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Thanks to the robotic telescopes technology, the time domain astronomy leads to a large number
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for object classification are presented. The goal is to automatically classify transient events for
both further follow-up by a larger telescope and for statistical studies of the events themselves. A
special attention is given to the identification of gamma-ray burst afterglows. Machine learning
techniques is used to identify GROND gamma-ray burst afterglow among the astrophysical ob-
jects present in the SDSS archival images based on the g′− r′, r′− i′ and i′− z′ colour indices.
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1. Motivation

1.1 Boom of Time Domain Astronomy

Thanks to the advances in robotic telescopes we have been entering the era of the boom of the
time domain astronomy [1, 2]. Instead of just taking photos of the sky, we shoot videos. Following
the Moore’s law, the data volumes is growing exponentially, doubling the size every 18 months.
Already the existing ground based optical surveys, such as SDSS [3], CRTS [4], PTF [5], Pan-Starrs
[6] produce enormous amount of data. Near future instruments, such as LSST [7], are expected to
generate data streams up to the size of Petabytes.

For example, LSST that is planned to be in operation from 2020 will produce 30,000 GB per
night - that is equal to the size of the entire SDSS. An estimated number of transients detected using
differential imaging (subtracting a reference and an observed image of the same patch of the sky)
reaches the order of magnitude of 1,000,000 transient alerts/night. 50% of it is bogus alerts caused
by CCD defects, random pixel fluctuations, airplanes etc [8]. The human attention time does not
scale, therefore an automated real-time classification is essential.

Typically, the true nature of a transient can be told from longer series of observations and by
obtaining a spectrum. However, observational time at a large telescope is expensive. This leads the
need of setting priorities of each transient event based on scientific interest.

The primary classification must be fast enough because certain science requires rapid follow-
up, otherwise the source fades beyond detectability or interesting features are gone.

1.2 Transient Zoo

Either resulting from a comparison with a catalog or from reference image subtraction, the
detected transients may be of many different origins.

They can be software analysis artefacts or hardware defects, non-astronomical sources (air-
planes) or just random pixel fluctuations statistically common for large chips.

For example, they can be results from periodic or quasi-periodic changes in brightness (transit-
ing exoplanet, variable stars, binary systems, quasars, blazars), cataclysmic events (both supernova
Type Ia and core-collapse explosions, gamma-ray bursts, tidal disruptions of stars near a black
hole), flaring episodes (novae, dwarf novae) and near Earth Objects (asteroids, comets). The com-
mon denominator of most of the transients is that they look very similar in a single observation.

In this analysis, the focus is given to identifying gamma-ray bursts in optical multi-band im-
ages.

1.3 Gamma-Ray Burst Afterglows

A classical example of transients that requires fast reaction to understand the underlying
physics are gamma-ray bursts (GRBs) with their afterglows. GRBs are the most powerful ex-
plosions in the Universe of yet unexplained origin, with the energy of up 1053 ergs released within
seconds [9]. As the outflow interacts with the interstellar medium, shocks convert the kinetic energy
of the outflow into internal energy of the particles, which is in turn emitted as radiation, produc-
ing the afterglow. The forward shock propagates into the interstellar medium, while reverse shock
propagates backward into the outflow and can reveal physical parameters of the outflow itself. The
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combined properties of the reverse and forward shocks put constraints on the level of magnetisation
of the outflow and therefore on the possible progenitors of GRBs. Due to the small width of the
ejecta shell, the reverse shock is observable only for a short time after the burst, therefore rapid
follow-up of the most likely GRB afterglow candidates is crucial.

Due to the relativistic beaming effect, only radiation within a small pitch angle θ j ∼ 1/Γ is
visible to an observer, where Γ is the bulk Lorentz factor of the outflow. As the outflow slows down,
the peak energy of the radiation drops to the optical band and the θ j increases. As a consequence,
orphan afterglows [10], the afterglows without a prompt γ-ray radiation detected, are expected to
exist, however they would reach dimmer peak in brightness compared to the standard afterglows
due to the relativistic Doppler effect for off-axis observers. Determining the rate of GRB orphan
afterglows would directly disclose the size of the jet opening angle and therefore the GRB true rate
and total energy of the explosion.

