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Run 1 at the LHC was very successful with the discovery of a new boson. The boson’s properties
are found to be compatible with those of the Standard Model Higgs boson. It is now revealing the
mechanism of electroweak symmetry breaking and (possibly) the discovery of physics beyond the
Standard Model that are the primary goals of the just restarted LHC. The ultimate precision will
be reached at the High-Luminosity LHC phase with a proton-proton centre-of-mass energy of 14
TeV. In this contribution physics prospects are presented for ATLAS for the integrated luminosi-
ties 300 and 3000 fb−1: the ultimate precision attainable on measurements of the Higgs boson
couplings to elementary fermions and bosons, its trilinear self-coupling, as well as perspectives
on the searches for supersymmetric partners associated with the Higgs boson. Benchmark studies
are presented to show how the sensitivity improves at the future LHC runs. For all these studies, a
parameterised simulation of the upgraded ATLAS detector is used and expected pileup conditions
are accounted for.
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1. Introduction

During Run 1 of the LHC a new boson was discovered by the ATLAS and CMS collabora-
tions [1, 2]. Its measured properties are largely compatible with those of the SM Higgs boson [3]
and precise measurements are instrumental in determining if it is indeed "the" Higgs predicted
by [4] and responsible for electroweak symmetry breaking.

After a very successful Run 1 of the LHC, Run 2 data taking is currently taking place with
proton-proton collisions at a centre-of-mass energy

√
s = 13 TeV. ATLAS is expected to collect

an integrated luminosity of about 100 fb−1 by the end of 2018. Starting in 2021, proton-proton
collisions at

√
s = 14 TeV are expected during the Run 3 of the LHC amounting to about 300 fb−1.

In 2026 the High Luminosity (HL-LHC) phase will start. With an instantenuous luminosity of
7.5×1034 cm−2s−1 about 3000 fb−1 are expected to be collected over a period of about ten years.
Collisions at 14 TeV will be recorded with up to µ = 200 proton-proton interactions per bunch
crossing.

In order to cope with a threefold increase of µ with respect to Run 2 and to enable efficient
pileup mitigation, all detector subsystems must be upgraded or replaced. The planned upgrade is
described in the Letter of Intent [6], where various layout options are considered, and summarised
in the Scoping Document [7] (2015), where the final layout was chosen based on desirable physics
capabilities. In the trigger and data acquisition system a two-level hardware trigger with L0 output
rate up to 1 MHz and L1 up to 400 kHz is foreseen together with a High-Level Trigger with 10
kHz output (permanently recorded data). “Custom hardware” triggers will enable data streaming at
rates 1-40 MHz. The inner tracker itself will be replaced with a new, all-silicon detector. Its pseu-
dorapidity coverage will be increased from the current |η | ≤ 2.4 to |η | ≤ 4 by the addition of four
pixel discs in the forward region. Since calorimeter cell noise (electronic and pileup) increases with
pseudorapidity |η |, detector improvements in the forward regions are necessary. The Liquid Argon
(LAr) forward electromagnetic calorimeter will be replaced by a higher granularity detector (sF-
cal). Additionally, a High Granularity Timing Detector will be installed in front of LAr end-caps,
in the pseudorapidity region 2.4 ≤ |η | ≤ 4.3. Readout electronics of LAr and Tile Calorimeters
will be replaced due to forseen radiation damage in Run 3. For the muon system addition of new
Resistive Plate Chambers (RPCs) in the barrel is expected.

In these proceedings I will compare physics prospects for the HL-LHC with prospects for 300
fb−1 integrated luminosity expected at Run 3. Section 2 will decribe the procedure of extracting the
SM Higgs coupling strengths mentioning assumptions behind different fits. I will point out the role
of theoretical uncertainties in improving the precision on coupling extraction. In section 3 searches
for signs of BSM physics in Higgs couplings will be outlined. In section 4 I will discuss prospects
for observing Higgs pair production and measuring Higgs trilinear self-coupling. An example of a
search for supersymmetric particles will be discussed in section 5.

The physics studies described in these proceedings have been performed in the period 2014-
2015, hence not all improvements of the upgraded detector were taken into account in every analy-
sis. Furthermore, some analyses assume earlier estimates on instantenuous luminosity and µ = 140.
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2. Measurement of SM Higgs couplings

The HL-LHC provides an opportunity to test the Standard Model with precise measurements
of the Higgs boson properties. ATLAS analysed the following channels: h→ µµ , h→ ττ , h→ ZZ,
h→WW , h→ γγ (0/1/2 jet categories, inclusive), h→ Zγ , V h, tt̄h→ γγ , V h→ bb̄ [8]. The preci-
sion for each of the Higgs boson production and decay categories (∆µ/µ) is presented in the left
panel in Fig. 1. Green bars correspond to 300 fb−1 and dark blue bars correspond to 3000 fb−1. The
highest precision of∼ 5% can be reached with 3000 fb−1 in di-boson final states. An experimental
precision of ∼ 4% is reachable for the dominanant producion mode, the gluon fusion. The largest
gains in precision between 300 and 3000 fb−1 is observed in rare channels: production associated
with vector bosons and associated with tt̄ because these channels are statistically dominated.

