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LUNA: hydrogen, helium and carbon burning under
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One of the main ingredients of nuclear astrophysics is the cross section of the thermonuclear
reactions which power the stars and synthesize the chemical elements in the Universe. Deep
underground in the Gran Sasso Laboratory the cross section of the key reactions of the proton-
proton chain and of the Carbon-Nitrogen-Oxygen (CNO) cycle have been measured right down
to the energies of astrophysical interest. The main results obtained during the ’solar’ phase of
LUNA are reviewed and their influence on our understanding of the properties of the neutrino
and of the Sun is discussed. We then describe the current LUNA program devoted to the study of
the nucleosynthesis of the light elements in AGB stars, Classical Novae and at the time of the big
bang. Finally, the future of LUNA with the new 3.5 MV accelerator is outlined. This single-ended
accelerator will be installed under Gran Sasso in spring 2018. It will provide hydrogen, helium
and carbon (also doubly ionized) high current beams and it will be devoted to the study of helium
and carbon burning in stars.
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LUNA under Gran Sasso Carlo Broggini

1. Introduction

Stars are not perfect and eternal bodies as believed by the ancient philosophers. On the con-
trary, gravity triggers the birth of a star which then works as a fusion reactor to finally die out in
a quiet or violent way, depending on its initial mass. As a matter of fact, only hydrogen, helium
and lithium are synthesized in the first minutes after the big-bang. All the other elements in the
Universe are produced in the thermonuclear reactions taking place inside the ’cauldrons’ active in
the cosmos, i.e. the stars. Nuclear astrophysics studies the reactions which transmute the chemical
elements and provide the energy to the stars. In particular, the knowledge of the fusion reaction
cross-section at the stellar energies is the heart of nuclear astrophysics.

The reaction occurs in the hot plasma of a star, with temperatures in the range of tens to
hundreds of millions degrees, inside an energy window, the Gamow peak, which is far below the
Coulomb energy arising from the repulsion between nuclei. At energies below the Gamow peak
the cross section is too small whereas at higher energies the nuclei are too few. In this region the
cross section is given by:

σ(E) =
S(E)

E
exp(−2π η), (1.1)

where S(E) is the astrophysical factor (which contains the nuclear physics information) and η is
given by 2π η = 31.29Z1 Z2(µ/E)1/2. Z1 and Z2 are the nuclear charges of the interacting particles,
µ is the reduced mass (in units of amu), and E is the center of mass energy (in units of keV).

At low energies the cross sections are extremely small, because of the small probability to go
through the Coulomb barrier. Such smallness makes the star life-time of the length we observe,
but it also makes impossible the direct measurement in the laboratory. The rate of the reactions,
characterized by a typical energy release of a few MeV, is too low, down to a few events per year,
in order to stand out from the laboratory background. Instead, the observed energy dependence of
the cross-section at high energies is extrapolated to the low energy region, leading to substantial
uncertainties. LUNA, Laboratory for Underground Nuclear Astrophysics, started twenty five years
ago to run nuclear physics experiments in an extremely low-background environment, the Gran
Sasso Laboratory (LNGS), to reproduce in the laboratory what Nature makes inside the stars [1, 2].

2. Accelerators under Gran Sasso

Two electrostatic accelerators able to deliver hydrogen or helium beams have been installed in
LUNA: first a compact 50 kV "home made" machine [3] and then, in the year 2000, a commercial
400 kV one [4]. Common features of the two accelerators are the high beam current, the long term
stability and the precise beam energy determination.

