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Studying photon structure at an EIC
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A future Electron-Ion Collider (EIC) will deliver luminosities of 1033− 1034 cm−2s−1 for col-
lisions of polarized electrons and protons and heavy ions over a wide range of center-of-mass
energies (40 GeV to 145 GeV). One of its promising physics programs is to study the partonic
structure of quasi-real photons. Measuring di-jets in photoproduction events, one can effectively
access the underlying parton dynamics of the photons through the selection of the resolved pho-
ton processes. In this paper, we discuss the feasibility of tagging resolved photon processes and
measuring the di-jet cross section as a function of jet transverse momentum in ranges of xrec

γ at an
EIC. These studies show that parton distributions in the photon can be extracted at an EIC.
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1. Introduction

The studies of hadronic photon structure have a long history since Witten’s theoretical work
in 1977 [1]. On the experimental side, in the past decades we have seen large progress due to the
data from HERA, where high energy electrons were collided with protons. The Parton Distribution
Functions (PDFs) of the unpolarized photon can be extracted by tagging high transverse energy
(Et) jets [2, 3], high-pT charged particles [4] or heavy quarks in photoproduction reactions at
HERA, although these measurements have relatively large uncertainties. The future EIC, which
will deliver luminosities of 1033−1034 cm−2s−1 for polarized electron and proton collisions [5, 6],
is an excellent tool to study the partonic photon structure with high precision. More importantly,
one can access the unknown polarized photon PDFs.

In ep collisions, the interaction of electrons and protons at low virtuality is dominated by
photoproduction processes with electrons scattering at small angles. Such reactions proceed via
two classes of processes. The first one is a direct process (for example the photon-gluon fusion
process in Fig. 1a), in which the photon couples directly to a parton from the proton with the entire
energy of the photon going into the hard scattering. The second one is a resolved process (Fig. 1b),
the photon manifests a hadronic structure because of quantum fluctuations, then partons from the
photon and proton interact via the strong interaction. These resolved events allow for the study of
the partonic structure of the photon.
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Figure 1: Examples of diagrams for direct (a) and resolved (b) processes in electron-proton scattering.

These proceedings are organized as follows: In Sec. 2, we present a method of reconstructing
xγ . The Monte Carlo simulations at a future EIC of the di-jet cross section is validated by the
data collected with H1 detector at HERA in Sec. 3. Then we will briefly discuss the method of
distinguishing resolved and direct processes, and the extraction of photon PDFs at EIC. Finally we
close with a summary.

2. Method of reconstructing xγ

Predictions for the di-jet cross section are usually obtained in leading order quantum chromo-
dynamics (LO QCD) by convoluting the parton densities in the photon and those in the proton with
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the short-distance partonic cross section. As the parton densities in the proton are well known, a
measurement of the di-jet cross section can be used to extract information on the parton densities
of the photon [7, 8]. In order to extract the photon structure information through di-jet production,
first we need to select resolved processes. The best variable to separate the two types of processes
is xγ , which represents the momentum fraction of the parton in the photon. Since in the direct
processes the photon interacts with a parton from the proton as a structureless particle, xγ of direct
processes is equal to 1 at LO. Whereas in the resolved processes, the photon behaves like a source
of partons, with only a fraction of its momentum participating in the hard scattering, therefore,
the corresponding xγ should be smaller than 1. The variable xγ can be reconstructed knowing the
momentum and angles of di-jet as,

xrec
γ =

1
2Eey

(pT,1e−η1 + pT,2e−η2), (2.1)

where Ee is the electron energy and y is the energy fraction taken by the photon from the electron
(y = Eγ

Ee
). Eq. (2.1) is valid in the lab frame.

3. Verification of Simulation with HERA data
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Figure 2: Comparison of the di-jet cross section from PYTHIA simulation with the selected HERA data.
We used the same kinematic cuts as the data in the simulation.

The di-jet cross section measured by H1 at HERA [7] is shown in Fig. 2 as a function of the
squared jet transverse energy E jets

T in ranges of reconstructed xγ . Here we use E jets
T to represent the

average transverse energy of trigger jet and associated jet, E jets
T is required to be above E jets

T = 10
GeV. The ratio of the difference and the sum of the transverse energies of the jets is required to

be in the range of |E
jet1
T −E jet2

T |
(E jet1

T +E jet2
T )

< 0.25. The fractional photon energy is between 0.2 < y < 0.83.

The average of pseudo-rapidity of the two jets is restricted between 0 < η jet1+η jet2

2 < 2, and the
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difference of the jet pseudo-rapidities is required to be within |∆η jets|< 1. The simulation results
are obtained with 27 GeV electrons colliding on protons of 820 GeV, and the comparison shows
the simulation reproduces the measured data reasonably well.

4. Photon structure at EIC

In this study, jets are reconstructed with the anti-kT algorithm [9], which is parametrised by
the power of the energy scale in the distance measure. All the stable and visible particles produced
in the collision with pT > 250 MeV/c and −4.5 < η < 4.5 in the laboratory system are taken as
input. The resolution parameter, R, is set to 1. This simulation for EIC is obtained colliding 20 GeV
electrons with 250 GeV protons. Jets with the highest pT are called the trigger jet, then we selected
the jet with second highest pT to be the associate jet. Events are selected with the requirement
that the trigger jet has p jet

T > 5 GeV and the associated jet has p jet
T > 4.5 GeV. The PYTHIA

6.4 event generator [10] for electron-proton interactions is used. The photoproduction events are
selected by requiring the four-momentum of the photon of Q2 < 1 GeV2. The inelasticity cut is
0.01 < y < 0.95. The event kinematic variables Q2 and y are obtained directly from PYTHIA
simulations without applying the event kinematics reconstruction method.

We reconstruct xγ with di-jet events. The strong correlation between the reconstructed xγ and
the input xγ from PYTHIA is shown in Fig. 3(a), and it indicates the di-jet observable is ideal
for this measuremet. The xrec

γ distribution is shown in Fig. 3(b). The resolved (direct) process
dominates at low (high) xrec

γ regime, which provides a good way of separating the two types of
processes. For example, by selecting events with xrec

γ < 0.6 or > 0.6, one can divide the di-jet
events into subsamples in which the resolved and direct processes dominate.
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Figure 3: (a) Correlation between xinput
γ and xrec

γ , (b) xrec
γ distributions in resolved (blank) and direct (shaded)

processes.

The double differential di-jet cross section in photoproduction can be measured with high
accuracy in a wide kinematics range of fractional energy xrec

γ at EIC, see in Fig. 4. In a global fit
photon PDFs can be extracted from the cross section.
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Figure 4: Di-jet cross section depends on transverse momentum of the jets p jets
T and the reconstructed xγ for

an integrated luminosity of 1 f b−1.

5. Summary and outlook

In resolved processes, the photon has a hadronic structure. At an EIC, di-jet produced in direct
and resolved process can be well separated by reconstructing xγ . The reconstructed xrec

γ has a strong
correlation with the input xγ . One can effectively extract the underlying photon PDFs by measuring
di-jet cross section in photoproduction events. If we use polarized beams, polarized photon PDFs
can be extracted, which is a critical input for ILC γγ option.
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