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Spin and transverse momentum dependent parton distributions - GPDs, TMDs and GTMDs -
are at the interface between the non-perturbative regime of QCD hadron structure and observ-
able quantities. The distributions appear as linear superpositions and convolutions within helic-
ity amplitudes for parton-nucleon scattering processes, which, in turn, occur in amplitudes for
leptoproduction processes. The phenomenological extraction of the amplitudes, and hence the
distributions, is a challenging task. We will present relations between crucial quark-nucleon or
gluon-nucleon helicity amplitudes, sample the rich array of angular distributions in Deeply Vir-
tual Compton Scattering, and suggest novel Multi-hadron photon processes. These provide an
important window into the spin structure of the nucleons.
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1. Introduction

The spin of the hadrons depends on the distributions of spin and orbital angular momenta
(OAM) of the fundamental constituents, quarks and gluons. The quark and gluon field correla-
tions in the nucleon are indirectly measurable through electroproduction processes. The angular
momenta associated with the quark and gluon fields within QCD, are encoded in the transverse
momentum distributions (TMDs) [1], the Generalized Parton Distributions (GPDs) [2] and the
even more general TMDs (GTMDs) [3]. We have developed an extensive spectator model for the
valence quark GPDs that we will summarize.

Of special interest among spin dependent pdf’s are the nucleon’s transversity structure func-
tions, e.g. h1(x) - the probability of finding a definite transversity quark inside a transversely
polarized nucleon. They are chiral odd, and can be observed indirectly in Semi Inclusive Deep
Inelastic Scattering (SIDIS), where they are convoluted with fragmentation functions, or in the
Drell-Yan process in conjunction with another chiral-odd partner. They also contribute to exclusive
electroproduction processes, particularly Deeply Virtual Meson Production (DVMP), through chi-
ral odd GPDs. The transversity GPDs Hq

T (x,ξ , t) have the limiting form Hq
T (x,0,0) = hq

1(x). Brief
mention will be made of the gluon GPDs, which can have a major role in processes measurable at
lepton accelerators, the LHC and at a future Electron-Ion-Collider. New measurements that relate
to GTMDs will be mentioned also.

2. Formalism

A general form of quark and gluon distributions in the nucleon is given by matrix elements of
bilocal field operators, the GTMDs [3]

W [Γ]
ΛΛ′(P̄,x,~kT ,∆,N;η) =

1
2

∫
dk−

d4z
(2π)4 eikz 〈P′,Λ′ | ψ

(
− z

2

)
ΓW (− z

2
,

z
2
| n)ψ

( z
2

)
| P,Λ〉

(2.1)
with Γ a Dirac matrix, W the appropriate gauge link, P̄ = (P+P′)/2, ∆ = P′−P and N = M2n/P̄ ·n,
with n the usual light-like vector, and η = sign(n0) (see [3] for details). The integration over k−

places the matrix element at z+ = 0 on the light cone. These GTMDs have both the nucleon momen-
tum transfer ∆ and the outgoing parton momentum k as variables. As such, they are “unintegrated"
parton distributions. Geometrically, the orientation of the partons requires the specification of two
planes: the kT plane formed by~kT , P̄3; the ∆ plane formed by the~∆T , P̄3

The TMDs are obtained by setting ∆ = 0 in Eq. 2.1, leaving kT plane,

Φ
[Γ]
ΛΛ′(P̄,x,~kT ,N;η) = W [Γ]

ΛΛ′(P̄,x,~kT ,∆ = 0,N;η), (2.2)

while the GPDs are obtained by integrating Eq. 2.1 over all k, leaving ∆ plane,

F [Γ]
Λ′,Λ(P̄,x,∆,N) =

∫
d2~kTW [Γ]

ΛΛ′(P̄,x,~kT ,∆,N;η)

=
1
2

∫ dz−

2π
eixP+z− 〈P′,Λ′ | ψ

(
− z

2

)
Γψ

( z
2

)
| P,Λ〉

∣∣∣
z+=0,zT =0

, (2.3)

The quark GPDs are defined (at leading twist) as the matrix elements of the projections of
the unintegrated quark-quark proton correlator (see Ref.[4] for a detailed overview), where Γ =

1
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γ+,γ+γ5, iσ i+γ5(i = 1,2), and the target’s spins are Λ,Λ′. The spin structures of GPDs that are
directly related to spin dependent observables are most effectively expressed in term of helicity
dependent amplitudes, developed extensively for the covariant description of two body scattering
processes (see also Ref.[4]). For the GPDs, decomposing the quark fields into definite helicities,
λ , λ ′, produces a form analogous to 2-body helicity amplitudes, AΛ′λ ′,Λλ (X ,ζ , t) [4].

