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With the ever increasing amount of precise data available for hadron production processes, the
perturbative QCD framework is being extended to explore effects and corrections that go beyond
the next-to-leading order accuracy. Fixed order calculations at next-to-next-to-leading order accu-
racy are required for a precise and reliable comparison to experimental results, and, consequently,
the analyses of the non-perturbative structure of hadrons has to match this level of accuracy.
Moreover, potentially important effects specific to some kinematical regions, such as the small-z
and large-z regions in semi-inclusive e+e− annihilation, can be investigated through the means
of all-order resummation techniques. In this talk we present a first analysis of parton-to-pion
fragmentation functions at next-to-next-to-leading order accuracy based on single-inclusive pion
production in electron-positron annihilation. All-order resummations of large logarithmic contri-
butions at small-z are included and their numerical impact is investigated.
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1. SIA hadron multiplicities and the time-like evolution

We consider single inclusive annihilation (SIA) e+e−→ γ/Z→ hX , more specifically, hadron
multiplicities defined as

1
σtot

dσh

dz
=

1
σtot

∑
k=T,L

dσh
k

dz
, (1.1)

with the total cross section σtot [1, 2]. The parity-violating interference term of vector and axial-
vector contributions, usually called asymmetric (A), is not present as we have already integrated
over the scattering angle θ . Hence, only a transverse (T ) and a longitudinal (L) part remains.
Furthermore, we have introduced the scaling variable z ≡ 2Ph · q/Q2, where Ph and q are the four
momenta of the observed hadron and γ/Z boson, respectively. Moreover, Q2 ≡ q2 = S with

√
S

being the c.m.s. energy. The transverse and longitudinal cross sections in Eq. (1.1) may be written
in a factorized form as

dσh
k

dz
= σ

(0)
tot

[
Dh

S(z,µ
2)⊗CS

k,q

(
z,

Q2

µ2

)
+ Dh

g
(
z,µ2)⊗CS

k,g

(
z,

Q2

µ2

)]
+ ∑

q
σ
(0)
q Dh

NS,q(z,µ
2)⊗CNS

k,q

(
z,

Q2

µ2

)
. (1.2)

For simplicity, we have chosen µR = µF ≡ µ . Moreover, σ
(0)
q = 3σ0ê2

q is the total quark production
cross section for a given flavor q at leading-order (LO), where σ0 = 4πα2/(3Q2) is the LO QED
cross section for e+e−→ µ+µ− and α denotes the electromagnetic coupling constant. The elec-
troweak quark charges êq can be found, e.g., in Ref. [1]. We also have defined σ

(0)
tot = ∑q σ

(0)
q . The

symbol ⊗ denotes the standard convolution integral defined as

f (z)⊗g(z)≡
∫ 1

0
dx
∫ 1

0
dy f (x)g(y)δ (z− xy) . (1.3)

As usual, the factorized structure of Eq. (1.2) only holds in the presence of a hard scale. In our
case, the hard scale is given by Q. The non-perturbative but universal fragmentation functions
(FFs) Dh

i (z,µ
2) parametrize the formation of a hadron h from a parton, i = q, q̄,g. Both the parton

and the hadron are assumed to be massless. The argument z is the longitudinal momentum fraction
transferred to the hadron. The quark singlet (S) and non-singlet (NS) combinations appearing in
Eq. (1.2) are defined as

Dh
S(z,µ

2) =
1

N f
∑
q

[
Dh

q(z,µ
2)+Dh

q̄(z,µ
2)
]
, Dh

NS,q(z,µ
2) = Dh

q(z,µ
2)+Dh

q̄(z,µ
2)−Dh

S(z,µ
2)

(1.4)
respectively. The corresponding i = S,NS coefficient functions can be calculated as a perturbative
series in as ≡ αs/4π ,

Ci
k,l = Ci,(0)

k,l +asC
i,(1)
k,l +a2

s C
i,(2)
k,l +O(a3

s ) , (1.5)

where the arguments (z,Q2/µ2) have been suppressed. Results are available up to O(a2
s ) [1, 3, 4]

which is next-to-next-to-leading-order (NNLO) for the transverse but formally only of next-to-
leading order (NLO) accuracy for the longitudinal coefficient functions. These fixed order calcu-
lations show logarithmic divergencies of the coefficient functions for z→ 1 (large-z regime) and
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z→ 0 (small-z). Focusing only on the small-z regime, one finds a double logarithmic enhancement.
For example, for the gluon sector

CS,(k)
T,g ∝ ak

s
1
z

log2k−1−a(z), CS,(k)
L,g ∝ ak

s
1
z

log2k−2−a(z) , (1.6)

with a = 0,1,2 identifying the leading-logarithmic (LL), next-to-leading-logarithmic (NLL) and
next-to-next-to-leading-logarithmic (NNLL) contribution respectively. Furthermore, the same log-
arithmic behaviour for small-z is shown in the time-like splitting functions appearing in the evolu-
tion of the FFs, e.g. for the gluon-to-gluon or quark-to-gluon splitting function we find