The measurements of signal strengths are interpreted as the SM LO Higgs couplings to bosons
and fermions. Assuming the decay width of the Higgs boson to be zero, the coupling strengths in its
production and decay can be factorised. Deviations from the SM Higgs production cross-sections
σ and its branching ratios B are denoted as κi and κ j in the following way:

σ(ii→ h)B(h→ j j)
σSM(ii→ h)B(h→ j j)SM

=
κ2

i κ2
j

κ2
h

, (2.1)

where κh denotes the scaling of the SM Higgs width Γh. All κi parameters correspond to LO
degrees of freedom.

There are large uncertainties related to: Γh, assumptions on Higgs branching ratios to invisible
particles and other model-dependent theoretical and experimental assumptions that enter in the
coupling fit. To avoid them some parametrisations use ratios λi j =

κi
κ j

. The expected precision on
these ratios are shown in the right panel in Fig. 1.

In the minimal coupling fit it is assumed that all Higgs couplings to bosons, κV , and fermions,
κ f , are identical. In this model the expected experimental precision with 300 fb−1 can reach∼2.5%
on κV and ∼7.1 % on κ f . Including current theory uncertainties the total uncertainties of ∼4.3%
and ∼8.8% are expected. The largest reduction of uncertainties with the increased luminosity is
expected for κ f , where an experimental precision of ∼3.2% can be reached (∼5.1% including
current theory uncertainties) compared to κV ∼1.7% (∼3.3% including theory uncertainties).

3. BSM Physics in Higgs couplings

With the estimated precision of measuring Higgs couplings at 300 and 3000 fb−1 constraints
on theories that extend the Standard Model are investigated [9]: an additional electroweak singlet,
an additional electroweak doublet (i.e. the two-Higgs-doublet model), a composite Higgs boson,
a simplified Supersymmetric Standard Model (MSSM), and a Higgs portal to dark matter. I will
highlight one of these results here: tests of models predicting Higgs compositeness.

If the Higgs is not an elementary particle but a composite pseudo-Goldstone boson its cou-
plings to bosons and fermions will deviate from the SM predictions. These deviations can be
parametrised in terms of a Higgs compositeness scale F and Higgs vacuum expectation value v:
ξ = v2/F2. In the SM ξ is zero as F → ∞. Simple models predicting a composite Higgs boson
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Figure 1: The uncertainties of the Higgs signal strengths in different categories (left) and couplings ratios
λi j (right). Figures taken from [8].

Model 300 fb−1 3000 fb−1

All unc. No theor. unc. All unc. No theor. unc.
MCHM4 620 810 710 980
MCHM5 780 950 1000 1200

Table 1: Expected 95% CL lower limits on Higgs compositeness scale F in GeV. Table taken from [9].

include MCHM4 and MCHM5 [10]. In MCHM4 the ratios of the Higgs boson couplings to bosons
and fermions to their SM expectations are equal and can be parametrised by

κV = κ f =
√

1−ξ . (3.1)

MCHM5 predicts

κV =
√

1−ξ , κ f =
1−2ξ√

1−ξ
(3.2)

A comparison of exclusion powers for these models, assuming the SM Higgs boson, for the
Run 3 and HL-LHC data is presented in Table 1.

4. Higgs Pair Production

A direct insight into the mechanism of electroweak symmetry breaking could be gained by the
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measurement of Higgs potential V . In the Standard Model after electroweak symmetry breaking

V =
m2

h
2

h2 +λhhhh3 +
λ 4

hhhh
4

h4. (4.1)

The Higgs boson acquires triple and quartic self-couplings, fully determined by the Higgs mass mh

and vacuum expectation value v: λhhh = m2
h/(2v) and λhhhh = m2

h/(2v2). Any deviations from these
values will indicate that electroweak symmetry breaking is triggered by a more complex physical
mechanism than that of Ref. [4].

The direct measurement of Higgs trilinear (quartic) coupling involves the observation of two
(three) Higgs bosons in the final state. The cross-section of di-Higgs production in the dominant
gluon-gluon fusion production mode is small σNNLO+NNLL = 39.56 fb [11] The tri-Higgs produc-
tion cross-section yields only σNLOFTapprox = 0.09 fb [12]. Therefore di-Higgs production will
probably be observed for the first time at the HL-LHC, while tri-Higgs production is beyond its
reach. ATLAS has performed two searches for the SM Higgs pair production: in the bb̄γγ [13],
bb̄ττ [14] channels.

