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In the context of the Higgs model involving gauge and Yukawa interactions with the spontaneous
gauge symmetry breaking, we consider λφ 4 inflation with non-minimal gravitational coupling,
where the Higgs field is identified as inflaton. Since the inflaton quartic coupling is very small,
once quantum corrections through the gauge and Yukawa interactions are taken into account, the
inflaton effective potential most likely becomes unstable. In order to avoid this problem, we need
to impose stability conditions on the effective inflaton potential, which lead to not only non-trivial
relations amongst the particle mass spectrum of the model, but also correlations between the infla-
tionary predictions and the mass spectrum. For concrete discussion, we investigate the minimal
B− L extension of the Standard Model with identification of the B− L Higgs field as inflaton.
The stability conditions for the inflaton effective potential fix the mass ratio amongst the B−L

gauge boson, the right-handed neutrinos and the inflaton. This mass ratio also correlates with
the inflationary predictions. In other words, if the B−L gauge boson and the right-handed neu-
trinos are discovered in future, their observed mass ratio provides constraints on the inflationary
predictions.
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1. Introduction

Current understanding of the cosmic origin and the evolution is tha our universe went through
a period of rapid accelerated expansion at the beginning, known as inflation. Inflation [2, 3, 4, 5]
solves many serious problems of the Standard Big-Bang Cosmology, such as the horizon, flatness
and monopole problems. More importantly, the primordial density fluctuation generated during
inflation can seed the formation of large scale structure we see today. In a simple inflationary
scenario known as slow-roll inflation, inflation is driven by a single scalar field (inflaton) that
slowly rolls down to its potential minimum. At the end of inflation, the inflaton decays to Standard
Model (SM) particles to reheat the universe through a process known as reheating.

Recently the Planck 2015 results [6] have set an upper bound on the tensor-to-scalar ratio as
r . 0.11 while the best fit value for the spectral index (ns) is 0.9655±0.0062 at 68% CL. Hence,
the simple chaotic inflationary scenario are disfavored because their predictions for r are too large.
Among many inflation models, λφ 4 inflation with non-minimal gravitational coupling (ξ φ 2R,
where φ is inflaton, R is the scalar curvature, and ξ is a dimensionless coupling) is a very simple
model, which can satisfy the constraints by the Planck 2015 with ξ & 0.001 [7].

A compelling inflation scenario would be where the inflaton field plays another important role
in particle physics. As an example of such a scenario, we consider the general Higgs inflation
model in the presence of non-minimal gravitational coupling, where the scalar Higgs field play
the crucial role to spontaneously break the gauge symmetry of the model. We identify the Higgs
field as inflation, for a simple example, see [8]. As in the SM, the Higgs field in the general Higgs
model has the gauge, Yukawa and quartic Higgs interactions. For complete analysis of inflation
scenario in the Higgs model, we consider the effective inflaton/Higgs potential by taking quantum
corrections into account. In fact, we see that quantum corrections most likely cause an instability
of the effective inflaton potential. Note that unless the non-minimal coupling (ξ ) is very large, the
quartic inflaton coupling is very small [7]. Hence, quantum corrections to the effective potential
are dominated by the gauge and Yukawa interactions. We consider the renormalization group (RG)
improved effective potential described as V (φ) = 1

4 λ (φ) φ 4, where φ denotes inflaton, and λ (φ) is
the running quartic coupling satisfying the (one-loop) RG equation of the form,

16π
2 dλ

d ln µ
'Cg g4−CY Y 4. (1.1)

Here, g and Y are the gauge and Yukawa couplings respectively, and Cg and CY are positive co-
efficients whose actual values are calculable once the particle contents of the model are defined.
Since the quartic coupling is very small, we have neglected terms proportional to λ (λ 2 term and
the anomalous dimension term). The solution to the RG equation is controlled by g and Y , which
are much larger than λ and independent of λ . Therefore, we expect that unless the beta function is
extremely small, the running inflaton quartic coupling λ is driven to be negative in the vicinity of
the inflation initial value, in other words, the effective potential has true minimum (far) away from
the vacuum set by the Higgs potential at the tree-level.

