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We show that the GLR equation develops unstable modes when the parton distribution function is
generalized to depend on azimuthal angle. This generally means the saturation scale Qs acquires
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origin of elliptic flow, one that naturally respects the scaling experimentally observed.
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Hydrodynamics is the most favored explanation for the anisotropic flow observed in nucleus-
nucleus, and now proton-nucleus and even proton-proton collisions (for a review see [1]). However,
several phenomenological puzzles (see [2] and references therein for a review) have accumulated
challenging hydrodynamics as the origin of vn. For instance, the near independence of v2, and
particularly, v3, on system size, i.e. pA, dA, and even pp collisions give you, scaled for geometry,
the same azimuthal coefficients as AA collisions [3, 4]. As a related item, the near independence of
v2(pT ) on energy [6, 8] and rapidity [7, 9]. Also, the photon and dielectron v2 is comparable to the
hadron v2. Usual explanations aim to provide an enhancement of this vn but never to explain the
equality [10].

All of these, summarized in [2], point to an origin of v2 which is not hydrodynamic but rather
based on initial conditions, since it resembles the scaling of structure functions f (x,Q2) and frag-
mentation functions Dq→i(z,Q2) [11]. Hence, if we could just assume that either the structure
function acquired an azimuthal dependence having the usual Bjorken scaling (strong and funda-
mentally non-perturbative dependence on x), logarithmically suppressed dependence on Q2, and
this azimuthal dependence generated most of v2, all issues described in this introduction would be
naturally resolved.

Such a “simple” suggestion of course is superficially extremely implausible: QCD has az-
imuthal symmetry, and the parton structure and fragmentation functions are based on factorization
at high energy scales. Thus, they are “universal” and should not depend on relative angles, even
if the target and/or projectile are spatially extended. Yet, ways compatible with QCD to incorpo-
rate azimuthal dependence of structure functions do exist. In fact, since the distributions functions
depend on the probe used to measure them beyond tree level (“run”), a dipole colliding off-center
with an extended object will measure azimuthally asymmetric parton distribution functions to pre-
cision to one-loop. Since the impact parameter b ∼ O (1−10) f m, these corrections are expected
to be tiny∼ α2

s /b, hence, provided evolution is linear, their contribution to the observed vn is unde-
tectable.

In this work, however, we investigate whether azimuthal symmetry is spontaneously broken
by the same processes that are thought to lie at the core of saturation physics. If it is, the above
anisotropies are indeed tiny at high rapidities but could be amplified at mid-rapidity, in the same
way as cylindrical boundary conditions in a flow of water from a faucet lead to an azimuthally
asymmetric turbulent flow when density and flow velocity are high enough.

1. Stability of the GLR equation

The GLR equation is the leading-order non-linear correction to the BFKL equation, which
is thought to be valid in the high density limit, when the transverse wavefunctions of the partons
overlap.

We shall consider the GLR equation in its purely differential (Mueller-Qiu) limit. In terms of
the structure function G, Bjorken x, strong coupling constant αs, and transverse diameter of the
nucleus S⊥, it is

∂ 2 xG(x,Q2)

∂ ln(1/x)∂ ln(Q2/Λ2)
=

αs Nc

π
xG(x,Q2)− α2

s π

S⊥

1
Q2 [xG(x,Q2)]2. (1.1)
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Assuming azimuthal symmetry, everything depends on Q rather than Qx and Qy, or equiva-
lently in Eq. 1.1 G(x,k,θ) = G(x,k,θ +φ) and the angle can be integrated out. Neglecting angular
effects (which are assumed to be suppressed by factors of Q), the most trivial modification one can
make is to relax this approximation. It is easy to see that this modifies Eq. 1.1 by a relatively simple
substitution

1
Λ2

(
∂

∂Q
+

1
Q

∂

∂θ

)
∂ xQ2G(x,Q2)

∂ ln(1/x)
=

αs Nc

π
xG(x,Q2)− α2

s π

S⊥

1
Q2 [xG(x,Q2)]2, (1.2)

We intend to perturb the solutions of Eq.1.1, i.e. G0(x,Q2), the following way

G(x,Q2,θ) = G0(x,Q2)

(
1+∑

n
un(x,Q2)cos(nθ +βn)

)
, (1.3)

where the background G0(x,Q2) is modeled as the (azimuthally symmetric) saturation scenario
[12, 13], the solution of the azimuthally symmetric non-linear equation, which is a transcendental
function approximately equal to

G0(x,Q2) =
x2λ

2α4
s

[
(1− tanh(ξ ))+

Q2
s (x)
Q2 (1+ tanh(ξ ))

]
, (1.4)

with Qs(x) = α2
s ΛQCDx−λ , ξ = Q−Qs(x)

ζ
and ζ ∼ αsΛQCD

Nc
, so that G0(x,Q) has the approximate

step function form determined by requiring the two sides of Eq. 1.1 to balance

Q2
s (x) =

αsπ
2

S⊥Nc
xGs(x,Qs(x))→ Qs(x)∼ x2λ+1 (1.5)

It is of special interest for us to study parton distribution functions when the probe energy is small
compared to the saturation scale; i.e. Q/Qs(x)� 1. In this limit we obtain

(2λ +1)
Q
2

∂un(x,Q2)

∂Q
+

Q
2

x
∂ 2un(x,Q2)

∂Q∂x
=

[
αsNc

π
+

Ncπ

CFS⊥α2
s

x2λ+1

Q2

]
un(x,Q2)+δun(x,Q) (1.6)

δun(x,Q) =
Ncπ

2CFS⊥α2
s

x2λ+1

Q2 −

[
1
2

n−1

∑
k

uk(x,Q2)un−k(x,Q2)cos(βn−βk−βn−k)

+∑
k

uk(x,Q2)un+k(x,Q2)cos(βn +βk−βn+k)

]
. (1.7)

Assuming δun is small (a Taylor expansion can go beyond this approximation), one can study the
behavior of linearized instabilities (where the instability interacts with the azimuthally symmetric
“saturating” component) relatively easily.