The bb̄γγ channel benefits from good mass resolution of the Higgs decaying to two photons
and from relatively small backgrounds. The challenge of this analysis lies in small signal yields: at
the HL-LHC about 300 events are expected. In addition to irreducible backgrounds – continuum
bb̄γγ , single Higgs: tt̄H(→ γγ), Z(→ bb̄)H(→ γγ) and bb̄H(→ γγ) – the signal is accompanied
by reducible backgrounds from light-flavour jets misidentified as b-jets and electrons misidentified
as photons. This analysis assumes µ = 140 and estimates the upgraded ATLAS performance for
measuring the η and pT of jets and photons with the use of the η/pT -dependent efficiency and
resolution functions. The transverse momenta of the jets are smeared by 10-25%. The performance
of b-tagging for these jets is simulated by applying an efficiency function, corresponding to a mean
efficiency of 70%. To account for radiation of partons outside the jet cone and semi-leptonic b-
hadron decays a correction of jet energy is applied. The identification of photons is modelled with
a plateau efficiency equal to 76% for photons with transverse momenta larger than 80 GeV. The
rates of jets being misreconstructed as photons, light-flavour jets as b-jets and c-jets as b-jets are
assumed to be equal to 0.25%, 1%, and 30%, respectively. In the event selection two energetic,
isolated photons and two b-jets are required. The invariant mass of two photons (two b-jets) must
fulfill the requirement 123 GeV < mγγ < 128 GeV (100 GeV< mbb̄ < 150 GeV) and transverse
momenta pγγ

T , pbb̄
T > 110 GeV. The effect of systematic uncertainties is neglected in this analysis.

The expected limits set on the value of the Higgs trilinear coupling λ (assuming no other sources
of new physics) are λ/λSM ∈ [−1.3,8,7] at 95% C.L..

The bb̄ττ channel has the third largest di-Higgs branching ratio of ∼7.3%. The search in this
channel is performed in three subchannels defined by decay modes of the τ leptons: di-leptonic,
semi-leptonic and hadronic. This analysis assumes µ = 200 and uses a track a confirmation al-
gorithm to suppress pile-up. The dominant backgrounds are the production of tt̄, W + jet, Z+jet,
di-bosons and multijet events. The largest sensitivity is obtained in the hadronic subchannel, re-
sulting in an upper limit on the Higgs pair production cross-section equal to 4.3 times its SM
value at 95% C.L. The corresponding expected exclusion limits on λhhh in all three subchannels are
λ/λSM ∈ [−4,12].
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Higgs pair production can also probe the presence of TeV scale resonances interacting with
the Higgs, such as Kaluza-Klein gravitons. Such a resonant production of a pair of Higgs bosons
decaying to bb̄bb̄ was studied in [7]. The HL-LHC study found a 4.4σ expected significance for
the graviton with a mass of 2 TeV. The largest gain in sensitivity between different inner tracker
layouts considered in the Scoping Document stems from an inproved b-tagging performance.

5. Prospects for discovering supersymmetric electro-weakinos

A possible explanation of the electroweak symmetry breaking explored by ATLAS is through
a supersymmetric extension of the Standard Model. This theory predicts the existence of many new
particles, among them charginos χ̃

±
1 and neutralinos χ̃0

2 , the mass eigenstates from superposition
of the supersymmetric Higgs partners and electroweak gauge bosons. The ATLAS sensitivity to
detecting electro-weakinos in the mass range of several hundreds GeV was studied in a simplified
Wh-mediated model [15, 16], in which χ̃

±
1 and χ̃0

2 are pair-produced and decay to the W boson
and the lightest neutralino χ̃0

1 , Higgs boson and χ̃0
1 , respectively. The studied experimental sig-

nature consists of a lepton, a pair of b-quarks and missing energy due to undetected neutrino and
neutralinos.

In this analysis µ =60 (µ =140) was assumed for Run 3 (HL-LHC). With the 300fb−1 (3000
fb−1) ATLAS is sensitive to electro-weakinos down to 1.1 TeV (800 GeV) mass range. The im-
provement in the HL-LHC phase is driven by increase in b-tagging efficiency due to upgrades in
the inner tracker and calorimeter.

6. Conclusions

Understanding electroweak symmetry breaking requires precise measurements in the Higgs
sector. In order to accomplish this task in the challenging environment of the HL-LHC extensive
studies of physics prospects are carried out to optimise the planned detector upgrades.

Higgs couplings to bosons and fermions can be measured at HL-LHC with uncertainties up
to two times smaller than with 300 fb−1. The largest improvements are expected in rare VH and
ttH production channels. The precision of measurements is limited by theoretical uncertainties of
the gluon fusion production cross-section. These measurements are also interpreted in the context
of BSM models. In the MCHM5 discussed in these proceedings the lower limit on the Higgs
compositeness scale can be set at 1 TeV with 3000 fb−1, compared to 780 GeV with 300 fb−1.

The direct probe of the Higgs potential – di-Higgs production – could be observed for the first
time at the HL-LHC even in the rare bb̄γγ channel. In the final states with bb̄γγ and bb̄ττ the O(1)
limits can be set on Higgs trilinear coupling λhhh.

The discovery potential of direct searches for New Physics interacting with the Higgs will
be extended. Sensitivity to Kaluza-Klein gravitons reaches up to 2 TeV. ATLAS is sensitivie to
electro-weakinos in the 800 GeV mass range. For all analyses theory improvements are crucial in
obtaining higher precision.
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