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1. Introduction

In this contribution, we report on our computation of the one loop γ(∗) → 2 jets impact fac-

tor. This result is a first step toward a complete next-to-leading-order (NLO) description of many

inclusive or exclusive diffractive processes, either in the linear BFKL [1, 2, 3, 4] or the non-linear

color glass condensate (CGC) approaches [5, 6, 7, 8, 9, 10, 11, 12, 13].

Two main approaches exist to theoretically describe diffraction: either through a resolved

Pomeron contribution, see Fig. 1 (left), or using a direct Pomeron contribution involving the cou-

pling of a Pomeron with the diffractive state, see Fig. 1 (right). Our results are based on the second

one.
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Figure 1: Resolved (left panel) and direct (right panel) Pomeron contributions to dijet production.

We show in particular that our result for the real contributions to the leading order (LO) γ(∗) →

qq̄g impact factor and to the next-to-leading order (NLO) γ(∗) → qq̄ impact factor allows one to

extract the finite part of the NLO impact factor for diffractive dijet production.

2. The shockwave formalism in a nutshell

Our calculation relies on Balitsky’s QCD shockwave formalism [14, 15, 16, 17]. We introduce

two lightcone vectors n1 and n2

n1 ≡ (1,0,0,1) , n2 ≡
1

2
(1,0,0,−1) , n+1 = n−2 = n1 ·n2 = 1 , (2.1)

and the Wilson lines as

U
η
i =U

η
~zi

= T exp

[

ig

∫ +∞

−∞
b−η (z

+
i ,~zi)dz+i

]

. (2.2)

The operator b−η is the external shockwave field built from slow gluons whose momenta are limited

by the longitudinal cutoff eη p+γ , where η is an arbitrary negative parameter :

b−η =

∫

d4 p

(2π)4
e−ip·zb− (p)θ

(

eη −
|p+|

p+γ

)

, (2.3)

2



P
o
S
(
D
I
S
2
0
1
6
)
1
7
0

NLO impact factor for diffractive dijet production in the shockwave formalism R. Boussarie
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Figure 2: Leading order diagram for the impact factor for dijet production

where pγ is the momentum of the photon, which has a large component in the + direction.

We use the lightcone gauge A ·n2 = 0, with A being the sum of the external field bη and the

quantum field Aη

A
µ = A

µ
η +b

µ
η , b

µ
η (z) = b−η (z

+,~z )n
µ
2 = δ (z+)Bη (~z)n

µ
2 , (2.4)

where Bη(~z) is a profile function and the form for bη is valid in the small x limit considered here.

From the Wilson lines, we define the dipole operator and its Fourier transforms as follows:

U
η
i j ≡ 1−

1

Nc

Tr(Uη
i U

η†
j ), (2.5)

Ũ
η
i j ≡

∫

dd~zi dd~z j e−i(~pi·~zi)−i(~p j·~z j)U
η
i j, (2.6)

Ũ
η
ikU

η
k j ≡

∫

dd~zi dd~z j dd~zke−i(~pi·~zi)−i(~p j·~z j)−i(~pk·~zk)U
η
ikU

η
k j. (2.7)

When computing a physical amplitude, one should act with these operators on the incoming and

outgoing states of the target. For example in the case of a diffractive γ(∗)(pγ )P(p0)→ X(pX)P
′(p′0)

process, the following matrix elements will be involved:

Wη → 〈P′(p′0)|T (W
η)|P(p0)〉, (2.8)

where Wη is an operator built from the Wilson lines. In our case, there are two possibilities for

Wη : either a dipole operator Wη = U
η
i j, or a double-dipole operator Wη = U

η
ikU

η
k j. Note that in

the t’Hooft limit N−2
c → 0 or in the mean field approximation, the matrix elements for the double

dipole operators can be written as the product of the matrix elements for two dipole operators.

From now on we will write W rather than Wη for readability.

3. Impact factor for the γ(∗) → qq̄ transition

At leading order, the diagram contributing to the impact factor for the γ∗ → qq̄ transition is

shown in Fig. 2. After the projection on the color singlet state and the subtraction of the contribution

without interaction with the external field, the contribution of this diagram can be written in the

momentum space as the following convolution of Wilson line operators with the impact factor:

M
qq̄
LO = εα

∫

d~p1d~p2 δ (~pq1 +~pq̄2)δ (p+q + p+q̄ − p+γ )Φα
0 (~p1, ~p2)Ũ12 , (3.1)
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where we denoted pi j ≡ pi − p j, and where pq (resp. pq̄) is the momentum of the outgoing quark

(resp. antiquark). Φ0 is directly obtained by computing the diagram in Fig. 2.
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Figure 3: Diagrams contributing to the virtual corrections in which the radiated gluon does not cross the

shockwave.

The virtual corrections to the γ(∗) → qq̄ transition involve two kinds of contributions. The dia-

grams contributing to virtual corrections in which the radiated gluon does not cross the shockwave

field are shown in Fig. 3, and the diagrams in which the radiated gluon crosses the shockwave field

are illustrated in Fig. 4. The convolution is similar to the leading order result, but it involves more

Wilson line operators:

M
qq̄
NLO = εα

∫

dd~p1 dd~p2 dd~p3 δ (~pq1 +~pq̄2 −~p3)δ (p+q + p+q̄ − p+γ ) (3.2)

×

{(

N2
c −1

Nc

)

Ũ12 δ (~p3)
[

Φα
V1
+Φα

V2

]

+ Nc

(

Ũ13U32 + Ũ13 + Ũ32 − Ũ12

)

Φα
V2

}

,

where Φα
V1

= Φα
V1
(~p1, ~p2) is obtained from the diagrams in Fig. 3 and Φα

V2
= Φα

V2
(~p1, ~p2, ~p3) is

obtained from the diagrams in Fig. 4.

