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We study two new types of axion inflation potentials. One is induced by the gaugino condensation
with one-loop threshold corrections. The Dedekind eta function appears in the axion inflation
potential. The other is induced by quantum corrections on the period vector on the Calabi-Yau
manifold. That induces the inflation potential, which is a mixture of polynomial functions and
sinusoidal functions of the axion. That leads to unique behavior. In the latter potential, both the
large-field inflation scenario and the small-field inflation scenario can be realized depending on
potential parameters.
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1. Introduction

There are many moduli in superstring theory on the 6D compact space. Their vacuum expec-
tation values (VEVs) represent the size and shape of the compact space. Thus, moduli provide
us with unique characters of superstring theory on the compact space. Indeed, moduli fields play
an important role in particle phenomenology and cosmology. The gauge couplings and Yukawa
couplings as well as other couplings are determined by VEVs of moduli.

Moduli fields have perturbatively flat potential. In particular, the imaginary parts of moduli,
i.e. axions, have a shift symmetry leading to a flat potential. Thus, axions as well as moduli would
be a good candidate for the inflaton. Non-perturbative effects would break the shift symmetry into
discrete one, and induce the potential of the axion. For example, such effects would generate the
following potential of the axion a,

V =C(1− cos(a/ f )), (1.1)

where f is the decay constant. That is nothing but the potential for the so-called natural inflation
[1]. We need super-Planckian decay constant, f & 5MP, where MP denotes the reduce Planck, in
order to realize sufficient e-fold. Hereafter, we use the unit that MP = 1. Within the framework of
superstring theory, the typical decay constant would be sub-Planckian, f < MP [2]. However, the
super-Planckian decay constant can be obtained effectively by alignment of more than two axions
with sub-Planckian decay constants [3]. Also one-loop effects would be helpful to enlarge the
decay constant [4, 5].

Another type of the axion inflation potential is as follows,

V =Car, (1.2)

with r = 2,1,2/3, etc. This potential is derived within the axion monodromy inflation [6],1 where
the value r depends on the setup of D-branes and fluxes.

Here, we discuss the possibilities for other types of axion inflation potentials. We study two
new types of the axion inflation potentials. One type of axion potentials is generated through
the gaugino condensation in the hidden sector. We consider the scenario that our inflaton-axion
does not appear in the gauge kinetic function at tree level, but it appears in one-loop threshold
corrections on the gauge kinetic function, which is written by the Dedekind eta function. Thus, the
Dedekind eta function of the inflaton-axion appears in the inflation potential [5]. The other type of
the axion potential is induced by quantum corrections on period vectors of Calabi-Yau manifolds
[8], while the corresponding axion is massless at tree level. Such quantum corrections lead to a
very unique axion potential, and its resultant potential form is a kind of mixture of polynomial
functions and sinusoidal functions of the axion. Both of the potential forms look novel, and would
lead to interesting aspects.

This paper is organized as follows. In section 2, we study the axion potential generated through
the hidden-sector gaugino condensation with one-loop threshold corrections. The Dedekind eta
function of the inflaton-axion appears in the inflation potential. In section 3, we study the axion
potential, which is induced by quantum corrections on the period vectors of Calabi-Yau manifolds.

1See also [7].

2



P
o
S
(
D
S
U
2
0
1
5
)
0
1
0

New string axion inflation Tatsuo Kobayashi

In our model, there is an axion, which is massless at the tree-level, but quantum corrections generate
its potential, which is a kind of mixture of polynomial functions and sinusoidal functions of the
axion. In section 4, we give a comment on reheating process after inflation. In our scenario, the
inflaton does not appear in the gauge kinetic function at tree-level, but may appear in one-loop
gauge kinetic function and/or Yukawa couplings. That may lead rather low reheating temperature.
Section 5 is conclusion and discussion.

