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Introduction

A new age in particle physics was opened with the discovery of neutrino oscillations and
the precision measurements of corresponding parameters in this phenomena. Two of the main
parameters that characterize the ordinary neutrino oscillations are the difference of the squared
neutrino masses, as well as the flavour mixing angles. For the latter ones, the numerical values
obtained as result of a global fit of current experimental data on neutrino oscillations [1], at Best
Fit Point (BFP) ±1σ , are the following

sin2
θ12/10−1 = 3.23±0.16, sin2

θ23/10−1 =

{
5.67+0.32

−1.24

5.73+0.25
−0.39

, sin2
θ13/10−2 =

{
2.26±0.12

2.29±0.12
, (1)

The values given in the upper (lower) row are for a normal (inverted) hierarchy of the neutrino
mass spectrum. This experimental evidence was enough to show that neutrinos have a tiny mass,
whereby it was very easy to conclude that there is physics beyond the Standard Model (SM).

In the model building context, the µ ↔ τ flavour symmetry has been widely used to propose
possible extensions of the SM. In these extensions the µ ↔ τ flavour symmetry can be defined
in two different ways: i) the µ ↔ τ permutation symmetry [2] where the neutrino mass term is
unchanged under the transformations νe → νe, νµ → ντ and ντ → νµ . ii) the µ ↔ τ reflection
symmetry [3] where the neutrino mass term is unchanged under the transformations νe→ νc

e , νµ →
νc

τ and ντ → νc
µ , where c denotes the charge conjugation. But here we will only consider the first

definition, hence in the following when we mention the µ ↔ τ symmetry actually we mean the
µ ↔ τ permutation symmetry.

Historically, theoretical physicists have proposed the µ ↔ τ symmetry in order to reproduce
the experimental data on lepton mixing angles. Namely, the µ ↔ τ symmetry is obtained if the
reactor and atmospheric angles have the following values θ13 = 0◦ and θ23 = 45◦, respectively.
However, this symmetry is ruled out by the current experimental data, but these same data sug-
gest some possibles breakings of the µ ↔ τ symmetry which have been explored recently [4–6].
Besides, many discrete groups have been proposed in order to understand the underlying flavour
symmetry behind the lepton mixing angles [7].

In this line of thought, we build a Q6 flavoured supersymmetric model to study masses and
mixing for quarks and leptons where the µ↔ τ symmetry is broken in the latter sector. As in early
works on Q6 [8], it was necessary to extend the flavour label to the Higgs sector, this means that
three families of doublets Hd

i and Hu
i are needed for the mixing. Our model is completely different

from those already existing in the literature since the matter content assignment is very particular.

The Model

The matter content and their respective assignment under the Q6 symmetry is displayed on
Table 1. The present model is very peculiar in the sense that for the quarks and Higgs superfields,
QI and Hu,d

I stand for a doublet under the flavour symmetry Q6 where I = 1,2, this means explicitly
for the former, (Q1,Q2)

T . The rest of fields should be understood in the same way if they have the
label I, otherwise, the fields are singlets under the flavour symmetry. On the other hand, for leptons,
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Q6 1+,0 1+,2 1−,1 1−,3 22 21

Matter Hd
3 Hu

3 , YB L1 , Nc
1 , Q3 , uc

3 `c
1, dc

3 LJ , `c
J , Nc

J , QI , dc
I , uc

I , Hd
I Hu

I

Table 1: Matter Content.

LJ stands for a flavour doublet where J = 2,3; and the first family belongs to any of the singlets.
Then, the superpotential, which is allowed by the gauge and flavour symmetry, is given by

W = yu
1 (Q1uc

2−Q2uc
1)Hu

3 + yu
2 (Q1Hu

2 +Q2Hu
1 )uc

3 + yu
3Q3 (uc

1Hu
2 +uc

2Hu
1 )+ yu

4Q3uc
3Hu

3

+ yd
1

[
Q1

(
−dc

1Hd
1 +dc

2Hd
2

)
+Q2

(
dc

1Hd
2 +dc

2Hd
1

)]
+ yd

2 (Q1dc
1 +Q2dc

2)Hd
3 + yd

3Q3dc
3Hd

3

+ y`1L1ec
1Hd

3 + y`2
[
L2

(
−ec

2Hd
1 + ec

3Hd
2

)
+L3

(
ec

2Hd
2 + ec

3Hd
1

)]
+ y`3 (L2ec

2 +L3ec
3)Hd

3 + yD
1 L1Nc

1Hu
3

+ yD
2 L1 (Nc

2Hu
2 +Nc

3Hu
1 )+ yD

3 (L2Hu
2 +L3Hu

1 )Nc
1 + yD

4 (L2Nc
3−L3Nc

2)Hu
3 + ymYBNc

1Nc
1

+MR2 (N
c
2Nc

2 +Nc
3Nc

3) (2)

