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1. Introduction

The discovery of the Higgs boson fueled considerable interest in naturalness due to the appar-
ent fine tuning in the Higgs sector of the Standard Model (SM) [1]. The masses of the standard
matter and force carrier particles are protected against quantum fluctuations by chiral and gauge
invariance in the SM. These symmetries thus separate the electroweak scale from the high scale
of new physics, such as gravity. This separation of scales is considered to be natural, since such
division of phenomena structures physics itself from cosmology, through astrophysics, condensed
matter, atomic, and nuclear to elementary particle physics.

But the Higgs mass is unprotected against quantum fluctuations within the SM. The latter must
be an effective description of nature, since it cannot account for various observations such as dark
matter, the matter-antimatter asymmetry, gravity and more. When formulated as an effective field
theory, with a cut-off scale Λ, due to the lack of a protective mechanism, the Higgs mass receives
quantum corrections that sensitively depend on Λ. The SM violates the separation of scales: the
electroweak size Higgs mass is directly connected to, in principle, arbitrarily high scales. This
situation is considered to be unnatural: phenomena at disparate energy scales are fundamentally
connected.

A simple way to express the unnaturalness of the SM Higgs sector is quantifying the fine
tuning required to obtain a 125 GeV Higgs mass. The physical Higgs mass squared is the sum of a
bare mass term and a correction

m2
H = m2

0 +δm2
H , (1.1)

with δm2
H ∼ Λ2. The Large Hadron Collider is pushing the scale of new physics Λ beyond TeV,

which requires a finely tuned cancellation between the bare mass and the quantum corrections.
Simple algebra shows that the bare mass must be within a percent of TeV size quantum corrections
to yield 125 GeV physical Higgs mass.

The above is an oversimplified measure of tuning. After all, the bare mass is non-physical,
and it is impossible to argue about its value in a model independent way. A more sophisticated fine
tuning measure was introduced by Barbieri, Ellis, and Giudice (BEG) [2, 3]. The prerequisite of
this measure is the existence of an electroweak scale observable which is predicted by the theory. In
the MSSM this quantity is chosen to be the mass of the Z boson, due to the fact that the electroweak
symmetry breaking condition directly links it to the Lagrangian parameters of the theory:

m2
Z

2
=

(m2
Hd

+δm2
Hd
)− (m2

Hu
+δm2

Hu
) tan2 β

tan2 β −1
−µ

2. (1.2)

The BEG measure quantifies the sensitivity of an electroweak scale observable to the change
of a theory parameter. In the MSSM this measure is typically written as

∆BEG(m2
Z(µ

2)) =

∣∣∣∣∂m2
Z

∂ µ2

∣∣∣∣ , (1.3)

with the m2
Z(µ

2) function defined by the electroweak symmetry breaking condition Eq.(1.2) at tree
level. This fine tuning measure accounts for correlations between mZ and µ . In qualitative terms:
if the mZ prediction is sensitive to small changes in µ the theory is considered to be fine tuned.
While the BEG fine tuning measure can be used for MSSM variants, such as constrained versions
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of the MSSM, when one goes beyond the MSSM it is unclear how to generalize it. This peoblem
raises the question: Is there a fine tuning measure that can be applied to any extensions of the SM?
Surprisingly, the answer may be simpler than expected.

Let us assume the existence of a SM extension that adds only a single parameter µ to those of
the SM, and that this model predicts the mass of the Z boson in terms of µ2: mZ = mZ(µ

2). The
Bayesian evidence for this theory is

E = V −1
µ2

∫
µ2

max

µ2
min

L (m2
Z(µ

2)) dµ
2, (1.4)

treating, for simplicity, all the SM parameters as nuisances. The evidence E reflects the plausi-
bility of this single parameter theory in light of the measured Z mass. The likelihood function L

measures how well the model can predict mZ over the parameter space of the model. We assumed
a constant prior for the µ parameter, which yielded the constant normalization factor

Vµ2 =
∫

µ2
max

µ2
min

dµ
2. (1.5)

It is reasonable to assume that the m2
Z(µ

2) function is differentiable and invertible. Then, via
a variable change, one can express the evidence integral as

E = V −1
µ

∫ m2
Z(µ

2
max)

m2
Z(µ

2
min)

L (m2
Z) ∆

−1
BEG(m

2
Z) dm2

Z. (1.6)

The variable change reveals the connection of the evidence integral to naturalness since it induced
the derivative ∆BEG(m2

Z(µ
2)) = dm2

Z/dµ2 which is the single parameter version of the above de-
fined BEG measure. This measure here plays the role of a Bayesian prior of the theoretically
predicted mZ values.