Several divergences appear in each of the terms in Eq. (4.1): Φα
V1

contains soft, collinear, soft

and collinear, and UV divergences, while Φα
V2

contains a rapidity divergence. In the shockwave

formalism and in lightcone gauge, it is impossible to use the usual dimensional regularization

around dimension 4 due to the presence of the cutoff on p+ momenta: the 2 longitudinal directions

must be isolated. Thus we use dimensional regularization d = 2+2ε for the transverse components,

and the cutoff prescription p+ < eη p+γ which is natural in our formalism.

The rapidity divergence in ΦV2
is canceled via the use of the B-JIMWLK evolution equation for

the dipole operator: evolving the dipole operator in the leading order convolution (3.1) w.r.t. the

longitudinal cutoff from the arbitrary eη p+γ to a more physical divide eη0 p+γ , which will serve as

a factorization scale which separates the upper and lower impact factors, allows one to cancel the

dependence on η in ΦV2
and get a finite expression for the double-dipole contribution to the NLO
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impact factor. In momentum space and in d +2 dimensions, the evolution equation is given by:

∂ Ũ
η
12

∂ logη
= 2αsNcµ2−d

∫

dd~k1dd~k2dd~k3

(2π)2d
δ
(

~k1 +~k2 +~k3 −~p1 −~p2

)

(

Ũ
η
13U

η

32
+ Ũ

η
13 + Ũ

η
32 − Ũ

η
12

)

×






2
(~k1 −~p1).(~k2 −~p2)

(~k1 −~p1)2(~k2 −~p2)2
+

π
d
2 Γ

(

1− d
2

)

Γ2
(

d
2

)

Γ(d −1)







δ (~k2 −~p2)
[

(~k1 −~p1)2
]1− d

2

+
δ (~k1 −~p1)

[

(~k2 −~p2)2
]1− d

2












.(3.3)

The divergences in ΦV1
must be canceled by combining such terms with the associated real correc-

tions to form a physical cross section. The first step to compute such a cross section is to use a jet

algorithm in order to cancel the soft and collinear divergence. By using the jet cone algorithm in

the small cone limit, as used in [18], we proved that such a cancellation occurs.

The remaining divergence can be expressed by factorizing the leading order cross section:

dσ
jets

V div = (NV +N∗
V)dσ

jets
LO , (3.4)

where NV is extracted from the divergent part of the virtual amplitude. This contribution must be

combined with real corrections from the γ(∗) → qq̄g impact factor.
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Figure 4: Diagrams contributing to the virtual corrections in which the radiated gluon interacts with the

shockwave.

4. Impact factor for the γ(∗) → qq̄g transition

The convolution for the γ(∗) → qq̄g impact factor is very similar to the one for the NLO γ(∗) →

qq̄ impact factor:
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Figure 5: Diagrams contributing to real corrections to the impact factor for dijet production.

Mqq̄g = εα

∫

dd~p1 dd~p2 dd~p3 δ (~pq1 +~pq̄2 +~pg3)δ (p+q + p+q̄ + p+g − p+γ ) (4.1)

×

{(

N2
c −1

Nc

)

[

Φα
R1
+Φα

R2

]

Ũ12 δ (~p3)

+Nc

(

Ũ13U32 + Ũ13 + Ũ32 − Ũ12

)

Φα
R2

}

,

where ΦR1
= ΦR1

(~p1, ~p2) and ΦR2
= ΦR2

(~p1, ~p2, ~p3) are obtained by computing respectively the

first two diagrams and the last two diagrams in Fig. 5, as described in [19], [20] and [21]

When considering our exclusive cross section, the real contributions are those where the additional

gluon is either collinear to the quark or to the antiquark, so that they form a single jet, or too soft to

be detected i.e. with an energy which is lower than a typical energy resolution E . The contribution

from the soft gluon to the dijet cross section can be written with a very simple form:

dσ
qq̄g
so f t = αs

(

N2
c −1

2Nc

)

∫

d p+g

p+g

dd~pg

(2π)d

∣

∣

∣

∣

pq

(pq · pg)
−

pq̄

(pq̄ · pg)

∣

∣

∣

∣

2

dσ
jets

LO , (4.2)

where the integration is performed in the pg-phase space region where p+g +
~p2

g

p+g
< 2E .

The collinear contribution also has a simple form, in terms of the jet variables. For example when

the gluon is collinear to the quark one gets:

dσ (qg),q̄ = αs

(

N2
c −1

2Nc

)

NJ dσ
jets

LO , (4.3)

where NJ is proportional to the «number of jets in the quark », a DGLAP-type emission kernel.

As shown in [22], combining Eqs. (3.4), (4.2), (4.3) and the equivalent of Eq. (4.3) where the gluon

is collinear to the antiquark, one finally obtains a finite cross section.
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5. Conclusion

Dijet production in DDIS at HERA was recently analyzed [23]. A precise comparison of

dijet versus triple-jet production, which has not been performed yet at HERA [24], would be of

much interest. Investigations of the azimuthal distribution of dijets in diffractive photoproduction

performed by ZEUS [25] show signs of a possible need for a 2-gluon exchange model, which is

part of the shockwave mechanism. Our calculation could be used for phenomenological studies of

those experimental results. Complementary studies could be performed at LHC with UPC events.
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