There are four chiral-even quark GPDs, H,E, H̃, Ẽ [5] and four additional chiral-odd GPDs, at
leading twist 2, that flip quark helicity by one unit, HT ,ET , H̃T , ẼT [4, 6]. There are two questions
to address: How to model the 8 GPDs? How to measure them?

3. Flexible Model

The basis of our model of parton distributions is the connection to observables through the
“handbag” approximation. The various distributions are then related to quark or gluon plus nu-
cleon scattering-type amplitudes. We model these via nucleon transitions into quark (or gluon)
and a spectator (or light front wave functions or lowest Fock states). The quark-proton scattering
amplitudes at leading order are convolutions of proton-quark-diquark vertices. The quark proton
helicity amplitudes describe a two body process, q′(k′)P→ X → q(k)P′, where q(k) corresponds
to the “struck quark". The intermediate diquark system, X , can have JP = 0+ (scalar), or JP = 1+

(axial vector). The amplitudes for the Scalar diquark are (see [7, 8] for the full set of relations):

A(0)
Λ′λ ′,Λλ

=
∫

d2k⊥φ
∗
Λ′λ ′(k

′,P′)φΛλ (k,P). (3.1)

Next we consider “Reggeization”, that is, we extend the diquark model formalism to low X
by allowing the spectator system’s mass to vary up to very large values. This is accomplished by
convoluting the GPD structures obtained in Eqs.(3.1) with a “spectral function", ρ(M2

X), where M2
X

is the spectator’s mass,

Fq
T (X ,ζ , t) = Nq

∫
∞

0
dM2

X ρ(M2
X)F(mq,M

q
Λ
)

T (X ,ζ , t;MX)≈ R
αq,α

′
q

pq (X ,ζ , t)GMΛ

MX ,m(X ,ζ , t) (3.2)

The spectral function was constructed in Refs.[8, 9] so that it approximately behaves as (M2
X)α for

M2
X → ∞ and δ (M2

X −M2
X) for M2

X at a few GeV 2, where 0 < α < 1, and MX is in the GeV range,

with α ′q(X) = α ′q(1−X)pq . The functions GMq
Λ

MX ,mq
and R

αq,α
′
q

pq are the quark-diquark and Regge
contributions, respectively. The chiral even GPDs integrate to the nucleon form factors, which
constrains the GPD t-dependence,∫ 1

0
Hq(X ,ζ , t) = Fq

1 (t),
∫ 1

0
Eq(X ,ζ , t) = Fq

2 (t),
∫ 1

0
H̃q(X ,ζ , t) = Gq

A(t),
∫ 1

0
Ẽq(X ,ζ , t) = Gq

P(t).

(3.3)
where Fq

1 (t) and Fq
2 (t) are the Dirac and Pauli form factors for the quark q components in the

nucleon. Gq
A(t) and Gq

P(t) are the axial and pseudoscalar form factors. Furthermore, H(x,0,0) =
h1(x) and H̃(x,0,0) = g1(x). With these constraints, the quark GPDs that fit DVCS results are
shown in Fig. 1.

Our model for evaluating the chiral-odd GPDs extends the Reggeized diquark model for chiral-
even GPDs, to the chiral-odd sector, using parity relations for the vertices in Eq. 3.1. We will
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Figure 1: Upper (a): Chiral even u and d-quark GPDs at the initial scale and Q2 = 2GeV2 Lower (b): Chiral
even u and d GPDs for a range of t values. Adapted from Ref. [8].

show the successful phenomenology for π0 electroproduction that follows, below. For the gluon
GPDs, the model is generalized from the spectator picture for quark GPDs [10]. The nucleon
decomposes into a gluon and a color octet baryon, so that the overall color is a singlet. The color
octet baryon contains components that have the same flavor as the nucleon, are Fermionic (with
color⊗flavor⊗spin being antisymmetric under quark label exchanges), and include spin 1/2, which
we select for simplicity. This provides sufficient parameterization to fit the Hg(x,0,0) to the pdf
g(x). Evolving with Q2 also requires a sea quark contribution, which we take in a spectator picture
with N→ ū⊕ (uuud) or d̄⊕ (uudd). [10].
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4. Observables and data