In the Bayesian formalism the meaning of the prior ∆
−1
BEG(m

2
Z) is the probability distribution

of the predicted mZ values within the theory. If the average value of the ∆BEG(m2
Z(µ

2)) function
is low over the parameter space then the evidence integral is enhanced. This situation corresponds
to a case when the theory has low fine tuning. Thus the value of the Bayesian evidence is clearly
correlated with the naturalness of the theory. Casting the evidence into an integral over the observ-
able reveals its meaning as the plausibility of the theory in terms of observation and naturalness.
Conversely, naturalness in the Bayesian framework is understood as the plausibility that the theory
predicts the correct value of a given observable.

The Bayesian evidence not only calculable for any parametric model but also reveals some
implicit properties of the BEG fine tuning measure. Perhaps most importantly, Bayesian inference
justifies the derivative form of ∆BEG. By definition the evidence is an integral over the parameters
of the model. When it is recast as an integral over the predicted observables ∆

−1
BEG automatically

emerges as the Jacobian of the variable transformation.
Bayesian hypothesis testing sheds light on the normalization, or scale, of ∆BEG. In model

comparison the ratio of evidences is known as the Bayes factor, which quantifies the plausibility
of a model over another. This ratio is measured on Jeffreys’ scale. In this context it is clear that
naturalness is the ability of a given model to predict electroweak scale observables, and it has to be
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compared to the naturalness of another model. The traditional BEG measure, at best, could only
be interpreted as probability density, which has to be integrated to become an objective measure of
plausibility.

The Bayesian framework also shows us that there is some amount of subjectivity involved
when one selects which fundamental parameter of the theory and which (electroweak) observable
is used to define ∆BEG. It seems that a different kind of fine tuning is measured by the different
possible choices. It is enlightening to see, for example, that the exact form of ∆BEG depends not
only on the choice of parameter (such as µ or µ2 or Bµ), but also on the initial prior for the given
parameter. If, for example, the parameter value spans several orders of magnitude in the theory
(before considering any observational constrains), then it is customary to choose a logarithmic
prior for it. In this case, from the Bayesian point of view, the theoretical parameter is log µ and the
induced Jacobian should be d(log µ)/d(logmZ). According to this, whether the following forms
of the fine tuning measure are ’correct’

∆BEG(mZ) =
dmZ

dµ
or

dm2
Z

dµ2 or
d logmZ

d log µ
or

d logm2
Z

d log µ2 , (1.7)

depends on our definition of the theoretical parameter, its prior, and the experimental observable
that we want to use to quantify naturalness. Finally, when n > 1 theoretical parameters {p1, ..., pn}
are ’fixed’ in terms of n observables {o1, ...,on} the naturalness prior takes the form of a n× n
determinant

∆J(o1, ...,on) =

∣∣∣∣∣∣∣∣
∂o1
∂ p1

... ∂o1
∂ pn

. . .
∂on
∂ p1

... ∂on
∂ pn

∣∣∣∣∣∣∣∣ . (1.8)

We can measure the fine tuning within a model with respect of several observables and parameters
simultaneously. But when we do that the fine tuning is measured by the above determinant. Most
interestingly, within this determinant not all terms are positive! In other words, it is not the trace of
the matrix rather the full determinant that quantifies fine tuning.

2. Naturalness prior for the NMSSM

In this section we derive the naturalness prior for the constrained and an 11 dimensional ver-
sion of the NMSSM (CNMSSM and NMSSM-11). As indicated above, ∆J depends on the choice
of parameters, which in turn is the function of the definition of the model. In this work we de-
fine the CNMSSM at the GUT scale to have a universal gaugino mass (M1/2), a universal soft
tri-linear coupling (A0), with all MSSM-like soft scalar masses being equal (M0). The new soft
singlet mass (mS0 = mS(MGUT )), however, is left unconstrained at the GUT scale. Thus the model
is parametrized by

{p1, ..., p6}CNMSSM = {M0,M1/2,A0,λ0,κ0,mS}, (2.1)

in contrast with the CMSSM

{p1, ..., p5}CMSSM = {M0,M1/2,A0,µ0,B0}. (2.2)
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Spectrum generators, such as NMSPEC and Next-to-Minimal SOFTSUSY [4], trade the
GUT scale parameters λ0,κ0 and m2

