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We discuss diphoton semi(exclusive) production in ultraperipheral PbPb collisions at energy of
√

sNN = 5.5 TeV (LHC). The nuclear calculations are based on equivalent photon approximation
in the impact parameter space. The cross sections for elementary γγ → γγ subprocess are calcu-
lated including two different mechanisms: box diagrams with leptons and quarks in the loops and
a VDM-Regge contribution with virtual intermediate hadronic excitations of the photons. We got
relatively high cross sections in PbPb collisions (306 nb). This opens a possibility to study the
γγ → γγ (quasi)elastic scattering at the LHC. We find that the cross section for elastic γγ scatter-
ing could be measured in the lead-lead collisions for the diphoton invariant mass Wγγ ≈ 15−20
GeV.
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1. Introduction

In classical Maxwell theory photons/waves/wave packets do not interact. In contrast, in quan-
tal theory they can interact via quantal fluctuations. So far only inelastic processes, i.e. production
of hadrons or jets via photon-photon fusion could be measured e.g. in e+e− collisions or in ul-
traperipheral collisions (UPC) of heavy-ions. It was realized only recently that ultraperipheral
heavy-ions collisions can be also a good place where photon-photon elastic scattering could be
tested experimentally [1, 2].

2. Theory

2.1 Elementary cross section
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Figure 1: Light-by-light scattering mechanisms with the lepton and quark loops (first panel) and for the
intermediate W -boson loop (second panel). Third panel represents VDM-Regge mechanism and the last
panel is for two-gluon exchange.

One of the main ingredients of the formula for calculation of the nuclear cross section is ele-
mentary γγ → γγ cross section. The lowest order QED mechanisms with elementary particles are
shown in two first diagrams of Fig. 1. The first diagram is for lepton and quark loops and it dom-
inates at lower photon-photon energies (Wγγ < 2mW ) while the next diagram is for the W (spin-1)
boson loops and it becomes dominant at higher photon-photon energies ([3, 4]). The one-loop box
amplitudes were calculated by using the Mathematica package FormCalc and the LoopTools
library. We have obtained good agreement when confronting our result with those in [5, 6, 3].
Including higher-order contributions in the context of elastic scattering seems to be interesting.
In Ref. [6] the authors considered both the QCD and QED corrections (two-loop Feynman dia-
grams) to the one-loop fermionic contributions in the ultrarelativistic limit (ŝ, |t̂|, |û| � m2

f ). The
corrections are quite small numerically so the leading order computations considered by us are
satisfactory. In last two diagrams of Fig. 1 we show processes that are the same order in αem but
higher order in αs. In this article we consider process shown in the third panel where both photons
fluctuate into virtual vector mesons (here we include three different light vector mesons: ρ,ω,φ ).
The last diagram shows the mechanism which is formally three-loop type but we will not consider
here the contribution of this mechanism. The exact calculations for this process in the context of
elementary γγ → γγ and nuclear AA→ AAγγ cross section were done in Ref. [7] .

2.2 Nuclear cross section

The general situation for the AA→ AAγγ reaction is sketched in Fig. 2. In our equivalent
photon approximation (EPA) in the impact parameter space, the total (phase space integrated) cross
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Figure 2: Diphoton production in ultrarelativistic UPC of heavy ions.

section is expressed through the five-fold integral (for more details see e.g. [8])

σA1A2→A1A2γγ

(√
sA1A2

)
=
∫

σγγ→γγ

(
Wγγ

)
N (ω1,b1)N (ω2,b2)S2

abs (b)2πbdbdbx dby
Wγγ

2
dWγγ dYγγ ,

(2.1)
where N(ωi,bi) are photon fluxes, Wγγ =

√
4ω1ω2 and Yγγ =

(
yγ1 + yγ2

)
/2 is a invariant mass and a

rapidity of the outgoing γγ system. Energy of photons is expressed through ω1/2 =Wγγ/2exp(±Yγγ).
b1 and b2 are impact parameters of the photon-photon collision point with respect to parent nuclei
1 and 2, respectively, and b = b1−b2 is the standard impact parameter for the A1A2 collision.

The photon flux (N(ω,b)) is expressed through a nuclear charge form factor. In our calcula-
tions we use two different types of the form factor. The first one, called here realistic form factor,
is the Fourier transform of the charge distribution in the nucleus and the second one is a monopole
form factor which leads to simpler analytical results. More details can be found find e.g. in [2, 8].