In this paper, I propose a mechanism how to distinguish GRB afterglows from other sources
in an image and to improve existing searches for GRB afterglows in wide field images.

2. Classification

2.1 Identifying GRB Afterglows

Today’s searches often define a GRB afterglow in a naive way as a new uncatalogued, typically
decaying, source detected during or shortly after the prompt phase in the error-box of the GRB.

A more advanced definition of GRB afterglow is derived from the physics of the forward
shock and would cover the fact that an afterglow spectrum and light curve are typically composed
of power-law segments, each with power-law evolution of break-points Fν = ν−αt−β , where Fnu, ν

and t are flux density, frequency and time. Common observed values are α ∼ 0.7 and β ∼ 1.0. The
afterglow behaviour is often more complex than a single power-law; these deviations are attributed
to several phenomena, such as an extra energy injection, clumpy interstellar medium, the presence
of the reverse shock, geometry of the outflow and from peaks as the different spectral peaks are
passing through a given energy window of the detector.

These signs makes the analytical classification close to impossible. Moreover, the set of rules
above says nothing about the behaviour of other sources in the field of view. The stage is open for
machine learning techniques to use.

2.2 Machine Learning Classification

Machine learning is a common umbrella term for the set of algorithms with tuneable param-
eters that improve their performance in classifying new data points based on the experience on
previously seen data. The main advantage of machine learning is that the target function, the func-
tion that classify the sources, may remain unknown. It is learnt from previously seen data within
the limits from the chosen class of models. Clearly, if the target function were known before the
analysis, no machine learning would be necessary and the function would be applied directly.

A typical learning processes involves grabbing features (observables and derived variables)
from observations, splitting the data set in the train test and the test set. Then the learning algorithm
is applied on the train data set and the result is validated on the test set not seen before during the
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training phase. At this step, meta parameters of the algorithm can be adjusted. Once the best model
is found, the learnt procedure is applied on new arriving data.

Eventually, if the source is examined further and the nature of the source is proved or dis-
proved, this feedback is extremely valuable to update the known data and to refine the algorithm.

2.3 Feature Engineering

The success of applying machine learning is heavily determined by the input data. The min-
imal set of parameters that enables reasonable separation between GRB afterglows and the other
sources results from a combination of data availability together with astrophysical intuition.

To achieve homogeneity of the features, the observations of 84 GRB afterglows detected by
GROND [11] in the years 2010 – 2015 are used. GROND is a set of near-infrared optical and
infrared cameras mount on a 2.2 m telescope located in Chile. The actual GROND images with
GRB observations are not public. To mimic rapid response, the first observation report of a GRB
afterglow or a GRB afterglow candidate are collected from published GCNs [12] and dedicated
publications [13], [14].

To simulate the population of other sources in the images within the field of view, archival data
from the SDSS catalog are used. The catalogued objects within the 12′× 12′ of the field, centred
around each GRB position, are taken. Star-like sources and quasars are considered for the test,
while a star-like source is any source that was not classified as a galaxy, a quasar or an near Earth
object in the SDSS survey. This data set may also likely include possibly highly variable stars,
novae etc. The numbers of GRB afterglows, quasars and stars used in the analysis are shown in
Table 1.

Table 1: Number of objects of each class in the dataset of sources used in the analysis.

Source type Number of sources

GRB 84
QSO 22
star 328

SDSS provides data in Sloan filters u’ g’, r’, i’, z’, while GROND detected the majority of
GRB afterglows in the g’, r’, i’, z’. To achieve maximal completeness, the u’ filter is omitted in the
analysis.

The distributions and scatter plots for each feature shows the over-lapping populations of GRB
afterglows, quasars and stars (Fig. 1, Fig. 2) and the binary labelling GRB vs non-GRB populations
(Fig. 3, Fig. 4).

There are clearly patterns in the data, but the boundaries for delineating them are not obvious.
The degeneracy in each dimension does not allow to find a simple criterion to distinguish a GRB
afterglow from other sources.