2. Threshold corrections

In superstring theory, non-perturbative effects such as D-brane instanton effects and gaugino
condensation in the hidden sector would induce the following form of superpotential of the modu-
lus, T = t + ia:

W = Ae−cT + · · · . (2.1)

Then, this superpotential would lead to the scalar potential of the axion a,

V = (1− cos(a/ f ))+ · · · , (2.2)

where f = 1/c. This is nothing but the potential for the natural inflation.
One of possible non-perturbative effects to generate the above superpotential term is the gaug-

ino condensation by strong coupling dynamics in the hidden sector. We assume that this hidden
sector is pure supersymmetric Yang-Mills theory without matter fields, that is, the theory with the
gaugino fields and gauge bosons. Suppose that the gauge kinetic function of this hidden sector is
written by

fhidden = T. (2.3)

That is, the gauge coupling g is written by 1/g2 = Re(T ). This hidden sector is asymptotically free
and gaugino fields would condensate at the dynamical scale Λd . The dynamical scale is evaluated
as Λd = MPe−8π2/bg2

, where b denotes the one-loop beta function coefficient of the hidden gauge
sector. For example, we obtain b = 3N for the SU(N) pure supersymmetric Yang-Mills theory.
Then, non-perturbative superpotential term (2.1) of the modulus T would appear,

W = Ae−8π2T/N , (2.4)

where A∼M3
P. In this case, we obtain the decay constant,

f =
1
c
=

N
8π2 . (2.5)

We would need a large gauge group, e.g. N = O(100) in order to realize f ∼ 5Mp.
In general, the gauge kinetic function has one-loop corrections, where another modulus M

appears,

fhidden = T +
∆(M)

16π2 . (2.6)

Again, the gaugino condensation would induce non-pertrubative superpotential of M. In this case,
the axion of M could have larger decay constant, because the inverse of the loop factor 16π2

enlarges the decay constant [4, 5] .
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Indeed, one-loop threshold corrections were calculated in several string models. For example,
in heterotic string theory on orbifolds, the gauge kinetic function at one-loop level is obtained by
[9]

fhidden = S+
∆

16π2 , ∆ = 4bN=2 lnη(T ), (2.7)

where S and T are the dilaton and Kähler modulus, bN=2 denotes one-loop beta function coefficient
due to the N = 2 sector, and η(T ) is the Dedekind eta function,

η(T ) = e−πT/12
∏
m
(1− e−2πmT ). (2.8)

In addition to the Kähler modulus, the complex moduli may also appear in threshold corrections ∆

of certain models.
Similarly, in type IIA intersecting D-brane models, the gauge kinetic function is otained by

[10],

fhidden = aS+ cU +
∆

16π2 , ∆ = 4bN=2 lnη(T ), (2.9)

where a and c are some constants determined by D-brane configuration, and U denotes the complex
structure modulus. Their T-dual corresponds to the type IIB D-brane models, where the gauge
kinetic function would be written by

fhidden = aS+ cT +
∆

16π2 , ∆ = 4bN=2 lnη(U). (2.10)

Similarly, other types of string models would also have one-loop corrections in the gauge kinetic
functions.

Now, let us study the type IIB theory for concreteness. We consider the hidden sector with the
above gauge kinetic function (2.10). Then, the gaugino condensation in the hidden sector would
induce non-perturbative superpotential,

W = w0 +A(S,T )η(U)−3bN=2/bπ , (2.11)

where w0 is constant and A(S,T ) is a function of S and T . We assume that all of moduli except
a = Im(U) are stabilized. Thus, by substituting the superpotential into the scalar potential,

V = eK(|DUW |2−3|W |2), (2.12)

where K = − ln(U +Ū) and DUW = KUW +WU , we derive a new type of scalar potential of the
axion, which is obtained through the Dedekind eta function. Also, in order to realize slightly pos-
itive vacuum energy, we must add the uplifting term by explicit supersymmetry (SUSY) breaking
effects [11] or spontaneous F-term SUSY breaking effects [12, 13].