Comments are in order: one flavon YBK (Babu-Kubo) has been included in order to build a flavour
invariant Majorana mass matrix for the right-handed neutrinos (RHN’s) [8]; a subtle problem ap-
pears with our peculiar assignment for the matter content; there is no µ term for the Higgs sector
since these are not flavour invariant, but these kind of terms should be present since they are crucial
to get the electroweak symmetry breaking. In order to fix this, extra gauge singlets will be included
to construct a gauge and flavour invariant µ term. Due to our interest in studying masses and mix-
ings in this model, for the moment some alignments in the vacuum expectation values (vev’s) of
the scalars will be assumed. Then, we will leave aside the full scalar superpotential that eventually
has to be analysed to have a complete model.

Mases and mixings

Going back to the expression in Eq.(2) we obtain the Dirac fermion mass matrices which have
the following form

Mu =

 0 yu
1〈H

u
3〉 yu

2〈H
u
2〉

−yu
1〈H

u
3〉 0 yu

2〈H
u
1〉

yu
3〈H

u
2〉 yu

3〈H
u
1〉 yu

4〈H
u
3〉

 , Md =

yd
2〈H

d
3〉− yd

1〈H
d
1〉 yd

1〈H
d
2〉 0

yd
1〈H

d
2〉 yd

2〈H
d
3〉+ yd

1〈H
d
1〉 0

0 0 yd
3〈H

d
3〉

 , (3)

and

MD =

yD
1 〈H

u
3〉 yD

2 〈H
u
2〉 yD

2 〈H
u
1〉

yD
3 〈H

u
2〉 0 yD

4 〈H
u
3〉

y f
3〈H

u
1〉 −yD

4 〈H
u
3〉 0

 , M` =

y`1〈H
d
3〉 0 0

0 y`3〈H
d
3〉− y`2〈H

d
1〉 y`2〈H

d
2〉

0 y`2〈H
d
2〉 y`3〈H

d
3〉+ y`2〈H

d
1〉

 . (4)

In addition, the RHN mass matrix is diagonal in the flavour space, MR = diag.(MR1 ,MR2 ,MR2);
here, MR1 = yn〈YBK〉.

Now, assuming the degeneracy between 〈Hu
1〉= 〈Hu

2〉, and 〈Hd
2〉= 0, the resultant matrix, Mu,

has implicitly the NNI textures and the Md mass matrix is diagonal. At the first glance the CKM
mixing matrix will not be accommodated with great accuracy. Of course, we have to make sure
that this is the case so that an χ2 analysis has to be done. On the orden hand, the charged lepton
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mass matrix is also diagonal, then the PMNS mixing matrix comes only from the neutrino sector.
Under these assumptions, we will focus on the lepton sector for the moment. Therefore,

MD =

aD bD bD

cD 0 dD

cD −dD 0

 , M` =

a` 0 0
0 c`−b` 0
0 0 c`+b`

≡
a` 0 0

0 B` 0
0 0 D`

 (5)

and the effective neutrino mass matrix, that comes from the type I see-saw mechanism, is given by

Mν = MDM−1
R MT

D =

m11 m12 m13

m12 m22 m23

m13 m23 m22

 , M−1
R ≡ diag(x,y,y). (6)

Let us exhibit an appealing feature about Mν : the block matrix 2− 3 provides a π/4 angle (to
the mixing matrix) that may be identified with the atmospheric one. Moreover, if |Bν |= |Cν | were
true, Mν would have the µ − τ symmetry, so that the PMNS mixing matrix would have θ13 = 0◦

and θ23 = 45◦ for the reactor and atmospheric angle, respectively. Strictly speaking, in the present
model, Mν does not possess the µ↔ τ symmetry since m12 6= m13. This fact, actually, is crucial to
get θ13 6= 0◦ and θ23 6= 45◦ in the PMNS matrix as we will see next.

To diagonalize Mν , a perturbative analysis will be done as follows: Mν is written as Mν =
M0

ν +Mδ
ν where

M0
ν =

m11 m12 m12

m12 m22 m23

m12 m23 m22

 and Mδ
ν =

 0 0 m13−m12

0 0 0
m13−m12 0 0

 (7)

The former mass matrix possesses the µ ↔ τ symmetry. Here, we assume that Mδ
ν contains a

perturbation parameter which will be defined later. In general, Mν is diagonalized by Uν ≈ U0
νUδ

ν

with M̂ν = diag(mν1 ,mν2 ,mν3)≈U†
νMνU∗ν , where U0

ν diagonalizes to M0
ν and Uδ

ν makes the same
for the resultant matrix that depends on the difference m12 6= m13.