A simple way to avoid this problem is to require the beta function to vanish at the initial inflaton
value (the stationary condition of λ with respect to φ ), namely, Cg g−CY Y = 0. This condition
leads to a relation between g and Y , equivalently, a mass relation between the gauge boson and
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fermion in the Higgs model. Since the Higgs quartic coupling at low energy is evaluated by solving
the RG equation, in which the gauge and Yukawa couplings dominate, the resultant Higgs mass
also has a relation to the gauge and fermion masses. The stability of the effective potential also
requires the positivity of the second derivative of the potential, which leads to another constraint
on the gauge and Yukawa couplings. In the slow-roll inflation, the inflationary predictions are
determined by the slow-roll parameters defined with the potential and its derivatives, and therefore,
the inflationary predictions have a correlation with the mass spectrum of the Higgs model.

In order to explicitly show the mass relation and the correlation between the particle mass
spectrum and inflationary predictions, we take the minimal B−L model as an example. This model
is a very simple, well-motivated extension of the SM, where the global B− L (baryon number
minus lepton number) in the SM is gauged. Three right-handed neutrinos and the B−L Higgs field
(which is identified as inflaton) are introduced for the cancellation of the gauge and gravitational
anomaly and the B−L gauge symmetry breaking, respectively. Associated with the B−L gauge
symmetry breaking, the B−L gauge boson and the right-handed neutrinos acquire their masses.
With the generation of the Majorana right-handed neutrino masses, the seesaw mechanism for
the light neutrino mass generation is automatically implemented in this model. Analyzing the
RG evolutions of the B−L sector and the effective inflaton (B−L Higgs) potential, we show the
particle mass spectrum and its correlation to the inflationary predictions. Through the correlation,
the Planck 2015 results provide us with constraints on the particle mass spectrum.

2. Non-minimal λφ 4 inflation at tree-level

In the Jordan frame, the action of our inflation model is given by (hereafter we always work in
the Planck unit, MP = MPl/

√
8π = 1, where MPl = 1.22×1019 GeV is the Planck mass)

SJ =
∫

d4x
√
−g
[
−1

2
(1+ξ φ

2)R+
1
2
(∇φ)2− 1

4
λ φ

4
]
, (2.1)

where ξ being a positive, dimensionless parameter. Using the conformal transformation, gEµν =

(1+ξ φ 2)gµν , the action in the Einstein frame with canonical gravity sector is described as

SE =
∫

d4x
√
−gE

[
−1

2
RE +

1
2
(∇Eσ)2−VE(σ)

]
, (2.2)

In Einstein frame with canonical kinetic term, σ(φ) is the new inflaton field such that (σ ′)2 =

(1+ξ φ 2(1+6ξ ))/(1+ξ φ 2)2, where a prime denotes the derivative with respect to original Jordan
field φ . Inflaton potential in terms of φ is given by

VE(σ(φ)) =
1
4

λ φ 4

(1+ξ φ 2)2 . (2.3)

The inflationary slow-roll parameters in terms of φ are expressed as

ε(φ) =
1
2

(
V ′E

VEσ ′

)2

, η(φ) =
V ′′E

VE(σ ′)2 −
V ′Eσ ′′

VE(σ ′)3 . (2.4)
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Amplitude of the curvature perturbation ∆R2 and the number of e-folds N are given by

∆
2
R =

VE

24π2ε

∣∣∣∣
k0

, N =
1
2

∫
φI

φe

dφ√
ε(φ)

(
dσ

dφ

)
, (2.5)

where ∆2
R = 2.195×10−9 from the Planck 2015 results [6] with the pivot scale chosen at k0 = 0.002