In particular, the 400 kV accelerator is embedded in a tank, a cylinder of 0.9 m diameter and 2.8
m long, filled with an insulating mixture of N2/CO2 gas at 20 bar. The high voltage is generated by
an inline Cockcroft-Walton power supply located inside the tank. The radio frequency ion source
directly mounted on the accelerator tube can provide beams of hydrogen or He+ over a continuous
operating time of 40 days. The ions can then be sent into one of two different, parallel beam lines
(fig.1), allowing the installation of two different target setups. In the energy range between 150
and 400 keV, the accelerator can provide up to 0.5 mA of hydrogen and 0.25 mA of helium at the
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Figure 1: The LUNA 400 kV accelerator with the two beam lines devoted to gas and solid target experiments,
respectively.

target stations, with 0.3 keV accuracy on the beam energy, 100 eV energy spread, and 5 eV per
hour long-term stability.

The dolomite rock of Gran Sasso provides a natural shielding equivalent to at least 3800 meters
of water which reduces the muon and neutron fluxes by a factor 106 and 103, respectively. The
neutron flux underground is mainly due to (α ,n) reactions in the rock, with the alpha particles
coming from the 238U and 232Th decay chains. Finally, the activity due to Radon from the rock is
suppressed down to the level of few tens of Bequerel/m3 thanks to frequent air volume exchanges
(once every 3.5 hours) [5].

3. Hydrogen burning in the Sun

The first phase of LUNA, the solar phase, has been driven by the solar neutrino problem [6]. In
particular, the initial activity has been focused on the 3He(3He,2p)4He cross section measurement
within the solar Gamow peak (15-27 keV). Such a reaction is a key one of the hydrogen burning
proton-proton chain, which is responsible for more than 99% of the solar luminosity. A resonance
in its cross section at the thermal energy of the Sun was suggested long time ago to explain the
observed 8B solar neutrino flux. As a matter of fact, such a resonance would decrease the relative
contribution of the alternative reaction 3He(α ,γ)7Be, which generates the branch responsible for
7Be and 8B neutrino production in the Sun.

The experimental set-up was made of eight 1 mm thick silicon detectors of 5x5 cm2 area placed
around the beam inside the windowless target chamber filled with 3He at the pressure of 0.5 mbar.
The simultaneous detection of two protons has been the signature which unambiguously identified
a 3He(3He,2p)4He fusion reaction. Fig.2 shows the results from LUNA [7] together with higher
energy measurements [8, 9, 10]. For the first time a nuclear reaction has been measured in the
laboratory at the energy occurring in a star. In particular, at the lowest energy of 16.5 keV the
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Figure 2: The cross section of 3He(3He,2p)4He as function of energy.

cross section is 0.02 pbarn, which corresponds to a rate of about 2 events/month, rather low even
for the "silent" experiments of underground physics. No narrow resonance has been found and, as
a consequence, the astrophysical solution of the 8B and 7Be solar neutrino problem based on its
existence has been definitely ruled out.

3He(α ,γ)7Be, the competing reaction for 3He burning, has also been measured by LUNA both
by detecting the prompt γ rays and by counting the 7Be nuclei from their decay. The two different
methods gave the same result within the total error of 4% [11].

3.1 The CNO neutrinos from the Sun

14N(p,γ)15O is the slowest reaction of the first CNO cycle and it rules its energy production
rate. In particular, it is the key reaction to predict the 13N and 15O solar neutrino flux, which
depends almost linearly on its cross section.

In the first phase of the LUNA study, data have been obtained down to 119 keV energy with
solid targets of TiN and a germanium detector. This way, the five different radiative capture tran-
sitions which contribute to the 14N(p,γ)15O cross section at low energy were measured. The total
cross section was then studied down to very low energy in the second phase of the experiment by
using a 4π BGO summing detector placed around a windowless gas target filled with nitrogen at
1 mbar pressure. At the lowest center of mass energy of 70 keV a cross section of 0.24 pbarn was
measured, with an event rate of 11 counts/day from the reaction.

The results (fig.3) obtained first with the germanium detector [12, 13] and then with the BGO
set-up [14] were about a factor two lower than the existing extrapolation [15, 16] from previous data
[17, 18] at very low energy. On the other hand, they were in good agreement with the reanalysis
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[19] of [18] and with the results obtained with indirect methods [20]. Because of this reduction the
CNO neutrino yield in the Sun is decreased by about a factor of two.