The temporal evolution of a GRB afterglow commonly follows a power-law decay in the light
curve and characteristic, a power-law shape of a spectrum and often nearly constant, colour indices.
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Figure 1: Histograms of g’-r’ (left), r’-i’ (middle) and i’-z’ (right) colours based on different classes of
objects: GRBs, quasars and stars.

Figure 2: Colour-colour diagrams of relations between g’-r’, r’-i’ and i’-z’ based on three different classes
of objects: GRBs, quasars and stars.

The SDSS catalog provides several frames of each frame. Minimally, three time stamps would be
necessary to check power-law behaviour. However, there is only a very small number of published
multi-frequency afterglow light curves from GROND, thus temporal evolutionary data are not used
in the classification scheme here after.

At the early stage of detecting a transient, only small number of observations exists and very
little is known. Therefore, contextual information may provide additional insight into the nature of
the source. For example, a short distance to the nearest galaxy may indicate a supernova or a long
GRB afterglow. The position in the Galactic plane sets higher priors for a galactic, stellar source.

The cross matching with other missions and with historical data listed in existing catalogs
would highly improved the classification. The presence of the source counterpart at other wave-
lengths would be a strong lead, too. Typically, a transient localised in the error box of a GRB
detected by a satellite would strongly favour a GRB. In the case of GROND, only one or two un-
catalogued sources are detected in the GRB error box of reported GRBs, therefore, the positional
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Figure 3: Histograms of g’-r’ (left), r’-i’ (middle) and i’-z’ (right) colours visualised for GRBs and non-
GRBs.

Figure 4: Colour-colour diagrams of relations between g’-r’, r’-i’ and i’-z’ visualised for GRBs and non-
GRBs.

context information is skipped in this analysis to prevent bias and a trivial solution. However, for
surveys with large field of view, thinking of a transient as of a source that has changed brightness
significantly, the contextual information would be essential for proper classification.

Summary of features potentially used to separate GRB afterglows from other transients is
described in the Table 2. Eventually, only g′− r′, r′− i and i′−′ z′ colour information is used for
the analysis. It is a reasonable option, because both theoretical models and observational studies
[15] show that the colour indices of GRB afterglows do not vary significantly in time and therefore
it diminishes the importance of an uncertainty at which phase of the afterglow was caught by the
observation. It also diminishes the scaling issues in observed magnitudes with no cosmological
k-correction applied.

2.4 Classifiers

There is a large variety of different classifiers used in machine learning, each suitable for
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Table 2: Summary of features potentially used to separate GRB afterglows from other transients.

Feature name Description Used in the classification

u’, g’, r’, i’, z’ magnitudes in 3 timestamps yes, u’ not used, 1 timestamp
u’-g’, g’-r’, r’-i’, i’-z’ colour indices yes, u’-g’ not used
lcPL deviation from PL light curve in χ2 no
spePL deviation from PL spectrum χ2 no
σ variability defined as standard deviation no
mad absolute deviation from the median no
GRB Inside a GRB error-box from a satellite? no
X Any counterpart in a the X-ray catalogue? no
G Any counterpart in a γ-ray catalogue? no
O Any counterpart in an optical catalogue? no
galaxy Normalised distance to the nearest galaxy no

slightly different sort of problems. Sneaking the available data, over-lapping distributions of feature
values and the pair plots of the features suggests that the problem is non-linear. Performance of
three algorithms is tested: support vector machine classifier, random forest classifier and neural
network classifier.

2.4.1 Support Vector Machine

Support vector machine algorithm [16] constructs a hyperplane in the feature space separating
the classes. The hyperplane is chosen to maximise the distance (margin) to the nearest training-data
point of the classes. If linear separation is not possible kernel transformation is may be applied on
data, adding an extra dimension, e.g. radial base function k(xi,xj) = exp(−γ‖xi−xj‖2), for γ > 0..
Thus, the separation may be found in the hyper-space of the higher dimension and then projected
back to the original parameter space. This approach still keeps the algorithm linear, whilst the data
points are transformed in a non-linear fashion.