Mpc−1, φI is the inflaton value at horizon exit corresponding to the scale k0, and φe is the inflaton
value at the end of inflation, which is defined by max[ε(φe), |η(φe)|] = 1. The value of N depends
logarithmically on the energy scale during inflation as well as on the reheating temperature, and
is typically around 50–60. The slow-roll approximation is valid as long as the conditions ε � 1
and |η | � 1 hold. In this case, the inflationary predictions, the scalar spectral index ns and the
tensor-to-scalar ratio r are given by

ns = (1−6ε +2η)|
φ=φI

, r = 16ε|
φ=φI

. (2.6)

3. Running B−L Higgs inflation and stability of inflaton potential

SU(3)c SU(2)L U(1)Y U(1)B−L

NRi 1 1 0 −1
H 1 2 −1/2 0
ϕ 1 1 0 +2

Table 1: Particle contents of the B−L sector.

We consider minimal extension B-L extension of SM with scalar field ϕ and three generations
of degenerate right-handed neutrinos NRi, for simplicity. The B− L gauge symmetry is broken
by the vacuum expectation value (VEV) of ϕ in its Higgs potential of V (|ϕ|) = λ

(
ϕ†ϕ− vBL

2

)2,
where ϕ = (vBL+φ)/

√
2 in the unitary gauge with the physical Higgs filed φ identified as inflaton.

Associated with the gauge symmetry breaking, the right-handed neutrinos acquire their Majorana
masses through the Yukawa interactions, L ⊃−1

2 ∑
3
i=1Y ϕNRicNRi+h.c.. After the B−L symme-

try breaking with the Higgs VEV 〈ϕ〉= vBL/
√

2, the particle masses are given by

mZ′ = 2 g vBL, mi
NR =

1√
2

Y vBL, mφ =
√

2λ vBL. (3.1)

For inflationary consideration, with inflation scale close to Planck mass, we neglect vBL so the
potential is given by V (φ) = 1

4 λ (φ) φ 4. In the Einstein frame, the RG improved effective inflaton
potential at the one-loop level is then given by VE(φ) =

1
4 λ (Φ) Φ4, where Φ ≡ φ/

√
1+ξ φ 2 [9].

The RG equations of the couplings at the one-loop level are given by1 [8]

16π
2
µ

dg
dµ

= 13g3,

16π
2
µ

dY
dµ

= −6g2Y +
5
2

Y 3,

16π
2
µ

dλ

dµ
= 20λ

2− (48g2−6Y 2)λ +96g4−3Y 4. (3.2)

1There are a few different prescriptions for computing quantum corrections in the presence of the non-minimal
gravitational coupling, for recent detailed computations of quantum corrections, see [9].
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Figure 1: Left panel shows RG evolution of the quartic coupling λ for fixed Y = 0.0237 and ξ = 1 and vari-
ous values of g = 0.01 (solid), 0.011 (dashed) and 0.009 (dot-dashed). The stability condition of βλ (ΦI) = 0
is satisfied for g = 0.01 (solid line). Right panel shows RG improved effective potential for two values of g
and a fixed ξ = 0.1, such that Yukawa is fixed by βλ (ΦI) = 0 condition. The solid and dot-dashed lines are
the RGE improved potential for g = 0.041,0.046 are respectively. For g = 0.046 > gmax = 0.0425, the local
minimal is developed. The vertical dashed line indicates Φ = ΦI (in the Planck unit).

Let us now investigate the stability of the effective inflaton potential. In our analysis through-
out this paper, we set the initial values of λ to be the one obtained in the tree-level analysis at the

initial inflaton value φ = φI , equivalently, ΦI = φI/
√

1+ξ φ 2
I . Then, we consider the RG improved

effective inflaton potential by taking into account the RG evolution of the quartic coupling with the
initial condition at φI . The inflaton quartic coupling is very small unless ξ � 1 (see [1] for details).
Hence the beta function of the quartic coupling is approximately given by

