that, however, have to be attacked, and we are currently addressing these problems.
Our findings on these matters will be presented elsewhere in the near future.

Nevertheless, from the open points discussed above, the one related to the extension of the
calculation to larger values of the boosted nucleon momentum is the one being more advanced
so far. That has been possible because a new method for the smearing of the quark fields, called
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momentum smearing, has been proposed in Ref. [13]. We have implemented such a method and,
from our preliminary results, we are now able to go to momentum values as high as 10π/L and
12π/L. These are remarkable results because, for these values of the nucleon momentum, the quark
quasi-distributions and the quark distributions, connected by a matching procedure [7], are almost
equal , mainly in the large x region. The same happens with the nucleon mass corrections, which
become vanishingly small for large values of P3. In other words, we will perform calculations
that are not, in practice, too far away from what would be calculated for a nucleon in the infinite
momentum frame.

We are grateful to the Jülich Supercomputing Center and the DESY Zeuthen Computing Center for
their computing resources and support. K.C. was supported in part by the Deutsche Forschungsge-
meinschaft (DFG), project nr. CI 236/1-1 (Sachbeihilfe).
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