2.4.2 Random Forest

Decision trees is a popular method for various machine learning tasks. The method is based
on binary splitting the data space or its sub-space to achieve the best separation of data points
belonging to different classes. In other words, the goal is to find a split that yields the maximal
information gain. Unfortunately, decision trees often suffer from the risk of over-fitting. However,
if averaging over a large ensemble of multiple decision trees (forest) is used, each of them with
imputed imperfection, e.g. an omitted parameter, pruned tree branch, a more robust classifier is
built [17].

Classification of rare events, such are GRB afterglows, typically suffers from poor generali-
sation performance if standard entropy or Gini splitting criteria are used. The Hellinger distance
measure [18, 19] is used.
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Random forest is also used to measure the relative importance of each feature for the classifica-
tion task. The average classifying efficiency is measured over many random decision trees leaving
one feature aside. The inverse of classification accuracy over a pruned tree defines the importance
of the feature.

2.4.3 Neural Network

Artificial neural network is a composition of neurones/perceptrons. Each individual linear
perceptron is a unit that returns the weighted sum of inputs gi, f (x) = K (∑i wigi(x)) , where K is
the activation function. Higher number of perceptrons combined together in layers can describe
even highly complex non-linear behaviour. The first layer that corresponds to the input data layer
serves as the input for the next layer, the final layer yields the output classification [20].

3. Results

3.1 Validation

To prevent memorising data points with only negligible generalisation rather than the ability
to learn, it is important to test the performance of the algorithm on an independent data set to
the data used for learning. Both the train and test sets should have similar statistical properties
including similar abundance of observations within each class. To overcome the high variance
of testing accuracy, the K-folding cross-validation method is used to randomly shuffle the data
and to split the entire data set in 4 sub-groups, 3 of 4 sub-groups (75%) of data is used to train
the algorithm, while the remaining part (25%) is used to test the algorithm, the same approach is
applied repetitively with different 25% of the data to be the test set. This way, each observation is
used both in the train and test set. The overall performance is the average of individual accuracy
scores. The folds are constructed with preserving the class abundances in each sub-samples.

To test the classification performance of each algorithm and to adjust meta parameters of each
procedure, the confusion matrix (CM) and Receiver Operating Characteristics (ROC) curve are
used.

3.1.1 Confusion matrix

The confusion matrix represents the numbers of true positive (tp) detections and true negatives
(tn) on the matrix diagonal and the numbers of false positives ( fp) and false negatives ( fn) on the
anti-diagonal. Normalised form of CM is often used.

Following scores are constructed from tp, tn, fp and fn to measure the performance: accuracy≡
(tp + tn)/(tp + tn + fp + fn), precision≡ tp/(tp + fp), recall ≡ tp/(tp + fn) and F1 ≡ 2 precision×
recall/(precision+ recall). All range from 0 to 1, with 1 being the best.

GRB afterglows are rare events. If the classes are of very different sizes the overall classifi-
cation accuracy is often not the best choice of the performance metrics, because the majority class
likelihood prior is dominant. There are several option to fix it: a) to down sample randomly the
non-GRB sample b) perform two-step classification, apply a simple binary classifier select the most
obvious cases in the majority class, then remove them from the dataset and redo the classification
with a new more balanced dataset c) use metrics that is more accurate for imbalanced classes, e.g.
the Matthews correlation. The Matthews correlation coefficient (MCC)
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MCC =
tp× tn− fp× fn√

(tp + fp)(tp + fn)(tn + fp)(tn + fn)
(3.1)

is used in the search for the best hyper parameters of the classifying algorithms in this analysis.
MCC takes into account true and false positives and negatives [21].

3.1.2 ROC curve

The Receiver Operating Characteristics (ROC curve) is a parametric plot of the true positive
rate against the false positive rate with a classification probability threshold as the parameter. It
serves as a metrics that measures the classification performance of a binary classifier. The pre-
dictions to be positive or negatives are considered to be often overlapping statistical variables.
Typically, there is a trade-off between the sensitivity of the classifier (characterised by the true
positive rate) and a complement to the specificity reflecting false triggers (the false positive rate).