When Re(U) is large, the Dedekind eta function can be approximated by

η(U)∼ e−πU/12. (2.13)
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In such a case, our potential reduces the potential for the natural inflation (1.1) with the decay
constant,

f =
6Re(U)N

bN=2π
, (2.14)

for the SU(N) hidden gauge group. In this model, we can realize a large decay constant such as
f & 5Mp for smaller hidden gauge group because the inverse of the loop factor, 16π2, enlarges the
decay constant. For example, when Re(U) = 1.3, bN=2 = 1 and N = 4, we realize f ∼ 10, and we
obtain the observables,

Ne = 50, ns = 0.96, r = 0.11, αS =−10−3, (2.15)

where Ne is e-fold number, ns is the spectral index, r is the tensor-to-scalar ratio, and αS is running
of the spectral index.

For smaller value of Re(U), more corrctions in the Dedekind eta function become important,
i.e.

η(U) = e
πU/12(1− e−2πU)+ · · · . (2.16)

That would lead to the scalar potential,

V = Λ(1− cos(ca))+Λ2cos(c2a)+ · · · , (2.17)

with c = bN=2π/6Re(U)N for the hidden SU(N). The second term is modulation and their coeffi-
cients are related with ones in the first terms as

Λ2 = Λ
2bN=2

N
e−(c+2π/Re(U)), (2.18)

c2 =
2π + c
Re(U)

. (2.19)

The potential itself is not significantly different between with and without the correction term,
but its derivatives drastically change by the correction term. Hence, the modulation term is quite
important and observables change depending on the potential parameters. See for detail of numer-
ical analysis Ref. [5].

Also, in Ref. [15], another inflation potential including the Dedekind eta function and its
derivative was studied. In the model, the modular invariance is required and quite different as-
pects appear. (See in detail Ref. [15].)

3. Quantum corrected period vector

Here, we study another new type of axion inflation potential. In type IIB superstring theory,
non-vanshing three-form fluxes induce a superpotential term for complex structure moduli and
dilaton [14],

WGVW =
∫
(F3− iSH3)∧Ω(U),

= ∑
α

(NF − iSNF)
α

Πα(U), (3.1)
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where F3 and H3 are Ramond-Ramond and Neveu-Schwarz three-form fluxes, respectively, and
Ω(U) denotes the holomorphic three form of the Calabi-Yau manifold. Here, NF and HF are
integer and correspond to F3 and H3, and α runs from 1 to 2h1,2 + 2, where h1,2 is the number
of complex structure moduli, i.e., the hodge number of the Calabi-Yau manifold. In addition, Πα

denotes the period vector, which is polynomial functions of U at tree level. Some or all of complex
structure moduli and dilaton can be stabilized through this superpotential by introducing proper
three-form fluxes.

Quantum corrections on the period vector were computed [16] (see also [17, 18]). The period
vector,

Πα =


1

U i

2F−U i∂iF
∂iF

 , (3.2)

is written by the prepotential F , and the quantum corrected prepotential is obtained as

F = − 1
3!

κi jkU iU jUk− 1
2

κi jU iU j +κiU i +
1
2

κ0

− 1
(2πi)3 ∑

β

nβ Li3(e2πidiU i
), (3.3)

where Li3(z) is the polylogarithm function, i.e.

Lis(z) = ∑
n=1

zn

ns , (3.4)

and nβ is the genus zero Gromov-Witten invariants (world-sheet instanton) labeled by β = diβi

with di and βi being the integer and the elements in cohomology of the mirror Calabi-Yau monifold
M̃CY. The parameters, κi jk, κi j, κi and κ0 are given by

κi jk =
∫

M̃CY

Ji∧ Ji∧ Jk, κi j =−
1
2

∫
M̃CY

Ji∧ Ji∧ Ji, (3.5)

κi =
1

43!

