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The Higgs singlet extension at LHC Run 2
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1. The model

In this work we consider the simplest extension of the Standard Model (SM) Higgs sector,
where an additional real scalar field is added [1, 2, 3]. The model contains a complex SU(2)L

doublet, in the following denoted by Φ, and a real scalar S which is a singlet under the SM gauge
group. The most general renormalizable Lagrangian compatible with an additional Z2 symmetry is
then given by Ls = (DµΦ)† DµΦ+∂ µS∂µS−V (Φ,S), with the scalar potential

V (Φ,S) = −m2
Φ

†
Φ−µ

2S2 +λ1(Φ†
Φ)2 +λ2S4 +λ3Φ

†
ΦS2. (1.1)

In the unitary gauge, the Higgs fields are given by Φ ≡
(

0 h̃+v√
2

)T
, S ≡ h′+vs√

2
, with v, vs denoting

the non-zero vacuum expectation values of the doublet and singlet. Physically, the above potential
leads to a mixing between the gauge eigenstates, related via the mixing angle α according to h =
cα h̃− sα h′, H = sα h̃ + cα h′, where we used the shorthand notation sα (cα) ≡ sinα (cosα). We
here use the convention that mh ≤ mH , and choose as input parameters mh, mH , sinα, v, tanβ ≡ v

vs
,

where v ∼ 246GeV. In addition, one of the scalar masses is fixed to ∼ 125GeV, where we distin-
guish between the high-mass (mh ∼ mh,SM) and low-mass (mH ∼ mh,SM) scenario. The above mix-
ing also leads to the familiar rescaling of the SM-like Higgs couplings at tree level by sinα (cosα)
for h(H), with respect to the couplings for a SM Higgs boson of that mass.

2. Parameter constraints and predictions at the LHC Run 2

We refer the reader to [4, 5, 6] for a detailed discussion of the individual constraints. Vac-
uum stability, perturbative unitarity, perturbativity of the couplings, agreement with electroweak
precision observables have been explicitly discussed in the above references; constraints from the
W -boson mass measurement follow [7]. In [6], previous results were updated especially with re-
gard to the latest LHC limits and Higgs signal strength measurements [8], using the public tools
HiggsBounds (version 4.3.1) [9, 10, 11] and HiggsSignals (version 1.4.0) [12]. A summary
of all constraints on the maximal mixing angle sinα is shown in Fig. 1. Production cross-sections
for the 14 TeV LHC, after all constraints have been taken into account, are shown in Fig. 2 for the
high-mass range. Specific benchmarks for all mass ranges have been presented in [6]1.

3. Renormalization

The complete electroweak renormalization of the singlet model has been presented in [14],
and we refer the reader to this reference for explicit details. Here we only want to point to two
major features of our scheme setup.

Non-linear gauge fixing We use a non-linear gauge fixing, specified by

LGF =− 1
ξW

F+F−− 1
2ξZ
|FZ|2− 1

2ξA
|FA|2 , (3.1)

1See also [13].
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Figure 1: Maximal allowed values for |sinα| in the high mass region, mH ∈ [130,1000]GeV, from NLO
calculations of the W boson mass (red, solid) [7], electroweak precision observables (EWPOs) tested via
the oblique parameters S, T and U (orange, dashed), perturbativity of the RG-evolved coupling λ1 (blue,
dotted), evaluated for an exemplary choice tanβ = 0.1, perturbative unitarity (grey, dash-dotted), direct
LHC Higgs searches (green, dashed), and the Higgs signal strength (magenta, dash-dotted). Taken from [6].

(a) Heavy Higgs signal rate with SM particles
in the final state for the LHC at 14 TeV.

(b) Heavy Higgs signal rate with light Higgs
bosons in the final state for the LHC at 14 TeV.

Figure 2: Production cross-sections at a 14 TeV LHC, for a heavy Higgs H decaying into SM particles (left)
or hh final states (right); for the latter, electroweak corrections have not been included. Cross sections stem
from a simple rescaling of production cross sections presented in [13]. Red and yellow regions correspond
to agreement with the Higgs signal strength measurements at the 1σ and 2σ level, respectively, blue points
comply with direct experimental searches but do not agree with the Higgs signal strength within 2σ . Taken
from [6].
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where the functions F depend non-linearly on the Higgs and gauge fields and are given by Eqns.
(21)-(23) of [14]. The gauge-fixing terms explicitly depend on the non-linear gauge-fixing quanti-
ties δ̃i. We perform our implementation of the singlet model using SLOOPS (see e.g. [15, 16]).

Gauge-parameter independent physical results We have studied different schemes and explicitly
tested gauge-fixing parameter dependence. An improved On-shell prescription leads to gauge-
parameter independent predictions for the one-loop corrections to ΓH→hh:

δm2
hH = ReΣhH(p2

∗)
∣∣
ξW =ξZ=1,δ̃i=0 with p2

∗ =
m2

h +m2
H

2
, (3.2)

This prescription coincides with the discussion in [16] in the context of supersymmetry, and can
also be related to the so-called pinch technique (see e.g. [17]).

We rely on two independent implementations of the model2. Once all present constraints on
the model are included, we find mild NLO corrections, typically of few percent, and with theoretical
uncertainties on the per mille level. Sample results for the one-loop eletroweak corrections to the
decay width ΓH→hh are displayed in Fig. 3.
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Figure 3: NLO corrections to the H → hh partial decay width, for fixed sinα, tanβ values and mh (left)
or mH (right) being the 125 GeV resonance measured at the LHC, as a function of the second scalar mass.
We display the total decay width for H → hh, as well as the relative correction in the αem input scheme
for the electroweak parameters (see [14] for details). The yellow region is excluded by perturbativity of the
couplings. Note: tanβ is defined as vs

v in this case, in contrast to the definitions given above. Taken from
[14].
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