Any increase in sensitivity will be accompanied by a decrease in specificity. The closer the
curve follows the left-hand border and then the top border of the ROC space, the more accurate
the test, bearing in mind that the diagonal would represent the algorithm that classifies transients
randomly. The area under the ROC curve is a measure of classification accuracy, especially for
imbalanced classes.

In the case of the transient follow-up, low sensitivity would lead to missed detections, while
low specificity would result in wasting of available follow-up resources, since there would be a
high number of non-GRBs.

3.2 Classifier Comparison

Python scikit-learn machine learning library [22] was used with customised implementation
of neural network using multi-layer perceptron algorithm.

The results for Support Vector Machine (SVM), Random Forest (RF) and Neural Network
(NN) classifiers are shown and summarised in the Table 3.

The comparison of CMs and the ROC curves with area under ROC curve is presented in Fig. 5,
Fig. 6 and Fig. 7.

Table 3: Summary of different scoring metrics describing the performance of the individual classifiers and
the combined meta-classifier: Overall accuracy, precision, recall, f1-score, area under the ROC curve (AUC)
and Matthew correlation coefficient.

Classifier Accuracy Precision Recall f1-score AUC Matthew corr.

SVM 0.90 0.91 0.95 0.93 0.95 0.78
RF 0.89 0.93 0.91 0.92 0.94 0.76
NN 0.90 0.89 0.96 0.93 0.94 0.76
meta 0.92 0.92 0.93 0.94 0.96 0.80

The importance of individual features obtained from RF are summarised in the Table 4.
Each classifier uses a number of hyper-parameters that affects the overall performance of the

search. Best values were find using a grid search for the minimal error in the terms of the Matthews
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Figure 5: Confusion matrix (left) and the ROC curve (right) for the SVM-classifier. The overall accuracy is
0.90.

Figure 6: Confusion matrix (left) and the ROC curve (right) for the RF-classifier. The overall accuracy is
0.89.

Table 4: Feature importance deduced from Random Forest pruning.

Feature name Importance [%]

’g-r’ 23.8
’r-i’ 33.5
i’-z’ 42.7

correlation metric in Eq. 3.1 over the parametric space. The results are the product of K-fold
cross-validation with K = 4. The best setups for all three classifiers are summarised in the Table 5.
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Figure 7: Confusion matrix (left) and the ROC curve (right) for the NN-classifier. The overall accuracy is
0.90.

Figure 8: Classifier method comparison based on ROC curve for three different algorithms: SVM, RF and
NN. Area under the ROC curve is plot. Dashed line represents the accuracy of a random classifier.

3.3 Meta Classifier

To increase the sensitivity and specificity classification performance a meta-classifier is created
by combining the powers of all three individual classifiers. The source is set to be a GRB if all
three classifiers classified the object as a GRB. The scoring is in the Table 3 and the corresponding
confusion matrix and the ROC curve is shown in Fig. 9.
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Table 5: Summary of hyper-parameters used in the analysis of the complete dataset. The values were ob-
tained by optimising the classification performance through K-fold cross-validated. The Matthew correlation
coefficients were used as the scoring metrics.

SVM L2 penalty (regularisation term) parameter C = 0.76
Kernel radial base function
Kernel coefficient γ = 1.56

RF Number of trees nestimators = 400
Maximal depth of a tree depthmax = 3
Splitting criterion Hellinger
Maximal number of features used for split 3

NN hidden layer topology (4,4)
initial learning rate 3.33
L2 penalty (regularisation term) parameter α = 0.010
Activation function tanh
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Figure 9: Confusion matrix (left) and the ROC curve (right) for the meta-classifier built from the SVM, RF
and NN classifiers. The overall accuracy is 0.95.

3.4 Redshift

58% of the GROND GRB afterglows in the sample have measured redshift1 z. The histogram
of measured redshifts is plot in Fig. 10 with median of zmedian = 1.52. To measure the classification
performance on GRBs of different redshifts, the GRB sample is split into low-z and high-z samples,
with respect to the median redshift zmedian.