DVCS accesses Chiral Even GPDs through various cross sections and asymmetries. The
GPDs, or their corresponding Compton Form Factors, enter linearly via Bethe-Heitler ⊗ DVCS
interference. DVπ0S accesses 2 Chiral Even + 4 Chiral Odd GPDs that enter bilinearly via dσ/dΩ

& polarization asymmetries. The result of experimental observations that dσT > dσL is that the
chiral odd GPDs dominate.
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Figure 2: Upper (a): Beam spin asymmetry, ALU , plotted vs. −t for two different kinematics. Experimental
data from Ref.[12]. Adapted from Ref. [11]. Lower (b): Transverse differential cross section vs. (−t +
tmin) for Q2 = 1.5,1.75,2.0 GeV2 at xB j = 0.36. Preliminary data from Hall A, courtesy F. Sabatie & M.
Defurne [13].
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In Ref.[7], after showing how DVπ0P can be described in terms of chiral-odd GPDs, we
estimated all of their contributions to the various observables with particular attention to the ones
which were sensitive to the values of the tensor charge. The connection of the correlator, Eq.(2.3),
with the helicity amplitudes for π0 electroproduction proceeds by introducing a factorized form
[7, 11],

f ΛΛ′
Λγ 0 (ζ , t) = ∑

λ ,λ ′
gλλ ′

Λγ 0(X ,ζ , t,Q2)⊗AΛ′λ ′,Λλ (X ,ζ , t), (4.1)

where the helicities of the virtual photon and the initial proton are, Λγ , Λ, and the helicities of the
produced pion and final proton are 0, and Λ′, respectively. This describes a factorization into a
“hard part”, gλλ ′

Λγ 0 for the partonic subprocess γ∗+q→ π0 +q, and a “soft part” given by the quark-
proton helicity amplitudes, AΛ′,λ ′;Λ,λ that contain the GPDs. The expressions for the chiral-odd
helicity amplitudes in terms of GPDs [4] are of the form

A++,−− =
√

1−ξ 2

[
HT +

t0− t
4M2 H̃T −

ξ 2

1−ξ 2 ET +
ξ

1−ξ 2 ẼT

]
, . . . (4.2)

where we use the symmetric notation for the kinematic variables. Analogous forms have been
written for the chiral even and odd sectors [4].

The fitting procedure of GPDs is quite complicated owing to its many different steps. A more
detailed description of the other transversity functions including the first moment of h⊥1 ≡ 2H̃q

T +Eq
T

is given in [11]. In Fig.2 we show a small sampling of results. The various GPDs enter the helicity
amplitudes and those, in turn, determine all the cross section terms for π0 electroproduction. The
transverse and longitudinal cross sections have been separated experimentally at small t [13]. Some
preliminary data compare favorably with our predictions in Fig 2(b).

5. Observing GTMDs

We introduced the GTMDs above, without reproducing the extensive decompositions into
many structure functions [3]. Since these functions appear like unintegrated parton + nucleon am-
plitudes, with both kT and ∆T , we ask whether or not the GTMDs can be accessed experimentally.
We briefly note here that processes that have 3 irreducible planes, like exclusive electroproduction
of γ +π+ +π−+N, are candidates for indirect measurements of interesting GTMDs, particularly
F14, connected to orbital angular momentum [14].

6. Conclusions & Outlook

Among all the distributions that can be accessed with our “flexible spectator” model, we
focused particularly on the transversity parton distributions in the nucleon that can be accessed
through deeply virtual exclusive π0 meson production. We addressed the feasibility of experimen-
tal extraction. This represents a consistent quantitative step with respect to our previous work [7].
In particular, HT and the combination 2H̃T +ET , now are separated. A similar simplified approach
was taken also in Ref.[15] - we differ in the importance attached to the skewedness dependence of
ET , ẼT .

5
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We see the results of our extended approach for some of the many measured and measurable
observables. What is especially gratifying is that certain asymmetries constrain the GPDs well
enough to separately determine HT , and consequently transversity through the limit HT (x,0,0),
and the combination 2H̃T +(1±ξ )ET .

We sketched the extension of the model to the gluon distributions and suggested an experi-
mental means to indirectly measure some GTMDs.
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