In order to provide more precise data for the ground state capture, the most difficult one to be
measured because of the summing problem, we performed a third phase of the 14N(p,γ)15O study
with a composite germanium detector. This way the total error on the S-factor has been reduced to
8%: S1,14(0)=1.57±0.13 keV barn [21]. This is significant because, finally solved the solar neutrino
problem, we are now facing the solar composition problem: the conflict between helioseismology
and the new experimental value of the metal abundance (i.e. the amount of elements different from
hydrogen and helium) that emerged from improved modeling of the solar photosphere.

Thanks to the relatively small error, it will be possible in the near future to measure the carbon
and nitrogen content of the Sun core by comparing the predicted CNO neutrino flux with the mea-
sured one. As a matter of fact, the CNO neutrino flux depends linearly from the carbon and nitrogen
abundance and it is decreased by about 30% in going from the high to the low metallicity scenario
[22]. This way it will be possible to test whether the early Sun was chemically homogeneous, a
key assumption of the standard Solar Model [23].

The lower cross section is affecting also stars which are more evolved than our Sun. In par-
ticular, the lower limit on the age of the Universe inferred from the age of the oldest stellar pop-
ulations, the globular clusters, is increased by 0.7-1 billion years [24] up to 14 billion years, and
thermal pulses during the evolution of asymptotic giant branch (AGB) stars become more powerful,
making the dredge-up of carbon to the surface more efficient [25].

Figure 3: The astrophysical factor of 14N(p,γ)15O as function of energy.
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4. AGB stars, Classical Novae and BBN

A new and rich program of nuclear astrophysics mainly devoted to CNO, Ne-Na and Mg-Al
cycles started a few years ago after the solar phase of LUNA. Of particular interest are those bridge
reactions which are connecting one cycle to the next, as 15N(p,γ)16O [26] and 17O(p,γ)18F [27],
the latter competing with 17O(p,α)14N [28], or which are key ingredients of gamma astronomy, as
25Mg(p,γ)26Al [29].

Due to the higher Coulomb barrier of the reactions involved, the cycles become important at
temperatures higher than the one of our Sun, i.e. during hydrogen burning in the shell of AGB
stars and during the thermonuclear runaway of classical Novae (about 30-100, and 100-400 million
degrees, respectively). Relatively unimportant for energy generation, these cycles are essential for
the ’cooking’ of the light nuclei up to 27Al. In particular, LUNA is now measuring 22Ne(p,γ)23Na
[30], the reaction of the Ne-Na cycle with the highest uncertainty (up to a factor of 2000 in the
region of interest due to a large number of predicted resonances), and 23Na(p,γ)24Mg, the reaction
connecting the Ne-Na and Mg-Al cycles.

Three low energy resonances of 22Ne(p,γ)23Na in the energy region of AGB and classical
Nova burning have been measured for the first time by LUNA with two germanium detectors [31],
giving rise to a reaction rate significantly higher than previous evaluations at temperatures between
80 and 300 millions degrees. A new study of 22Ne(p,γ)23Na is ongoing at LUNA with a large BGO
detector of much higher efficiency to explore smaller strength resonances and to measure the direct
capture contribution.

LUNA has achieved significant results also for Big Bang Nucleosynthesis (BBN). In partic-
ular, 2H(α ,γ)6Li has been measured for the first time in the BBN energy region [32]. The results
clearly exclude the cross section enhancement which has been required as nuclear solution to the
primordial 6Li problem (i.e. a 6Li abundance in very old stars which seems to be 3 orders of mag-
nitude higher than predicted). The measurement of 2H(p,γ)3He is currently ongoing underground.
This reaction is responsible for the burning of deuterium during BBN. Its 9% uncertainty in the en-
ergy range of interest is the largest uncertainty affecting the prediction of the primordial deuterium
abundance. Purpose of the measurement is to reduce the uncertainty on this prediction, about 3%,
down to the uncertainty existing on its measurement, almost a factor two smaller.