PT,(k)
gi ∝ a(k+1)

s
1
z

log2k−a(z) , (1.7)

where i = q,g. As it is well established, such divergent terms may spoil perturbation theory even
for very small values of the strong coupling constant as � 1. The usual approach is to take into
account those logarithms to all orders via resummation techniques. Resummed expressions for
both splitting and coefficient functions in Mellin N space are given up to NNLL accuracy in the
literature [9, 10]. In general, the Mellin transform f (N) of a function f (z) is defined by

f (N) =
∫ 1

0
dzzN−1 f (z)≡M [ f (z)] . (1.8)

The logarithms that appear in Eqs. (1.6) and (1.7) correspond to singularities at N̄ ≡ N−1 = 0,

M

[
log2k−1(z)

z

]
= (−1)k (2k−1)!

N̄2k . (1.9)

Analogously to the case of parton distributions functions, the dependence on the factorization
scale µ of FFs (1.4) may be calculated in pQCD by solving a set of 2N f + 1 RGEs, which corre-
spond to a time-like version of the DGLAP evolution equations [5]. In Ref. [6] a detailed review
on how to numerically implement the fixed order solution at NNLO accuracy is given. It follows
closely the framework and the strategies developed for the public space-like evolution code PE-
GASUS [7], and it makes use of the Mellin space results for the NNLO splitting functions [8]. In
Mellin space the general analytical solution to the time-like DGLAP equations, can be written in
terms of the so called evolution matrices Uk as

Dh(N,as(µ)) =

[
1+

∞

∑
k=1

ak
s Uk(N)

](
as(µ)

as(µ0)

)−R0(N)[
1+

∞

∑
k=1

ak
s Uk(N)

]−1

Dh(N,as(µ0)) . (1.10)

The Uk are recursively defined by the commutation relations

[Uk,R0] = Rk +
k−1

∑
i=1

Rk−1U i + kUk . (1.11)

In Eq. 1.10, Dh is either the singlet vector (Dh
S,D

h
g) or one of the non-singlet FFs’ combinations.

Correspondently, Uk and Rk are either 2× 2 matrices or scalar valued functions of N. The Rk

in (1.11) are defined recursively as

R0 ≡
1
β0

PT,(0) , Rk ≡
1
β0

PT,(k)−
k

∑
i=1

biRk−i , (1.12)
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where in case of Rk being matricies, PT,(k) represent the matrices with entries PT,(k)
i j (i, j = q,g),

otherwise they represent the appropriate non-singlet splitting function. In addition, bi ≡ βi/β0 with
βk denoting the expansion coefficients of the QCD β -function. Based on (1.10), it is possible to
define several solutions at order NmLO which are all equivalent up to the accuracy considered,
i.e., up to subleading higher-order terms. Given the iterative definition of the Rk in Eq. (1.12), one
possibility is to calculate the Rk and, hence the Uk in Eq. (1.11), for any k > m from the known
results for PT,(k) and βk up to k = m. Any higher order PT,(k) and βk with k > m are simply set to
zero. Taking into account all the thus constructed Uk in Eq. (1.10) defines the so-called iterated
solution. To include in the evolution the small-z logarithmic contributions appearing at all orders
in the splitting functions, we start by considering the expansion of the fully resummed expressions
[9, 10], PT Nκ LL

jl = ∑
∞
n=0 an+1

s PT Nκ LL,(n)
jl , where the PT Nκ LL,(n)

jl are known up to NNLL accuracy,
i.e., for κ = 0,1,2. The simplest way of extending the framework of [6] to the resummed case is
to utilize the iterated solution and set PT,(k) ≡ PT Nκ LL,(k) for every k, including terms with k > m
in Eq. (1.12). The number k of PT Nκ LL,(k) needed for the relevant z range in the iterated solution
can be asses by studying the convergence of the series expansion of the resummed expressions
as shown in Fig. 1a. A numerical Mellin inversion was used to compare the expanded with the
resummed splitting functions in z space. We found that k = 20 is pretty accurate (less than 0.3h
difference) down to values of z≈ 10−5 which is more than sufficient to study the data sets available
at the time of writing.