S for weak scale λ ,mZ and tanβ giving the user the mixed scale
input parameters of {M0,M1/2,A0, tanβ ,λ ,mZ}. This transformation gives rise to a Jacobian

dλ0dκ0dm2
S0
= JT0dλdm2

Zd tanβ , (2.3)

which may be written as

JT0 = JT λ
κmS

JRG =

∣∣∣∣∣∣
∂κ

∂m2
Z

∂m2
S

∂m2
Z

∂κ

∂ tanβ

∂m2
S

∂ tanβ

∣∣∣∣∣∣
λ

∣∣∣∣∣ ∂λ0
∂λ

∂κ0
∂λ

∂λ0
∂κ

∂κ0
∂κ

∣∣∣∣∣
∣∣∣∣∣∂m2

S0

∂m2
S

∣∣∣∣∣ . (2.4)

The Jacobian JT λ
κmS

can be rewritten in terms of simpler coefficients embedded in the determinant
of a 3× 3 matrix. The coefficients appearing in this determinant are given in the appendix of
Ref. [5]. The second Jacobian JRG transforms the input parameters from the GUT scale to the elec-
troweak scale, and factorizes as shown due to the supersymmetric non-renormalization theorem.
The subscript λ indicates that this parameter is kept constant in the derivatives.

As explained, we can choose to work with the logarithms of parameters (as is natural if we
choose logarithmic priors) so that we obtain a new factor in the denominator, which is the inverse
of the Jacobian with logarithms inserted inside the derivatives. This gives us

∆
CNMSSM
J =

∣∣∣∣∣∂ ln(m2
Z, tanβ ,λ )

∂ ln(κ0,m2
S0
,λ0)

∣∣∣∣∣ =
κ0m2

S0
λ0

m2
Z tanβλ

J−1
T0

(2.5)

It is well known that the top quark Yukawa coupling can play a significant role in fine tuning so
we also considered this by extending the transformation to include the top quark mass and (unified)
Yukawa coupling: {κ0,m2

S0
,λ0,y0} → {m2

Z, tanβ ,λ ,mt}. Nonetheless as was already observed in
the MSSM case [6, 7], we found that all the derivatives, other than ∂mt

∂yt
, that involve mt and yt

cancel, so this only changes the Jacobian by a single multiplicative factor of ∂mt
∂yt

. Finally when

logarithmic priors are chosen this factor will disappear entirely because ∂ lnmt
∂ lnyt

= 1, and the Yukawa

renormalization group evolution (RGE) factor ∂ lnyt
∂ lny0

is the same order one constant (at 1-loop) as
in the CMSSM case so we neglect it.

Therefore we write our NMSSM Jacobian based tuning measure as

∆
CNMSSM
J =

∣∣∣∣∣∂ ln(m2
Z, tanβ ,λ ,m2

t )

∂ ln(κ0,m2
S0
,λ0,y2

0)

∣∣∣∣∣ , (2.6)

with the additional transformation between mt and y0 included to emphasise that we have also
considered these, since the cancellation will prove to be rather important (in both the MSSM and
NMSSM) when we compare against the BEG tuning measure in the focus point (FP) region. There
we will show that due to this cancellation we do not see a large tuning penalty in the much discussed
FP region, which appears in the BEG measure when one includes yt as a parameter [8, 9, 10, 11].

The expression given here is formally the Jacobian which should be used in the Bayesian
analysis of any NMSSM model when (λ0,κ0,m2

S0
,y2

0) are traded for (m2
Z, tanβ ,λ ,m2

t ). At the same
time ∆CNMSSM

J can be interpreted as a measure of the naturalness of the NMSSM, which may be
applied to the CNMSSM, the general NMSSM and λ -SUSY scenarios.
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Figure 1: The left frame shows maps of fine tuning measures ∆BEG (top), ∆J (middle), ∆EW (bottom) in the
M0 vs. M1/2 plane for A0 =−2.5 TeV, tanβ = 10 and sgn(µ)=1 in the CMSSM. The color code quantifies the
value of ∆EW and ∆J . Since ∆BEG is dominated by the µ derivative it is low in the small M0 and M1/2 region.
Although ∆BEG, by definition, is formally part of ∆J the numerical behavior of the latter is similar to that
of ∆EW . No experimental constraints applied except that the lightest supersymmetric particle is electrically
neutral and the EWSB condition is satisfied. Right frame: Same as the left frame except for the constrained
NMSSM. A0,κ,λ =−2.5 TeV and tanβ = 10 are assumed. λ is sampled from the range [0,0.8].

3. Numerical results

For our numerical calculations we use SOFTSUSY 3.3.5 [13], NMSPEC [14] in NMSSM-

Tools 4.1.2, Next-to-Minimal SOFTSUSY [4], and MultiNest 3.3 [15, 16]. The
spectrum generators provide ∆BEG with renormalization group flow improvement. For ∆BEG in
the CMSSM we include individual sensitivities, ∆BEG(pi), for the parameters M0,M1/2,A0,µ,B,yt .
For the CNMSSM we use the set M0,M1/2,A0,λ ,κ,yt .