3. Results
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Figure 3: Elementary and nuclear cross section for light-by-light scattering. The dashed lines show the
results for the case when only box contributions (fermion loops) are included and the solid lines show
the results for the VDM-Regge mechanism. Left panel: integrated elementary γγ → γγ cross section as a
function of the subsytem energy. Right panel: differential nuclear cross section as a function of γγ invariant
mass at

√
sNN = 5.5 TeV. The distributions with the realistic charge density are depicted by the red (lower)

lines and the distributions which are calculated using the monopole form factor are shown by the blue (upper)
lines.

The elementary angle-integrated cross section for the box and VDM-Regge contributions is
shown in the first panel of Fig. 3 as a function of the photon-photon subsystem energy. Lepton
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and quark amplitudes interfere enhancing the cross section. For instance in the 4 GeV < W <

50 GeV region, neglecting interference effects, the lepton contribution to the box cross section
is by a factor 5 bigger than the quark contribution. Interference effects are large and cannot be
neglected. At energies W > 30 GeV the VDM-Regge cross section becomes larger than that for the
box diagrams. The right panel of Fig. 3 shows results for nuclear collisions for the case of realistic
charge density (red lines) and monopole form factor (blue lines). The difference between the results
becomes larger with larger values of the kinematical variables. The cross section obtained with the
monopole form factor is somewhat larger.

Figure 4: Contour representation of two-dimensional (dσ/dyγ1dyγ2 in nb) distribution in rapidities of the
two photons in the laboratory frame for box (left panel) and VDM-Regge (right panel) contributions.

If we try to answer the question whether the reaction can be measured with the help of LHC
detectors then we have to extend Eq. (2.1) by extra integration over additional parameter related to
angular distribution for the subprocess [2]. Fig. 4 shows two-dimensional distributions in photon
rapidities in the contour representation. The calculation were done at the LHC energy

√
sNN = 5.5

TeV. Here we impose cuts on energies of photons in the laboratory frame (Eγ > 3 GeV). Very
different distributions are obtained for boxes (left panel) and VDM-Regge (right panel). In both
cases the influence of the imposed cuts is significant. In the case of the VDM-Regge contribution
we observe as if non continues behaviour which is caused by the strong transverse momentum
dependence of the elementary cross section (see Fig. 4 in Ref. [2]) which causes that some regions
in the two-dimensional space are almost not populated. Only one half of the (yγ1 ,yγ2) space is shown
for the VDM-Regge contribution. The second half can be obtained from the symmetry around the
yγ1 = yγ2 diagonal. Clearly the VDM-Regge contribution does not fit to the main detector (−2.5 <

yγ1 ,yγ2 < 2.5) and extends towards large rapidities. In the case of the VDM-Regge contribution we
show much broader range of rapidity than for the box component. We discover that maxima of the
cross section associated with the VDM-Regge mechanism are at |yγ1 |, |yγ2 | ≈ 5. Unfortunately this
is below the limitations of the ZDCs (|η |> 8.3 for ATLAS ([9]) or 8.5 for CMS ([10])).

Finally in Fig. 5 we show numbers of counts in the 1 GeV intervals expected for assumed
integrated luminosity: Lint = 1 nb−1 typical for UPC at the LHC. We have imposed cuts on photon-
photon energy and (pseudo)rapidities of both photons. It looks that one can measure invariant mass
distribution up to Mγγ ≈ 15 GeV.
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Figure 5: Distribution of expected number of counts in 1 GeV bins for cuts on Wγγ > 5.5 GeV and ηγ < 2.5.

4. Conclusions

In our recent paper [2] we have studied in detail how to measure elastic photon-photon scat-
tering in ultrarelativistic ultraperipheral lead-lead collisions. The calculations were performed in
an equivalent photon approximation in the impact parameter space. The cross section for photon-
photon scattering was calculated taking into account well known box diagrams with elementary
standard model particles (leptons and quarks) as well as a VDM-Regge component which was
considered only recently [2] in the context of γγ → γγ scattering.

Several distributions in different kinematical variables were calculated. Using the monopole
form factor we get similar cross section to that found in [1] (after the correction given in Erratum
of [1]). Nevertheless, we think that application of realistic charge distribution in the nucleus gives
more precise results. We have shown an estimate of the counting rate for expected integrated
luminosity. We expect some counts for subprocess energies smaller than Wγγ ≈ 15-20 GeV.
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