5. What next: helium and carbon burning

After hydrogen burning the natural evolution of LUNA is the study of the next steps in the
fusion chain towards 56Fe: helium and carbon burning. In particular, 12C(α ,γ)16O determines the
abundance ratio between carbon and oxygen, the two key elements to the development of life, and
it shapes the nucleosynthesis in massive stars affecting the outcomes of both thermonuclear and
core-collapse supernovae.

Equally important are 13C(α ,n)16O and 22Ne(α ,n)25Mg, the sources of the neutrons which
synthesize half of the trans-iron elements through the S-process: neutron capture followed by β

decay. 13C(α ,n)16O has a Q-value of 2.216 MeV and it operates in the He-burning shell of low
mass (less than 4 solar masses) AGB stars. 22Ne(α ,n)25Mg has a negative Q-value (-478 keV) and
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it is active in the He-burning shell of high mass AGB stars and during the core He-burning and the
shell C-burning of massive stars (more than 10 solar masses).

Finally, the 12C+12C fusion reaction is switching on the carbon burning. Its rate determines the
evolution of a massive star up to a slowly cooling white dwarf or up to a core-collapse supernova.
It also affects the ignition conditions and time scales of thermonuclear supernovae, the standard
candles of Cosmology.

This program requires a new 3.5 MV accelerator which is going to be installed underground
in the north side of Hall B of Gran Sasso in spring 2018. The new facility will occupy a surface
of about 300 m2 (fig.4). The accelerator room will have 80cm thick concrete walls and ceiling
working as neutron shielding. The maximum neutron flux averaged over the entire external surface
of the shielding will be a factor twenty smaller than the LNGS neutron flux, with a similar energy
spectrum. The accelerator room will host a single-ended electrostatic accelerator, with two beam
lines (only one of them fed at a time) able to deliver H, He+, C+ and C2+ beams at high current
(from 1 mA of H to 100 eµA of C2+). After the underground mounting of the accelerator and its
commissioning, the first physics run will start at the beginning of 2019.

Figure 4: The LUNA-MV facility in the north side of Hall B at LNGS and the 3.5 MV accelerator with the
two beam lines.

6. Conclusions

Underground nuclear astrophysics was born twenty five years ago in the core of Gran Sasso,
with the aim of measuring cross sections in the low energy range and derive reaction rates directly
at stellar temperatures. LUNA started its activity as a pilot project with a 50 kV accelerator and still
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remains the only laboratory in the world running an accelerator deep underground, currently a 400
kV accelerator. The extremely low laboratory background has allowed for the first time nuclear
physics experiments with very small count rates, down to a couple of events per month. Only in
this way the important reactions responsible for the hydrogen burning in the Sun could be studied
down to the relevant stellar energies.

After the solar phase, LUNA is studying the hydrogen burning reactions which are responsi-
ble for the ’cooking’ of the light elements in AGB stars and classical Novae and is measuring a
few key reactions of BBN. The future of LUNA is going to start with the installation of a 3.5 MV
accelerator underground in Gran Sasso in spring 2018 and it will be focused on the study of helium
and carbon burning in stars.
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DISCUSSION

JIM BEALL: What will the stability be in energy for the 3.5 MV accelerator?

CARLO BROGGINI: The beam energy stability over 1 hour will be 1× 10−5× TV or 20 V,
whichever is higher (TV is the terminal voltage).

JONATHAN TAN: Now that you have revised globular cluster age up by about 1 Gy, what is the
effect which sets the uncertainty on these age estimates?

CARLO BROGGINI: There are three main uncertainties: the globular cluster distance, its metal-
licity and the light extinction along the line of sight.
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