∫
c2(M̃CY)∧ Ji, κ0 =

ζ (3)
(2πi)3 χ(M̃CY), (3.6)

where ζ (3)' 1.2 and χ(M̃CY) denotes the Euler character. The Kähler potential K for the complex
structure moduli is also written by use of the the period vector and prepotential,

e−K(U,Ū) = iΠ† ·Σ ·Π = (2(F− F̄)− (U iŪ i)(Fi + F̄i)), (3.7)

where Σ is the symplectic matrix,

Σ =

(
0 1
−1 0

)
. (3.8)
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More explicitly, the Kähler potential is written by

e−K(U,Ū) = f0(U,Ū)

+
2

(2π)2 ∑
β

∞

∑
n=1

dinβ (U
i +Ū i)

1
n2 cos

(
−iπn∑

j
d j(U i−Ū j)

)
e−πn∑k dk(Uk+Ūk)

+
4

(2π)3 ∑
β

∞

∑
n=1

nβ

1
n3 cos

(
−iπn∑

j
d j(U i−Ū j)

)
e−πn∑k dk(Uk+Ūk), (3.9)

with

f0(U,Ū) =
1
6 ∑

i jk
κi jk(U i +Ū i)(U j +Ū j)(Uk +Ūk)− ζ (3)

4π3 χ(M̃CY). (3.10)

Here and hereafter we write U i as iU i.
Now, we introduce the three-form fluxes such that two complex structure moduli, U1 and U2

appear in the superpotential as

W (S,U) = g0(z)+g1(z)(U2 +NU1), (3.11)

at tree level, where z denote the other complex structure moduli and the dilaton. Their Kähler
potential is also written

K =− ln [ f0(Re(z),Re(U1),Re(U2))] . (3.12)

at tree level. Then, this superpotential and Kähler potential include only the linear combination of
the imaginary parts, Im(U2)+NIm(U1). Thus, one axionic mode remains massless at this level.
Following Ref. [19], we redefine the field basis,

Ψ = U2 +NU1,

Φ = U2. (3.13)

Their Kähler potential and superpotential are written by

K = − ln [ f0(Re(z),Re(Ψ−Φ)/N,Re(Φ))] ,

W = g0(z)+g1(z)Ψ. (3.14)

The complex modulus Ψ can be stabilized at DΨW = 0. Also Re(Φ) can be stabilized at KΦ = 0
with non-vanishing superpotential VEV. However, the axionic mode Im(Φ) does not appear in the
Kähler potential and the superpotential, and it remains masslees at this level.

Now, let us study the quantum corrections, which include the following corrections on the
Kähler potential and the superpotential,

∆K ' − 1
〈 f0〉

2

∑
i=1

f (i)1

(
2
π
+Ui +Ūi

)
cos(−iπ(Ui−Ūi))e−π(Ui+Ūi),

∆W '
2

∑
i=1

(g(i)2 +g(i)3 Ui)e−2πUi , (3.15)
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where f (i)1 and g(i)2,3 depend on VEVs of heavy moduli. We omit the exponential term for U2 under
the condition,

e−2π〈Re(U2)〉� e−2π〈Re(U1)〉� 1. (3.16)

Then, the Kähler potential and the superpotential reduce to

∆K ' −
f (1)1
〈 f0〉

(
2
π
+

Ψ+ Ψ̄−Φ− Φ̄

N

)
cos
(
−iπ

Ψ− Ψ̄−Φ+ Φ̄

N
)

)
e−π

Ψ+Ψ̄−Φ−Φ̄

N ,

∆W ' (g(1)2 +
g(1)3
N

(Ψ−Φ))e−2π
Ψ−Φ

N , (3.17)

on the field basis (Ψ,Φ). Obviously, these correction terms include Im(Φ), and its axion potential
is induced at quantum level.

We have assumed that the heavy complex moduli and the dilation are stabilized at the SUSY
minimum. In addition, here we assume that the Kähler moduli are stabilized in the Kachru-Kallosh-
Linde-Trivedi (KKLT) scenario [11] or the large volume scenario [20], their masses are sufficiently
heavier than the light axion, Im(Φ), and the stabilization mechanism of the Kähler modluli is
independent of the light axion.