Explicitly, when the perturbation is switched off (m12 = m13), we have

U0
ν =

cosθν eiην sinθν eiην 0
− sinθν√

2
cosθν√

2
− 1√

2
− sinθν√

2
cosθν√

2
1√
2

 . (8)

At the same time, the matrix elements of M0
ν may be written in terms of neutrino mass eigenvalues

and the θν angle as

m11 =
(
m0

1 cos2
θν +m0

2 sin2
θν

)
e2iην , m12 =

sinθν cosθν(m0
2−m0

1)√
2

eiην ,

m22 +m23 = m0
1 sin2

θν +m0
2 cos2

θν , m22−m23 = m0
3. (9)

In general, the m0
i active neutrino masses are complex due to the presence of Majorana phases, and

the θν angle is a free parameter. Going back to Eq. (7), in principle, m12 6= m13 so that it breaks the
µ ↔ τ symmetry but we will assume that m13−m12 is very small in order to apply a perturbative
analysis.

Having pointed that, we rewrite Mδ
ν as

Mδ
ν =

 0 0
√

2m̄12δ

0 0 0√
2m̄12δ 0 0

 , and δ ≡ (m13−m12)/2
m̄12

, (10)
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where m̄12 = (m13 +m12)/2 and |δ | � 1, then, this will be our perturbation parameter. Thus,
applying U0

ν to Mν one obtains U0†
ν M0

νU0∗
ν +U0†

ν Mδ
ν U0∗

ν where we can write explicitly as

diag(m0
ν1
,m0

ν2
,m0

ν3
)+

 0 0
√

2m̄12 cosθν δe−iην

0 0
√

2m̄12 sinθν δe−iην

√
2m̄12 cosθν δe−iην

√
2m̄12 sinθν δe−iην 0

 (11)

In this way, the active neutrino masses get corrections up to the second order in the δ parameter,
and these are given by

mν1 = m0
ν1
+

2|m̄12|2 cos2 θ |δ |2

m0
ν1 −m0

ν3

, mν2 = m0
ν2
+

2|m̄12|2 sin2
θ |δ |2

m0
ν2 −m0

ν3

,

mν3 = m0
ν3
+2|m̄12|2|δ |2

[
cos2 θ

m0
ν3 −m0

ν1

+
sin2

θ

m0
ν3 −m0

ν2

]
. (12)

At the same time, in Eq. (11) the second mass matrix will modify the U0
ν mixing matrix so that

after a lengthy task the correction is written as

Uδ
ν =

 N1 N2k1k2r2δ 2 N3k1r1δ

N1k1k2r1δ 2 N2 N3k2r2δ

−N1k1r1δ −N2k2r2δ N3

 , (13)

where r1,2 ≡ (m0
2−m0

1)/(m
0
3−m0

1,2), k1 ≡ sinθν cos2 θν and k2 ≡ sin2
θν cosθν . Besides, Ni with

i = 1,2,3, stands for the normalization factor for each eigenvector of Uδ
ν . At the end of the day,

the full mixing matrix, which has to be compared with the standard parametrization, is V = U0
νUδ

ν .
Comparing the magnitude of entries of V with the mixing matrix in the standard parametrization
of the PMNS, give us the following expressions for the lepton mixing angles

|sinθ23|2 =

∣∣∣∣∣ N3√
2
[1− cosθν k2r1r2δ ]√

1−|sinθ13|2

∣∣∣∣∣
2

, sinθ12 = N2
sinθν√

1−|sinθ13|2
,

sinθ13 = N3k1r1 cosθν δ

[
1+ tanθν

k2r2

k1r1

]
. (14)

For simplicity, we neglected terms that are proportional to |δ |2 since we have assumed that |δ |� 1.
So far, these mixing angles depend directly of several free parameters namely: the active neutrino
masses (m0

i ), the |δ | and θν parameters; and the Majorana and ην phases. Actually, the neutrino
masses may be used as inputs in order to reduce the free parameters. At the end of the day, an χ2

analysis has to be done in order to explore the allowed regions for the free parameters.

Conclusions

We have constructed a supersymmetric model, with Q6 flavour symmetry and extended flavoured
Higgs sector, where the breaking of the µ − τ symmetry leads to a deviation of 0◦ and 45◦ of the
reactor and atmospheric angles respectively. The mixing angles depend on the active neutrino
masses, as well as on the difference of two of the neutrino mass matrix elements |δ |, the angle θν ,
and the Majorana and ην phases.
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The crucial difference with other discrete symmetry models that use Q6 or S3 as symmetry
group is that for the quarks and Higgs fields we have assigned the first two families to a doublet
representation and the third one to a singlet, but we have reversed the assignment for the leptons,
i.e. the second and third family are in a doublet and the first in a singlet irrep. This breaks the µ−τ

symmetry, thus giving the possibility of realistic values for the reactor and atmospheric angles.
A χ2 analysis is in order to determine the experimentally allowed regions in parameter space. A
complete model has to accommodate both lepton and quark sectors simultaneously, this work is
still in progress.
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