A thought needs to go into boundary conditions. The running scenario we described earlier
would assume that the perturbation starts at a non-zero x and grows with x→ 0. An ansatz appropri-
ate for these boundary conditions is u(x,Q2) = xp f (t) with t = BxC/Q2 = z2/2D, B = π2/CFS⊥α3

s ,

2



P
o
S
(
D
I
S
2
0
1
6
)
0
4
5

Stability structure of the GLR equation Guillermo Gambini

C = 2λ +1, and D = 2αsNc/(2λ +1)π . So, we get a Bessel’s equation with pure imaginary index
(order) iν for f

f
′′
+

1
z

f
′
+(1+

ν2

z2 ) f = 0, (1.8)

when p = −C and ν =
√

2D. The solution of this equation is inspired by Bessel functions of the
first kind [14]

fν(z) = A(z)cos(ν lnz)+B(z)sin(ν lnz) ,
A(z)
B(z)

=
∞

∑
n=0

A2n

B2n

( z
2

)2n
(1.9)

with a recursive definition

A2n =−
nA2n−2−νB2n−2

n(n2 +ν2)
, B2n =−

νA2n−2 +nB2n−2

n(n2 +ν2)

for n≥ 1 and A0, B0 known. Finally, our solution reads

u(x,Q2) = x−(2λ+1) fν (z) , z =

√(
4πNc

(2λ +1)CFα2
s

)
1

S⊥

x2λ+1

Q2 , ν =

(
4αsNc

π(2λ +1)

)1/2

.

(1.10)
We start evolution at a critical moderately high x to fix the parameters characterizing the theory

(A0,B0 for the Bessel function) to reproduce u2/ε ∼ 10−2, in line with expectation from semi-
perturbative higher twist processes. We then go lower in x to analyze the behavior of u2,v2 as
one gets closer to mid-rapidity. As can be seen in Fig. 1 (left panel) the instability indeed grows
extremely rapidly from a broad value of Bjorken x. In fact, very quickly it becomes so large that
the linearization ansatz we used becomes inapplicable.

As a phenomenological fix to deal with this issue, we shall assume corrections beyond the
leading order “saturate” u2. An ad-hoc but consistent way to do this is replacing u2(x,Q) →
umax

2 tanh
(

u2(x,Q)
umax

2

)
, so that at low u2 this recovers the linearized equations but never goes above

the parameter umax
2 . Physically, this will be the scale where higher order corrections, assumed here

to essentially cutoff u2 growth, take over. The price for this adjustment is that we lose predictivity
of u2 at a given Q,x.

Q=1GeV

Q=2GeV

Q=3GeV

Solid line:

Dashed line:

Dotted line:

u2(starting x)=10-4

Figure 1: Left panel: u2 as a function of x,Q when started as a small value at a “moderate” x (where
processes such as higher twist can occur) and evolved to x→ 0. Right panel: a comparison of the data with
a stabilized perturbation, converted into hadrons via kT factorization and limiting fragmentation
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To convert these asymmetric distribution functions to something that can be related to exper-
imental measurement, we would need to perform microscopic quark-and gluon scattering as well
as use fragmentation functions. For a rough estimate we use the kT factorization ansatz [11, 13]

dN
d pT dy

∼ 1
p2

T

∫
δ
(
xA + xB− e−y)kdkdθ fA(xA,k,θ) fB(xB, pT − k,π +φ −θ)

∣∣∣∣
xA,B=

pT e±y
√

s

. (1.11)

Motivated by Eq. 1.11 we set umax
2 at a value of 0.5, where its contribution to hadron production

becomes comparable to the unprerturbed, saturation value. We note that the experimental v2 is
curiously quantitatively similar to this limit.

Together with quark-hadron duality, kT factorization can be used to provide a calculation for
v2. The shifting of momentum due to fragmentation from parton pT to hadron pT h, necessary to
provide the right limit for dN/d pT , can be accomplished by updating Eq. 1.11 using

dNh

d pT hdyh
=
∫ 1

0
dz
∫ Qs

ΛQCD

d pT δ

(
z− pT h

pT

)
zD(z, pT )

dN
d pT dy

∣∣∣∣
pT

=
∫ 1

pT h/Qs

dzz
∫ Qs

ΛQCD/z
D(z, pT )

dN
d pT dy

∣∣∣∣
pT

.

(1.12)
We do this with a Schwinger function-inspired Gaussian fragmentation function, D(z, pT )∼ e−z2

.
Note that the integration limits are for the parton to have momentum larger than ΛQCD and smaller
than Qs. The results, to be interpreted as a rough estimate, are shown in the right panel of Fig. 1.

In conclusion, we have discussed the phenomenological scaling of azimuthal anisotropy co-
efficients in hadronic collisions, arguing that this suggests an initial state origin compatible with
“Bjorken” type scaling phenomenology. We have also noted that saturation dynamics corresponds
also to a regime where azimuthal instabilities, in the full (2+1) evolution equations, could acquire
growing modes. We have used the azimuthally asymmetric GLR equation as a laboratory to test
these growing modes, and found intriguing hints that they are indeed possible and have some qual-
itative features required for modeling vn. This suggests that this model should be developed further
in order to connect it with data at a quantitative level, including the full integro-differential equa-
tion, realistic particle production and fragmentation, etc. This is something that we plan to do in a
subsequent work.
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