In the KKLT scenario, we can derive the following axion potential,

V ' Λ1

(
1− cos

φ

M1

)
+λ2φ sin

φ

M1
, (3.18)

in the limit 〈Re(U1)〉 � 1, where φ = k1(〈Im(Ψ)− Im(Φ)) with k1 being the normalization factor
of O(〈Re(U2)〉). (See for derivation of the potential Ref. [8].) Here, we obtain Λ1 ∼ Λ2 and
M1 = NK1/2π . Thus, we can realize a large decay constant for larger flux N. The first term is the
term for the natural inflation. Thus, this potential looks slightly similar to the natural inflation with
a small modulation. However, the second term is not small correction in our model. At any rate,
this is a new type of the inflation potential, which is derived from superstring theory. Note that we
set a generic flux configuration, while the limited flux configuration was set in Ref. [19] to realize
the simple natural inflation with a large decay constant.

Also, in the KKLT scenario, we can derive the following axion potential,

V ' Λ3φ
2. (3.19)

This potential is nothing but the quadratic chaotic inflation potential, which is disfavored by the
recent result of Planck [21],

Pξ = 2.20±0.10×10−9,

ms = 0.9655±0.0062, (3.20)

r < 0.11.

On the other hand, in the large volume scenario, we can derive the following axion potential,

V ' Λ4φ
2 +Λ5

(
1− cos

φ

M3

)
+λ6φ sin

φ

M3
, (3.21)
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where Λ4 ∼ Λ5 ∼ Λ6 and M3 = NK3/2π , and φ = k3(〈Im(Ψ)− Im(Φ)) with k3 being the normal-
ization factor of O(〈Re(U2)〉). (See for derivation of the potential Ref. [8].) In a certain parameter
region, we obtian a hierarchy such as Λ5,6� Λ4. Again, this is a new type of the axion inflation
potential, which is derived from superstring theory.

Finally, we show some examples of numerical analysis. Table 1 shows the observables in the
axion inflation potential (3.18) with some parameters. All of these values are consistent with the
Planck data. This axion inflation corresponds to the large-field inflation scenario.

M1 Λ2/Λ1 Ne ns r dns/d lnk
8 5 50 0.960 0.040 -0.0005
8 5 60 0.964 0.030 -0.0003
10 5 50 0.964 0.055 -0.0006
10 5 60 0.969 0.041 -0.0004
12 5 50 0.966 0.063 -0.0006
12 5 60 0.971 0.049 -0.0004
15 5 50 0.968 0.070 -0.0006
15 5 60 0.973 0.056 -0.0004

Table 1: Observables in the axion potential (3.18).

Similarly, Table 2 shows the observables in the axion inflation potential (3.21) with some
parameters. All of these values are consistent with the Planck data. Most of these parameters
correspond to the large-field inflation scenario. However, the fourth and fifth examples lead to
r < 0.01, and these correspond to the small-field inflation scenario. In these cases, there appear
plateaus in the inflation potential. Thus, when the initial values of the inflaton starts around such
a flat plateau, the tensor-to-scalar ratio is small and the movement in the field space during the
inflation is rather small. We do not fine-tune the parameters to realize the small-field inflation. If
we fine-tune the parameters, we could realize smaller r. At any rate, it is quite interesting that one
inflation potential can lead to both the large-field inflation scenario and the small-field inflation
scenario depending on parameter values. We would study its detail in further work.

M1 Λ4/Λ6 Λ5/Λ6 Ne ns r dns/d lnk
5 1 5 60 0.969 0.050 -0.0007
5 1 5 55 0.965 0.060 -0.0008
5 1 5 50 0.962 0.070 -0.0009
3 1 5 60 0.970 0.0008 -0.0009
3 1 5 55 0.964 0.0097 -0.0009
3 1 5 50 0.956 0.012 -0.0009
5 1/5 1 60 0.968 0.050 -0.0007
5 1/5 1 55 0.965 0.060 -0.0008

Table 2: Observables in the axion potential (3.21).
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4. Comment on reheating

In the inflation model of section 2, the axion field appears not in tree-level gauge kinetic
function, but in one-loop one. Also, in the inflation model of section 3, the inflaton is the axion of
the complex structure moduli, which would appear not in the tree-level gauge kinetic function, but
in the one-loop gauge kinetic function. Thus, the inflaton fields in these models have suppressed
couplings with the gauge sector, and would have a characteristic feature in thermal history after
inflation. Here, we give a brief comment on reheating.