The distribution of g’-r’, r’-i’, i’-z’ spectral indices in each category of redshifts (low, high,
unknown) is shown in Fig. 11.

The GRBs are split to three groups: low-z (z <= zmedian), high-z (z > zmedian) if the direct or
photometric redshift is known, and unknown-z if the redshift information is not provided. Table 6

1http://www.mpe.mpg.de/ jcg/grbgen.html
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Figure 10: Redshift distribution of GROND GRB afterglows used in the analysis. 49 of 84 (58%) GRBs
have derived redshift. The median of zmedian = 1.52 is marked with a red dotted line.

Figure 11: Stacked distribution of colour indices for the GROND GRB afterglows of different redshifts used
in the analysis.

shows the fraction of correctly classified GRB afterglows in the entire dataset in each redshift
group.

Alternatively, the classification performance is measured for cases in which only the low-z,
respectively the high-z subset of all GRBs is used to train and test the model. The results of the
classification precision for datasets restricted to the low-z, high-z and unknown-z GRB subsets are
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Table 6: Classification accuracy in correctly classified GRB afterglows for afterglows with low, high and
unknown redshifts.

Classifier Low-z High-z Unknown-z

SVM 0.95 0.84 0.90
RF 0.92 0.95 0.95
NN 0.80 0.67 0.70

shown in Table 7. The train and test errors decrease with the number of data points, therefore direct

Table 7: Classification accuracy in correctly classified GRB afterglows for afterglows with low, high and
unknown redshifts.

Group Accuracy Precision Recall f1-score AUC

SVM
low-z 0.93 0.83 0.80 0.88 0.96
high-z 0.89 0.89 0.89 0.89 0.88
unknown-z 0.92 0.74 0.84 0.89 0.90

RF
low-z 0.93 0.83 0.80 0.88 0.90
high-z 0.94 0.86 0.86 0.91 0.96
unknown-z 0.92 0.74 0.84 0.89 0.90

NN
low-z 0.93 0.83 0.80 0.88 0.90
high-z 0.94 0.86 0.86 0.91 0.96
unknown-z 0.92 0.74 0.84 0.89 0.90

comparison between the analysis on the full size data set and the low-z, respectively high-z subsets
only, would be inaccurate.

4. Discussion

Three conditions necessary to apply machine learning should be fulfilled: 1) A pattern exists
- both observational and theoretical assumptions suggest that there is a difference between GRB
afterglows and other sources in the optical images, 2) the pattern is not known analytically 3) the
data of reasonable quality from GROND and SDSS are available.

All three classifiers work reasonable well, scoring at 90% overall accuracy in the GRB class
and up to 94% recall. Since the abundance in GRB and non-GRB classes is imbalanced, Matthew
correlation, f1-score and area under the ROC curve measure the classification better. The RF
algorithm gets the best scores, however, the disadvantage of RF is poor ability to extrapolate data.
The combined meta-classifier used reaches 95% overall accuracy, 90% recall, 0.96 AUC score and
minimises the false positives and is more robust to over-fitting.
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The redshift distribution is not flat, therefore more low-z GRBs are expected to be hidden
among the unknown-z GRBs. The difference in the classification performance between the low-z
and high-z redshift sub-group is subtile, below 3σ significance.

Each model returns the probability of each data point to be a GRB afterglow. The misclassified
GRB afterglows are typically very peculiar cases at the edge of prediction threshold. This also
partially reflects the way the input data were obtained. The information about GRBs were taken
mostly from public GCN circulars but also from selected papers on peculiar GRBs published by
the GROND team.

The timing analysis of each algorithm in terms of the CPU time during the learning phase is
visualised in Fig. 12. The advantage of SVM lies in its low CPU demand, while NN can accomplish
complex non-linear rules. These scores reflect the CPU demands in the model training phase.
The classification of a new GRB candidate is lightning fast once the the best classification meta-
parameters are pre-computed and the classification model is fitted. The complexity of the fastest
matrix multiplication algorithm (involved in SVM and NN methods) scales as O(kn2.38), while RF
scales as O(kn log2 n) where k is the number of extra layers in NN or the size of the RF forest and
n is the number of data points.