βλ '
1

16π2

(
96g4−3Y 4) , (3.3)

when g2,Y 2� λ 2. The RG evolution is controlled by g and Y , independent of the initial value of
the inflaton quartic coupling. Fig. 1 shows the RG evolution of the quartic coupling in the vicinity
of the initial inflaton value for various values of g and Y with a fixed ξ = 1. We can see from Fig. 1
(left panel) that if the condition of βλ = 0 is violated even with ±10 % deviations for the values of
g for fixed Yukawa coupling value, the running quartic coupling quickly becomes negative in the
vicinity of ΦI (see the dashed and the dot-dashed lines). Same is true if gauge coupling is fixed and
Yukawa is varied. This fact indicates that the B−L gauge symmetry breaking vacuum at φ = vBL is
unstable and the effective potential develops a true vacuum with a negative cosmological constant.

In order to avoid this instability, we impose βλ = 0 and dβλ/dΦ > 0 at ΦI . From the first
condition, the Yukawa coupling Y is determined by the gauge coupling, which we take as a free
parameter in our analysis, along with the others, ξ and vBL. The second condition ensures that the
effective potential is monotonically increasing in the vicinity of ΦI , and yields a lower bound on
g > gmin. When we analyze the global structure of the effective potential, we can notice that there
exists an upper bound on g < gmax. For a large g > gmax, the effective potential develops a local

2In this paper, we are interested in this case, otherwise the beta function is so small that the inflaton quartic coupling
is almost RG invariant. Although the tree-level analysis is valid in this case, the gauge and Yukawa couplings are too
small to yield any impacts in the experimental point of view.
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minimum at Φ < ΦI , so that the inflaton field will be trapped in this minimum after inflation. To
avoid this problem, the parameter region is restricted to be in the range of gmin < g < gmax. Fig. 1
shows, for fixed ξ = 0.1, effective potentials the gauge coupling g = 0.041,0.046, such that first
one is smaller while the second one is larger than gmax = 0.0425.

4. Inflationary predictions and low energy observables

Under the stability conditions, gmin < g < gmax with various value of ξ , we now calculate
the inflationary predictions with the effective inflaton potential. The quantum corrections through
the gauge and Yukawa coupling completely change our inflationary scenario from the one at the
tree-level. Since we refer the results in the tree-level analysis for λ (ΦI) for a fixed ξ and impose
the stability condition βλ (ΦI) = 0, our prediction for the tensor-to-scalar ratio r is the same as the
one obtained in the tree-level analysis. However, the RG evolution of the inflaton quartic coupling
alters the other inflationary predictions, ns, from those obtained in the tree-level analysis, because
they are calculated by the second and third derivatives of the effective potential (see [1] for details).

In our model, with a fixed e-folding number N = 50/60, there are only three free parameters,
ξ , vBL and g. For a choice of ξ and fixed N = 60, ΦI and λ (ΦI) are determined by the tree-level
analysis, so that the inflationary prediction, except for r, is controlled by the gauge coupling g.
In the B−L model, the particle mass spectrum is determined by the gauge, Yukawa and inflation
quartic couplings at the scale vBL (see Eq. (3.1)), which are obtained by solving the RG equations
in Eq. (3.2). Considering all of these facts, we can expect a nontrivial mass relation in the particle
spectrum and a nontrivial correlation between the inflationary predictions and the particle mass
spectrum. For simplicity, we fix vBL so as to yield mZ′ = 2g(vBL)vBL = 3 TeV, to be consistent with
the current results from the search for Z′ boson resonance at the Large Hadron Collider [10, 11].

In our paper[?] we have analytically shown that for ξ & 1, the deviation of the predicted ns

value from the tree-level analysis becomes smaller, as shown in Fig. 2. Hence we are interested
in cases ξ . 1 so that gmax � 1, and so is the corresponding Y . Hence both g and Y are almost
RG invariant and the mass ratio mN/mZ′ ' 0.84 is almost independent of ξ and is determined by
Y (ΦI)/g(ΦI). With fixed mZ′ = 3 TeV, vBL ∝ 1/g(ΦI) and the same applies to the inflaton mass
mφ as shown in Fig. 2 (left panel), with the input values of g in the range of gmin < g < gmax.