2. Fit to SIA data

To asses the relevance of both NNLO and small-z logarithmic contributions we perform a fit
to SIA data with identified pions, more specifically, we use the same data sets as in [6]. For the
fitting procedure, we adopt the same flexible functional form as in Ref. [6, 11]

Dπ+

i (z,µ2
0 ) =

Ni zαi(1− z)βi [1+ γi(1− z)δi ]

B[2+αi,βi +1]+ γi B[2+αi,βi +δi +1]
(2.1)

to parametrize the non-perturbative input FFs for charged pions at a scale µ0 in the MS scheme. For
this analysis, however, we set the initial scale µ0 = 10.54GeV, which is equivalent to the BABAR
c.m.s. energy squared. B[a,b] is the Euler Beta function used to normalize the parameter Ni in (2.1)
for each flavor i to its contribution to the energy-momentum sum rule. In addition to the gluon i= g,
we only consider FFs for the sum of a quark and an antiquark of a given flavor i, since SIA is only
sensitive to q+ q̄ flavor combinations as can be already inferred from Eq. (1.2). In this analysis,
we impose a global cut 0.01 < z < 0.95 for all data points except for the TPC data where the lower
cut is set to z > 0.02. The total amount of data points taken into account in this analysis is 436.
Furthermore, we set γg,s+s̄,c+c̄ = 0 in Eq. (2.1). Thus, we are left with 19 free parameters in our
fit. We are most interested in the comparison of fixed order results with the resummed ones. This
allows us to quantify the relevance of small-z resummations in FF analyses. As usual the matching
of a resummed observable T res to its NκLO fixed order expression T Nκ LO is performed according
to T matched = T Nκ LO +T res− T res|O(aκ

s )
, where T res|O(aκ

s )
denotes the expansion of T res up to order

O(aκ
s ). We choose the logarithmic order in such a way that we do not resum logarithmic contribu-

tions which are not present in the fixed order result. For this reason, we match the LO calculation
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Table 1: The χ2-values and the χ2 per degree of freedom (d.o.f) for our fits at fixed order and with
resummations included.

accuracy χ2 χ2/d.o.f.
LO 1260.8 2.89
NLO 354.1 0.81
NNLO 330.1 0.76

accuracy χ2 χ2/d.o.f.
LO+LL 405.5 0.93
NLO+NNLL 352.3 0.81
NNLO+NNLL 330.0 0.76

only with LL as the only logarithmic contribution showing up at LO is of LL accuracy. Follow-
ing the same philosophy, we match NLO together with the NNLL results. Finally, at NNLO five
powers of small-z logarithms are present. However, the most accurate resummed result currently
available is at NNLL accuracy. Thus, we have to match NNLO only with NNLL due to the missing
higher order expressions. The resulting χ2-values and the χ2 per degree of freedom are shown in
Tab. 1. The main features of the considered corrections can be read off directly from said Table:
a LO fit is not able to describe the experimental results adequately. A NLO fit already yields an
acceptable result, which is further improved upon including NNLO corrections. Compared to the
corresponding fixed order results, the fits including also all-order resummations of small-z loga-
rithms exhibit only a slighly better χ2, except for LO+LL where resummations lead to a significant
improvement in the quality of the fit. Differences between fits at NNLO and NNLO+NNLL ac-
curacy are not significant. Hence, we conclude that in the z-range where experimental results are
available, NNLO expressions already capture all the relevant features to yield a satisfactory fit to
data and small-z resummations are not really necessary phenomenologically.

In Fig. 1b we plot the FFs resulting from our fits. We show the gluon and singlet FFs,
Dπ+

g (z,Q2) and Dπ+

Σ
(z,Q2)≡ N f Dπ+

S (z,Q2), respectively, for the LEP c.m.s. energy, i.e., Q = 91.2
GeV. It is worth noticing that the resummed expressions for which we have full control over all log-
arithmic powers (i.e. LO+LL and NLO+NNLL) are well behaved at small-z and show the expected
oscillatory behavior which they inherit from the Bessel function’s shape of the splitting functions
through the mean of the evolution (see [10]). The NNLO+NNLL FF still goes to minus infinity, as
we do not have control over all five logarithmic powers appearing at fixed order. However, because
we have resummed the three leading towers, it falls much softer compared to NNLO.

3. Conclusions

With the presented, new SIA analysis, we extended the results of [6] to include all-order resum-
mation for the small-z logarithmic contributions. In order to do so, we made use of the resummed
expressions for the time-like splitting and coefficient functions given in Refs. [9, 10]. A first phe-
nomenological study was performed to estimate the numerical impact of those contributions in fits
of pion fragmentation functions in the kinematical z-range where experimental data are available.
It turns out that a fixed order analysis at NNLO accuracy appears to be sufficient to reliably extract
FFs from the data available. Although resummation effects cannot be ignored from a theoreti-
cal point of view, the small-z behavior in the phenomenologically relevant kinematical region is
already well described by terms appearing in the fixed order expressions at NNLO accuracy.
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Figure 1: a) z times the splitting function Pgg(z) at NNLL for different maximum values of k compared to
the full resummed expression. In the lower panel we show the deviation of the expanded splitting function
compared to the full one. Everything is evaluated for Q2 = 110 GeV2 and N f = 5. b) Our gluon and singlet
FFs at LEP energy (Q = 91.2 GeV) obtained from the fits listed in Tab. 1. The singlet is shown for N f = 5.
The dotted vertical line at z = 0.01 shows the cutoff in our fit.
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