Figure 12: Benchmark of the timing analysis of SVM, RF and NN classifiers. The CPU time spent in the
training phase is shown.

This analysis has been done without using the information about the co-ordinates of the source,
neither wether the source location lies within a known GRB error-box. If additional localisation
information is provided, the classification accuracy increases significantly, reaching 99.99%.
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5. Conclusion

The analysis showed that machine learning is powerful tool for source classification that can be
applied on GRB afterglows with high accuracy. If temporal evolutionary data are missing (which is
often the case in historical surveys), it has been shown that the minimal set of features including at
least three colour indices g’-r’, r’-i’, i’-z’ is sufficient to reveal∼ 90% of GROND GRB afterglows.

GRB colours occupy large volume in the parametric space. Predicted GRBs can be confused
with flares of non-GRB origin that can posses similar spectral properties.

The feature importance analysis based on RF pruning shows that all features used for the
classification are of similar importance. This means that further reducing the number of features
would lead to the drop of the classification performance of the algorithms. On the other hand, if
more relevant features were available, as suggested in Table 2, an improved classification precision
and faster convergence is expected.

The analysis shows the great importance of multi-filter observations for robotic telescope while
they are in survey mode. Alternatively, three or more time-stamps in less filters and extensive
contextual information should be use.

While the training phase can be CPU demanding for very crowded fields depending on the
volume and variety of the dataset used for learning, the classification of a new source is lightning
fast, involving simple matrix multiplication (SVM, NN) and walk through a binary tree (RF), while
the matrix multiplication operation is easily computed in parallel. Also the training phase of all
three algorithms can be parallelised to achieve close to real-time performance.

Therefore, applying the classification in real-time to accomplish a rapid follow-up observation
is feasible. The fast classification gives a high chance not to miss an early afterglow emission
with the contribution of the reverse shock and to catch the temporarily coincident γ-ray and optical
emission. The exact radiation mechanism of GRBs has not been well understood yet. Studies of
such correlations between the γ-rays and optical radiation emitted during the prompt phase of the
burst can set constraints on the GRB radiation models.

Applying the classifier would make the GRB afterglow detections possible in cases of GRBs
with very large error-boxes, such is often the case of many Fermi satellite GRBs and in the search
for gravitational wave counterparts where wide-field cameras with large field of view are used.

Another application would be object classification in the existing or past sky surveys. There
exists a vast number of archival photographic plates, often with low dispersion spectra provided,
e.g. First Byurakan Survey (FBS), Second Byurakan Survey (SBS) etc. The plates are of a huge
and unique scientific potential, hiding many unidentified and flaring sources. The classification
analysis could identify possible GRB afterglow candidates, including orphan afterglows. Once,
the true error-rate of the classification has been estimated, e.g. based on the successful follow-up
observations of afterglow candidates, the true abundance of GRB afterglows can be deduced. The
orphan afterglow rate directly impacts the beaming angle and therefore the true rate and the true
energy of the GRB explosions.

Statistical classification leads to detection of outliers. The outliers are peculiar cases in which
the object lies at the boundary decision or at far distance from the rest of the class members in the
parametric space. Finding interesting outliers often leads to new discoveries.
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The ML classification methods presented here are extensible to a broader spectrum of astro-
physical objects and can be used in large surveys. Different algorithms have their perks and flaws
and work best on different classification tasks. It has been shown that a decision tree composed of
a series of binary classifiers working on different sets of features yields significantly higher scores
than a single multi-label classification. It is suggested that the classifier sensitive to GRB after-
glows would be close to the top root of the decision tree. For example, both observed quasars and
GRB afterglows are believed to be blue colour objects. It has been shown that QSOs and stars are
separable in the u′−g′ vs. g′− r′ colour-colour diagram based on the SDSS observations [23]. For
sake of completeness, the separation between QSOs and stars used in this analysis is clear (Fig. 13).

Figure 13: An example of a separation between QSO and star objects based on u’-g’ and ’g-r’ colour-colour
diagram for the data used in this analysis.
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