First we examine how the tuning measures vary with M0 and M1/2, without requiring a 125
GeV Higgs. We fix tanβ = 10, where the extra NMSSM F-term contribution is small, but there
is interesting focus point (FP) behavior [8, 9, 10, 11]. Previous studies [17] show that large and
negative A0 is favoured, so to simplify the analysis we choose1 A0 =−2.5 TeV.

The results for the CMSSM are shown in FIG. 1. The value of ∆EW [18] is governed by the m2
Hu

and µ2 contributions since m2
Z/2 ≈ −m2

Hu
− µ2, where m2

Hu
includes the radiative corrections. In

general ∆EW is dominated by µ2, while the crossover to the m2
Hu

dominance occurs in the vicinity
of the EWSB boundary. For this measure there is low fine tuning even at large M0. This may
seem counterintuitive, but for tanβ = 10 at large M0 we are close to the FP. In this region the
dependence on M0 which appears from RG evolution of mHu vanishes. For example in the CMSSM

1We checked that with alternative A0 choices the behaviour is similar. The main difference is with the Higgs masses
where a large and negative A0 was chosen to increase the lightest Higgs mass.
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semi-analytical solution to the renormalisation group equations (RGEs),

m2
Hu

= c1M2
0 + c2M2

1/2 + c3A2
0 + c4M1/2A0, (3.1)

the coefficients ci are functions of Yukawa and gauge couplings, and tanβ and c1 can be close to
zero. Such regions then appear to have low fine tuning even with large M0 since the small size of
c1 means there is no need to cancel the large M0 in Eq. (1.2) to obtain the correct m2

Z .

In ∆BEG the sensitivity to the top quark Yukawa coupling is also included. Since the RG
coefficients depend on this Yukawa coupling, the large stop corrections from the RGEs feeding
into m2

Hu
lead to a large ∆BEG(yt) even in the focus point region. ∆EW is not sensitive to this effect

since it does not take into account such RG effects. Interestingly ∆CMSSM
J exhibits similar behavior

to ∆EW despite containing derivatives from ∆BEG. This is because ∆CMSSM
J does not contain the

derivative of mZ with respect yt [5]. As a result ∆J in the MSSM can remain small in the FP.

Fine tuning measures for the CNMSSM are shown in the right frame of FIG. 1. Here ∆CNMSSM
J

is defined by Eq. (2.6) and ∆BEG is defined in Ref. ([5]), while ∆EW is defined the same as for the
MSSM. The parameter µ dominates electroweak tuning, ∆EW , throughout the M0 vs. M1/2 plane.
Since µ values and related derivatives are similar in the CMSSM and CNMSSM the fine tuning
measures are qualitatively similar for the two models. As in the CMSSM the Jacobian derived
tuning ∆J increases with M1/2, as anticipated since for large M1/2 large cancellation is required to
keep mZ light. At large M0 values ∆J can still be low seeming to favour the FP region, which is a
result of the same cancellation that happened in the MSSM Jacobian.

Interestingly the region where the tuning can be very low extends further in the NMSSM.
Note this is not a result of raising the Higgs mass with λ since we impose no Higgs constraint yet
and have large tanβ . However λ is varied across the plane and affects the EWSB condition and
the renormalization group evolution. However since the number of parameters are different in the
CNMSSM and CMSSM, to determine whether the CNMSSM is preferred over the CMSSM, we
have to compare Bayesian evidences.

4. Conclusions

In this work we presented Bayesian naturalness priors to quantify fine tuning in the (N)MSSM.
These priors emerge automatically during model comparison within the Bayesian evidence. We
compared the Bayesian measure of fine tuning (∆J) to the Barbieri-Giudice (∆BEG) and ratio (∆EW )
measures. Even though the Bayesian prior is closely related to the Barbieri-Giudice measure, the
numerical value of the Bayesian measure reproduces important features of ∆EW . Both ∆EW and ∆J

are low in focus point scenarios.

Our numerical analysis is limited to fixed (A0, tanβ ) slices of the constrained parameter space.
For these slices we show that, according to the naturalness prior, the constrained version of the
NMSSM is less tuned than the CMSSM. This statement, however, has to be confirmed by compar-
ing Bayesian evidences of the models. The complete parameter space scan and the full Bayesian
analysis for the NMSSM is deferred to a later work.
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