As mentioned above, the inflaton field in our models appears through the moduli-dependent
one-loop corrections,

− 1
4g2

a
Fa

µνFaµν − 1
4

∆(Φ)

16π2 Fa
µνFaµν , (4.1)

where a = 1,2,3 correspond to the gauge groups of the standard model, U(1)Y , SU(2) and SU(3),
respectively. Through these couplings, the inflaton decays into the gauge bosons g(a), and its decay
width is estimated as

Γφ =
3

∑
a=1

Γ(φ → g(a)+g(a))

=
3

∑
a=1

Na
G

128π

(
∂φ (∆(Φ))g2

a

16π2d

)2 m3
φ

M2
P
, (4.2)

' 5.8×10−5
( mφ

1013GeV

)3
GeV,

where ∑
3
a=1 Na

G = 12, d = O(
√

KΦΦ̄) = O(1), g2
a ' 0.53, and mφ denotes the inflation mass. Now,

we assume that ∆(Φ) = Φ. Then, when the above decay is dominant to the total decay width of
the inflaton decay, the reheating temperature is estimated by Γφ ' H(TR). That is, the reheating
temperature is evaluated by

TR =

(
π2g∗
90

)−1/4√
Γφ MP

' 6.4×106
( mφ

1013GeV

)3/2
GeV, (4.3)

where g∗ = 106.75 is the effective degrees of freedom of the radiation at the reheating in the
standard model. The reheating temperature would be rather low.

In type IIB superstring theory, the complex moduli would appear in Yukawa couplings and
other couplings with matter fields in the superpotential. (See for concrete computations, e.g. [22].)
Then, the inflaton could decay into matter fields through such couplings. When such decays are
dominatn, a similar computation leads to the following reheating temperature,

TR ' 8.8×107(∂ΦYi jk)
( mφ

1013GeV

)3/2
GeV, (4.4)

where ∂ΦYi jk denotes the first derivative of moduli-dependent Yukawa couplings Yi jk. The estimated
reheating temperature may also be rather low, although it depends on ∂ΦYi jk.
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5. Conclusion

We have studied two new types of the axion inflation potentials. One is induced by the hidden
sector gaugino condensation with one-loop threshold corrections. The threshold correction is given
by the Dedekind eta function and the axion appears in the inflation potential through the Dedekind
eta function. When the real part VEV of the inflaton modulus is large, this potential reduces to
the potential for the natural inflation. However, when the real part VEV becomes smaller, the
modulation becomes important. The inverse of the one-loop factor, 16π2, is helpful to enlarge the
decay constant.

The other type is induced by quantum corrected period vector. The axion potential is com-
pletely flat at tree level. However, the quantum corrections induce non-trivial potential for the
axion, and its form is a mixture of polynomial functions and sinusoidal functions. In some param-
eter region, that leads to the large-field inflation scenario, but other region leads to the small-field
inflation scenario. Although we showed some examples of the small-field inflation scenario with-
out fine-tuning, we can realize much smaller tensor-to-scalar ratio by fine-tuning. At any rate, it
is quite interesting that one inflation model can lead to both the large-field inflation scenario and
the small-field inflation scenario depending on parameter values. We would study more detail in
further work [23].

The inflaton in our models would couple with the gauge bosons through one-loop corrections
and/or with matter fields through Yukawa couplings. Then, we can estimate the inflation decay.
The reheating temperature may be rather low because those couplings are suppressed.
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