Also, in Fig. 2 (right panel), we show inflationary predictions for various ξ . 1 values, along
with the contours given by the Planck 2015 results, with mZ′ = 3 TeV. As discussed above, the
tensor-to-scalar ratio is invariant while the predicted spectral index is altered by quantum correc-
tions. Also, we can see that for ξ . 1, the results show sizable deviations for g∼ gmax from those
at the tree-level analysis depicted as the diagonal dashed line. Interestingly, the Planck 2015 results
provide upper bounds on g, which are more severe than gmax for ξ . 0.001. The contour lines
(diagonal solid lines) are inflationary predictions for with various fixed g(vBL) values.

5. Conclusions

We have considered the general Higgs model with the gauge and Yukawa interactions with the
spontaneous gauge symmetry breaking. In the presence of the non-minimal gravitational coupling,
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Figure 2: Low energy observables and inflationary predictions for various ξ . 1, with fixed N = 60 and
mZ′ = 3 TeV, such that gmin < g < gmax. Left panel shows mass of inflaton mφ , with ξ ' 0.0029,0.01 and 0.1
respectively from top to bottom. Right panel shows the inflationary predictions ns and r for various values of
ξ . 1, along with the contours at the confidence levels of 68% and 95% given by the results of Planck 2015
(solid) and Planck+BICEP2/Keck Array (dot-dashed) [6]. The diagonal dashed line denotes the inflationary
predictions in the tree-level analysis. The horizontal solid lines from top to bottom correspond to the results
for ξ = 1.5×10−3, 2.1×10−3, 2.9×10−3, 4.1×10−3, 6×10−3, 0.01, 0.02, 0.1 and 1. Diagonal solid lines
are contours for fixed g(vBL) = 0.0184, 0.0216, 0.023, 0.026, and 0.0425).

the Higgs field can also play the role of inflaton. The analysis with the Higgs potential at the tree-
level leads to the inflationary predictions consistent with the cosmological observations. However,
once we take quantum corrections, the effective inflaton potential most likely becomes unstable.
This is because the inflaton quartic coupling is extremely small in a large portion of the parameters
space and the effective potential is controlled by the gauge and Yukawa couplings independently
of the quartic coupling. In the renormalization group improved effective potential, we see that the
running quartic coupling becomes negative in the vicinity of the initial inflaton value, indicating the
instability of the effective potential. In order to avoid this problem, we have imposed the stability
condition of vanishing the beta function of the inflation quartic coupling. This condition leads
to a non-trivial relation between the gauge and fermion masses. Since the renormalization group
evolution of the inflaton quartic coupling is mainly controlled by the gauge and Yukawa coupling,
the inflation mass at low energy is determined by the couplings. Therefore, the mass spectrum of
the gauge boson, fermion and inflation shows a non-trivial relation.

Since the inflaton potential is modified from the tree-level one, the inflationary predictions are
altered from those obtained by the tree-level analysis. Although the prediction of the tensor-to-
scalar ratio remains the same under the condition of the vanishing beta function, the predictions for
the scalar spectral index and the running of the spectral index can be significantly altered. The fact
that the effective potential is controlled by the gauge and Yukawa couplings implies a correlation
between the inflationary predictions and the particle mass spectrum. Therefore, the observables at
the gauge symmetry breaking scale correlate with the inflationary predictions which determined by
physics at an extremely high energy compared to the gauge symmetry breaking scale.

By taking the minimal B−L extension of the Standard Model as a simple example, we have
shown such a non-trivial relation in the particle mass spectrum driven by the stability condition
of the effective inflaton potential. We also have calculated the inflationary predictions from the
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effective potential and found their dependence of the B− L gauge coupling. Therefore, the new
particle mass spectrum of the B−L model, once observed, has an implication to the inflationary
predictions. On the other hand, more precise measurements of the inflationary predictions yield a
constraint on the B−L particle mass spectrum.
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